This disclosure relates to providing electric power to a two-way communications headset coupled to an aircraft ICS through interfaces not originally meant to support conveying electric power.
In recent years, aviation headsets have expanded in functionality from being two-way communications headsets meant only for use with an aviation intercom system (ICS) to additionally including the ability to accept (wirelessly or via conductive cabling) audio from an auxiliary audio source to (e.g., a tape recorder playing music, solid-state music playing device, etc.), to provide active noise reduction functionality (ANR), and to wirelessly link with cell phones for two-way communications with that cell phone. However, the addition of these newer functions to an aviation headset imposes a requirement that electric power be provided to that headset.
Unfortunately, predominant aviation headset interface standards employed in coupling a headset to an ICS in many forms of aircraft were never meant to supply a headset with electric power. The “general aviation” (GA) interface, which is the most widely used form of aviation headset interface standard in civilian airplanes, employs a pair of connectors that enable the connection of two microphone conductors and a push-to-talk (PTT) control conductor through one of the connectors, and the connection of left and right audio channel conductors and an associated ground conductor through the other of the connectors. Correspondingly, the most widely used form of aviation headset interface standard in helicopters employs a single connector, the “U-174” connector, that enables the connection of two microphone conductors and only a monaural audio channel conductor and associated ground conductor. These interface standards were created at a time in which carbon microphones requiring a relatively high 8-16V microphone bias voltage were used, and provision of this relatively high bias voltage continues to the present day despite the vast majority of currently used headsets incorporating either an electret microphone needing only a much smaller bias voltage or a dynamic microphone needing none. Unfortunately, this relatively high bias voltage is typically provided with relatively small current capacity, making it unsuited for use in powering such newer functionality due to the likelihood of generating distortion in the signal output by the microphone.
An alternative aviation headset interface employing a single six-pin connector that replaces the PTT conductor with a power conductor to convey 8-32V with greater current capacity to a headset has been introduced in recent years, commonly referred to as a “Lemo” interface in reference to the original manufacturer of the six-pin connector it uses, i.e., LEMO® of Switzerland. Unfortunately, despite the introduction of the “Lemo” interface, the GA and U-174 interfaces remain the predominant ones used in civilian airplanes and in helicopters, respectively. As a result, aviation headsets must frequently support carrying relatively large capacity batteries to support the newer functionality, resulting in an undesirably bulky and heavy control box positioned along a cable of a headset to hold those batteries, which must be replaced from time to time.
Electric power is provided to a two-way communications headset by creating a differential DC voltage potential between a ground conductor associated with a microphone of that headset and a ground conductor associated with an acoustic driver of that headset, thereby enabling that headset to refrain from drawing electric power from a more limited local power source.
In one aspect, a method of providing electric power to a headset includes creating a DC voltage differential between a ground conductor of a microphone of the headset and a ground conductor of an acoustic driver of the headset; or includes creating a DC voltage differential between a microphone ground conductor to be coupled to a headset interface of an aircraft communications system and an acoustic driver ground conductor to be coupled to the headset interface of the aircraft communications system. In another aspect, an apparatus to power a headset includes a headset interface with at least one connector to receive at least one connector of the headset; a microphone ground conductor coupled to the interface to conduct a signal of a microphone of the headset; an acoustic driver ground conductor coupled to the interface to conduct a signal of at least one acoustic driver of the headset; and a voltage source coupled to the microphone ground conductor to create a DC voltage differential between the microphone and acoustic driver ground conductors.
In one aspect method of providing electric power to a headset includes receiving electric power from a DC voltage differential between a ground conductor of a microphone of the headset and a ground conductor of an acoustic driver of the headset. In another aspect, a headset includes a headset interface by which the headset may be coupled to another headset interface of an ICS; an acoustic driver to acoustically output audio to an ear of a user; an acoustic driver ground conductor coupling the acoustic driver to the headset interface; a microphone to detect speech sounds of the user; a microphone ground conductor coupling the microphone to the headset interface; and an injected voltage tap circuit coupled to the acoustic driver ground conductor and to the microphone ground conductor to receive electric power provided to the headset through the headset interface by creating a DC voltage differential between the acoustic driver ground and the microphone ground.
a and 2b, together, form a block diagram of a possible electrical architecture of the communications system of
a and 5b, together, form a block diagram of a portion of a possible electrical architecture of the variant of communications system of
What is disclosed and what is claimed herein is intended to be applicable to a wide variety of headsets, i.e., devices structured to be worn on or about a user's head in a manner in which at least one acoustic driver is positioned in the vicinity of an ear, and in which a microphone is positioned in the vicinity of the user's mouth to enable two-way audio communications. It should be noted that although specific embodiments of headsets incorporating a pair of acoustic drivers (one for each of a user's ears) are presented with some degree of detail, such presentations of specific embodiments are intended to facilitate understanding through examples, and should not be taken as limiting either the scope of disclosure or the scope of claim coverage.
It is intended that what is disclosed and what is claimed herein is applicable to headsets that also provide active noise reduction (ANR), passive noise reduction (PNR), or a combination of both. It is intended that what is disclosed and what is claimed herein is applicable to headsets structured to be connected with at least an intercom system through a wired connection, but which may be further structured to be connected to any number of additional devices through wired and/or wireless connections. It is intended that what is disclosed and what is claimed herein is applicable to headsets having physical configurations structured to be worn in the vicinity of either one or both ears of a user, including and not limited to, over-the-head headsets with either one or two earpieces, behind-the-neck headsets, two-piece headsets incorporating at least one earpiece and a physically separate microphone worn on or about the neck, as well as hats or helmets incorporating earpieces and a microphone to enable audio communication. Still other embodiments of headsets to which what is disclosed and what is claimed herein is applicable will be apparent to those skilled in the art.
However, unlike typical installations of communications systems in which the wire leads of a headset interface would be directly coupled to appropriate screw terminal points on the terminal block 710, in the communications system 5000, the wire leads from a headset interface 490a are coupled to a power injector 470a (the two of which, together, make up the power injector assembly 2000a), which is in turn coupled by wire leads to the terminal block 710 in place of wire leads of the headset interface 490a. As will be explained in greater detail, the power injector 470a overcomes the lack of a distinct power pin on either of the two connectors making up the headset interface 490a by shifting a voltage level of at least one of the conductors conveying a signal along a cable of a headset relative to a voltage of another of those conductors to provide electric power to that headset.
The headset 1000a incorporates an upper assembly 100, a mid assembly 200a and a lower assembly 300a. The upper assembly 100 incorporates a pair of earpieces 110 that each incorporate one of a pair of acoustic drivers 160 and 165, a headband 115 that couples together the earpieces 110, and a microphone boom 125 extending from one of the earpieces 110 to support a microphone casing 120 incorporating a microphone 140. The headset 1000a has an “over-the-head” physical configuration commonly found among aviation headsets. Depending on the size of each of the earpieces 110 relative to the typical size of the pinna of a human ear, each of the earpieces 110 may be either an “on-ear” (also commonly called “supra-aural”) or an “around-ear” (also commonly called “circum-aural”) form of earcup. However, despite the depiction in
As also depicted in
The connectors of the headset interfaces 390a and 490a are preferably chosen to at least physically conform to the GA interface standard, and cooperate to allow the headset 1000a to be detachably coupled to the ICS 700 through the power injector 470a and the terminal block 710. It is because the GA interface standard entails using pairs of connectors that each of the interfaces 390a and 490a incorporate a pair of connectors, as has been described. Thus, although the interfaces 390a and interface 490a have been described as being part of the same communications system 5000, the adherence of the interface 390a to the GA interface standard enables the headset 1000a to be coupled to a GA-compliant interface of another ICS of another aircraft, and the adherence of the interface 490a to the GA interface standard enables another headset having a GA-compliant interface to be coupled to the ICS 700 through the power injector assembly 2000a.
a and 2b, together, depict a possible embodiment of an electrical architecture that may be employed by the power injector assembly 2000a and the headset 1000a. Interconnections among the ICS 700, the terminal block 710, the power injection assembly 2000a and the headset 1000a are depicted in a somewhat schematic-like block diagram to facilitate understanding.
Turning to
The ICS 700 is coupled to both a ground and an aircraft-VCC of whatever aircraft into which the ICS 700 is installed. The ICS 700 is also coupled to the terminal block 710 via multiple wire leads conveying a push-to-talk (PTT) conductor; both high and low microphone (mic-high and mic-low) conductors; a system ground (system-gnd) conductor; and at least one of left and right audio channel (audio-left and audio-right) conductors. Within the ICS 700, the mic-low and system-gnd conductors are typically both coupled directly to the ground of the aircraft to which the ICS 700 is, itself, coupled. In this way, the mic-low and system-gnd conductors effectively become the ground conductors for a microphone and at least one acoustic driver, respectively. The audio-left and audio-right conductors are driven with left and right audio signals by the audio amplifiers 760 and 765 through the capacitors 761 and 766, respectively. The bias voltage source 740 is coupled to both the aircraft-VCC and ground of the aircraft to generate a microphone bias voltage that is driven onto the mic-high conductor through the resistor 741. The resistor 741 usually has a resistance in the range of 220-470 ohms, and the bias voltage source 740 is usually a voltage regulator configured to output a microphone bias voltage of 8-16 VDC onto the mic-high conductor. The mic-high conductor is also coupled to the microphone amplifier 745 through a capacitor 746, the capacitor 746 serving as an AC coupling to decouple the input of the microphone amplifier 745 from the microphone bias voltage while passing through analog signals representing speech sounds detected by a microphone. The PTT conductor is coupled to circuitry (not shown) within the ICS 700 that responds to the use of a PTT switch (not shown) operable to selectively couple the PTT and mic-low conductors in a manner that will be well known to those skilled in the art of aircraft communications systems.
As has been depicted and discussed, it is envisioned that the power injector 470a and the interface 490a are physically separate components coupled via wire leads. The interface 490a may be provided by whatever technician installs the communications system 5000 in an aircraft from a vendor or other source that is different from that of the power injector 470a, however, it is envisioned that the power injector 470a and the interface 490a would be provided together as components of a single installation kit (i.e., these components of the power injector assembly 2000a would be provided together as an installation kit). Thus, although depicted as separate, it should be noted that embodiments of the power injector assembly 2000a are possible in which power injector 470a and the interface 490a are combined as a single one-piece unit.
The power injector 470a incorporates an alternate bias voltage source 440, a resistor 441, an injection voltage source 445, a PTT separator 450, and capacitors 442 and 446. The interface 490a incorporates connectors 495x and 495y. Through being coupled to the terminal block 710 by wire leads, the power injector 470a is coupled to the mic-high, mic-low, system-gnd, audio-left and audio-right conductors, as well as perhaps also the PTT conductor. Also through being coupled to the terminal block 710 by still another wire lead, the power injector 470a is coupled to the aircraft-VCC. Within the power injector 470a, the system-gnd, audio-left and audio-right conductors are conveyed, preferably directly as depicted, onward to the interface 490a via the wire leads that couple together the power injector 470a and the interface 490a. The mic-low conductor is coupled to an alternate microphone low (alt-mic-low) conductor through both the injection voltage source 445 and the capacitor 446, and the mic-high conductor is coupled to an alternate microphone high (alt-mic-high) conductor through the capacitor 442. Where the power injector 470a is coupled to the PTT conductor, within the power injector 470a, the PTT conductor is coupled to the PTT separator 450 which is also coupled to an alternate PTT (alt-PTT) conductor. The alt-PTT, alt-mic-high and alt-mic-low conductors are conveyed onward to the interface 490a in lieu of the PTT, mic-high and mic-low conductors, respectively. Both the alternate bias voltage source 440 and the injection voltage source 445 are also coupled to the aircraft-VCC; and at least the alternate bias voltage source 440 is coupled to the mic-low conductor, as well as possibly also the PTT separator 450.
The injection voltage source 445 employs the aircraft-VCC (relative to the mic-low conductor) to generate a difference in voltage potential between the mic-low and alt-mic-low conductors. Given that the mic-low and system-gnd conductors are typically coupled together within aircraft intercom systems (such as depicted within the ICS 700), this generation of a voltage potential between the mic-low and alt-mic-low conductors also creates a voltage potential between the system-gnd and alt-mic-low conductors. As will be explained in greater detail, this effectively “injects” electric power into at least one of the conductors that ultimately reaches the headset 1000a by which circuits involved in providing various features within the headset 1000a may be provided with electric power by effectively “shifting” the voltage level of at least the alt-mic-low conductor relative to the mic-low and system-gnd conductors. In effect, the injection voltage source 445 behaves as a DC voltage source placed across the mic-low and alt-mic-low conductors. It is preferred that the voltage potential of about 3 VDC be provided in this manner with the alt-mic-low conductor being “shifted” to be at a voltage level that is 3V above the voltage level of the mic-low conductor.
The coupling of the capacitor 446 to the mic-low and alt-mic-low conductors in parallel with the injection voltage source 445 is meant to ensure that analog signals representing speech sounds detected by a microphone are able to propagate from the alt-mic-low conductor to the mic-low conductor with relatively little resistance. Although a DC voltage source (such as what is provided by the injection voltage source 445 between the mic-low and alt-mic-low conductors) normally appears as short or a resistor imposing relatively little resistance at lower frequencies, a voltage source can start to impose greater resistances at higher frequencies, possibly including frequencies at which speech sounds occur. The capacitor 446 overcomes this while still decoupling the difference in DC voltage potential between the mic-low and alt-mic-low conductors.
The alternate bias voltage source 440 employs the aircraft-VCC (relative to the mic-low conductor) to generate an alternative microphone bias voltage that is to be provided to the headset 1000a in place of the microphone bias voltage output by the bias voltage source 740 of the ICS 700. The alternate bias voltage source 440 drives this alternate microphone bias voltage onto the alt-mic-high conductor through the resistor 441 in a manner analogous to that in which the bias voltage source 740 drives its microphone bias voltage onto the mic-high conductor through the resistor 741. Thus, it is preferred that the resistor 441, like the resistor 741, has a resistance in the range of 220-470 ohms. This alternate microphone bias voltage driven onto the alt-mic-high conductor is selected to be akin to the microphone bias voltage driven onto the mic-high conductor, but shifted by an amount of voltage similar to that by which the alt-mic-low conductor is shifted relative to the mic-low conductor by the injection voltage source 445. By shifting the voltage driven onto the alt-mic-high conductor relative to the mic-high conductor by a similar voltage as that by which the alt-mic-low conductor is shifted relative to the mic-low conductor, it is intended that the voltage potential between the alt-mic-high and alt-mic-low conductors will be similar to the voltage potential between the mic-high and mic-low conductors.
Thus, it is preferred that the alt-mic-high conductor be driven by an alternate microphone bias voltage that is 3V above the microphone bias voltage driven onto the mic-high conductor. As depicted, the alternate bias voltage source 440 is not coupled to the mic-high conductor, and therefore, is unable to detected the microphone bias voltage driven onto the mic-high conductor for purposes of providing a reference for determining what alternate microphone bias voltage should be driven onto the alt-mic-high conductor. Given that any voltage in the range of 8-16 VDC (relative to the mic-low conductor) may be driven onto the mic-high conductor by the bias voltage source 740, it may be that an average microphone bias voltage or other estimation of what microphone bias voltage is most frequently encountered among a range of aircraft intercom systems may be derived, with 3V added to that derived voltage to define what the alternate microphone bias voltage should be. Alternatively, the alternate bias voltage source 440 may be additionally coupled to the mic-high conductor to employ the microphone bias voltage driven thereon by the bias voltage source 740 as a reference for deriving what the alternate microphone bias voltage should be.
The PTT separator 450 monitors the level of resistance between the alt-PTT and alt-mic-low conductors to distinguish at least among the presence of a very high resistance consistent with their being no coupling between these two conductors, the presence of a very low resistance consistent with these two conductors being directly coupled, and the presence of a triggering resistance that is detectably between the very low and very high resistances. As will be explained in greater detail, the triggering resistance is provided by the headset 1000a to provide an indication that the headset 1000a, which is capable of making use of the electric power provided by shifting at least the voltage level of the alt-mic-low conductor relative to the system-gnd conductor, is coupled to the power injector assembly 2000a, and not a different headset that is not capable of making use of such a provision of electric power. More precisely, the PTT separator 450 is coupled to both the alternate bias voltage source 440 and the injection voltage source 445, and signals both to either provide shifted voltage levels or not (i.e., provides both with an “enable” signal or not, respectively), depending on the level of resistance detected between the alt-PTT and alt-mic-low conductors. Thus, where the triggering resistance is detected, the PTT separator 450 signals the injection voltage source 445 to shift the voltage potential of the alt-mic-low conductor relative to the mic-low conductor and signals the alternate bias voltage source 440 to provide an alternate microphone bias voltage that is shifted in a similar manner, and where the triggering resistance is not detected, the PTT separator 450 signals the injection voltage source 445 to cease shifting the voltage potential of the alt-mic-low conductor relative to the mic-low conductor such that both are at the same voltage level, and signals the alternate bias voltage source 440 to provide an alternate microphone bias voltage that is not shifted.
The provision of the PTT separator 450 to control the injection voltage source 445 and the alternate bias voltage source 440, instead of simply allowing both to always function to shift the voltages of both of the alt-mic-low and alt-mic-high conductors may be deemed desirable as a feature to accommodate the possible use of improperly designed headsets with the ICS 700 through the interface 490a. It is a widespread and highly-regarded practice to never couple together the mic-low and system-gnd conductors within a headset, despite the fact that they are usually coupled within typical aircraft intercom systems, in order to avoid the creation of a ground loop through what are often very lengthy runs of cabling between a headset and its connection to an aircraft ICS. Thus, by not enabling at least the injection voltage source 445, instances of an improperly designed headset being coupled to the interface 490a will not result in a shorting of the output of the injection voltage source 445 to ground.
As those familiar with aircraft intercom systems will readily recognize, PTT switches are usually implemented with spring-biased, normally open, pushbutton-type switches that are meant to be operated by a user against the spring bias to close in a manner coupling the PTT and mic-low conductors when the user chooses to talk through an aircraft intercom system. In earlier years, the PTT switch would be carried on some portion of the headset, such as in the vicinity of the microphone positioned on a boom in front of the user's mouth. However, in more recent years, it has become common practice to position a PTT switch on one of the steering controls (e.g., the yoke in a civilian airplane) or other location closer to the likely location of one of the user's hands so as to avoid requiring a user to reach up to a headset to operate it; and it has become common practice to couple such a PTT switch located closer to a user's hands to the mic-low and PTT conductors at the terminal block 710. Thus, although the PTT conductor on a GA-compliant interface has largely ceased to be used in more recent years, it is still almost always present on GA-compliant headset interfaces installed in aircraft to accommodate the ever decreasing number of headsets that still carry a PTT switch.
Where the PTT separator 450 is coupled to the PTT conductor to accommodate this continuing commonplace support of such headsets, the PTT separator 450 responds to instances of a very low resistance between the alt-PTT and alt-mic-high conductors by coupling the PTT conductor to the mic-low conductor in a manner mimicking the behavior of a PTT switch that is coupled directly to the PTT and mic-low conductors and that has been operated to close so as to couple those two conductors, and the PTT separator 450 responds to instances of there being no such very low resistance between the alt-PTT and alt-mic-low conductors by refraining from coupling the PTT conductor to the mic-low conductor. However, as hinted by the PTT conductor within the power injector 470a being depicted with dashed lines, embodiments are possible in which support for the rare few headsets that still incorporate a PTT switch is not provided such that the PTT separator 450 is not coupled to the PTT conductor and/or such that the PTT separator 450 takes no action to in any way drive a voltage level onto the PTT conductor or to in any way coupled the PTT conductor to the mic-low conductor, regardless of what occurs on the alt-PTT conductor.
Further, and especially in embodiments in which the PTT separator 450 is coupled to the PTT conductor to accommodate a headset incorporating a PTT switch, the PTT separator 450 may have a latching characteristic in which the PTT separator 450 maintains its enable signal to the alternate bias voltage source 440 and the injection voltage source 445 in spite of detecting the triggering resistance being replaced with a resistance consistent with the alt-PTT and alt-mic-low conductors being coupled. More precisely, in such embodiments, where the PTT separator 450 detects a triggering resistance between the alt-PTT and alt-mic-low followed by the resistance between these two conductors changing to a very low resistance consistent with these two conductors being coupled, the PTT separator 450 continues to provide an enable signal to the injection voltage source 445 and the alternate bias voltage source 440 based on the assumption that this change to a very low resistance indicates a use of a PTT switch integrated into a variant of the headset 1000a that incorporates a PTT switch (not shown). Indeed, the fact that a transition directly from a triggering resistance to such a very low resistance has occurred can be taken as a basis for assuming that the very same headset 1000a is still coupled to the headset interface 490a, since an uncoupling should bring about a very high resistance consistent with no coupling between the alt-PTT and alt-mic-low conductors, whatsoever. Still more precisely, in such embodiments, detecting the onset of a triggering resistance may serve as a trigger for the PTT separator 450 to begin to output such an enable signal, while detecting the transition from there being a triggering resistance to their being a very high resistance may serve as a trigger for the PTT separator 450 to cease to output such an enable signal. Further, a transitions directly between a triggering resistance and a very low resistance may cause the PTT separator 450 to continue to output such an enable signal (in effect, detecting a very low resistance simply causes the PTT separator 450 to refrain from changing the state of its output between continuing or ceasing to output such an enable signal), while a transition from a very low resistance directly to a very high resistance may serve as a trigger for the PTT separator 450 to cease to output such an enable signal (in effect, detecting a very high resistance simply causes the PTT separator 450 to always cease outputting any such enable signal). Through such latching of the state of the enable signal output to the alternate bias voltage source 440 and the injection voltage source 445, situations in which operation of a PTT switch incorporated into an embodiment of the headset 1000a causes transitions between a triggering resistance and a very low resistance will not cause the provision of electric power to that embodiment of the headset 1000a by the power injection 470a to be interrupted every time that PTT switch is operated.
As previously discussed, the connectors 495x and 495y are selected to enable implementation of a GA-compliant headset interface, and therefore, preferably, the connector 495x is a receptacle configured to receive a 0.206″ TRS-type plug and the connector 495y is a receptacle configured to receive a 0.250″ TRS-type plug, in keeping with the GA interface standard. Within the interface 490a, the alt-PTT, alt-mic-high and alt-mic-low conductors are coupled to the connector 495x in a manner in which the PTT, mic-high and mic-low conductors would normally be coupled in accordance with the GA interface standard in a more conventional aircraft communications system in which the power injector 470a was not interposed between the terminal block 710 and the interface 490a. Thus, the connector 495x is dedicated to conveying microphone-related signals. Also within the interface 490a, the system-gnd, audio-left and audio-right conductors are coupled in a manner in accordance with the GA interface standard, and thus, the connector 495y is dedicated to conveying signals related to at least one acoustic driver.
Turning to
The control box 270a incorporates an injected voltage tap 245, a resistor 250, a power multiplexer 260, a local power source 265, and perhaps also an audio circuit 550 incorporating a microphone router 540, an audio router 560, and one or both of a wireless transceiver 580 and an auxiliary interface 590. The upper assembly incorporates the microphone 140, the acoustic drivers 160 and 165, and perhaps also an ANR circuit 155 and/or a pair of audio amplifiers (not shown). As has been depicted and discussed, it is envisioned that the control box 270a and the upper assembly 100 are physically separate components coupled via the cable 215. Although depicted as separate, as has been previously mentioned, embodiments are possible in which the control box 270a and the upper assembly 100 are combined as a single one-piece unit without the intervening cable 215.
Within the control box 270a, the system-gnd conductor is coupled to each of the injected voltage tap 245, the power multiplexer 260, the local power source 265, and one or more of what is incorporated into the audio circuit 550. The system-gnd conductor is also conveyed from the control box 270 to the upper assembly 100 via the cable 215 where it is also coupled to at least the acoustic drivers 160 and 165, as well as possibly also the ANR circuit 155 and/or a pair of audio amplifiers. The audio-left and audio-right conductors are coupled to the audio router 560 within the audio circuit 550, and through the audio router 560, the audio-left and audio-right conductors are selectively coupled to the acoustic drivers 160 and 165, perhaps also through the ANR circuit 155 and/or a pair of audio amplifiers. The alt-mic-low and alt-mic-high conductors are coupled to the microphone router 540 within the audio circuit 550, and through the microphone router 540, the alt-mic-low and alt-mic-high conductors are selectively coupled to the microphone 140. The alt-mic-low conductor is also coupled within the control box 270a to the injected voltage tap 245. The alt-PTT conductor is coupled within the control box 270a to the resistor 250.
The auxiliary interface 590, if present, incorporates at least a connector by which the cable 915 may be coupled to the control box 270a to enable the formation of an electrical connection between the wired device 900 and the headset 1000a to at least enable the conveyance of electrical signals therebetween that represent at least audio to be acoustically output by the acoustic drivers 160 and 165, if not also electrical signals representing sound detected by the microphone 140. The wireless transceiver 580, if present, enables the wireless device 800 and the headset 1000a to exchange wireless signals across a wireless link 815 (referring back to
With either or both of the auxiliary interface 590 or the wireless transceiver 580 present, the microphone 140 and/or the acoustic drivers 160 and 165 must be shared in their use between two-way communications with the ICS 700 and either one-way or two-way communications with one or both of the wired device 900 and the wireless device 800. The microphone router 540 and/or the audio router 560 implement any of a variety of possible audio combining and/or audio distributing functions, possibly automated and/or possibly under a user's control via manually-operable controls carried by the control box 270a, to convey audio between components of the headset 1000a. More specifically, where audio to be acoustically output is received through either the auxiliary interface 590 or the wireless transceiver 580, that audio is conveyed to the audio router 560, which combines that audio with audio received from the ICS 700 that is also be acoustically output, and the combined audio is conveyed onward to the acoustic drivers 160 and 165. Similarly, where speech sounds detected by the microphone 140 are to be conveyed to one or more of the ICS 700, the wireless device 800 and the wired device 900, the microphone router 540 distributes those speech sounds to one or more of these as appropriate, either automatically or under the control of a user.
The ANR circuit 155, if present, employs any of a variety of forms of ANR to reduce the level of environmental acoustic noise in the vicinity of a user's ears, thereby enabling that user to more easily hear whatever audio they may wish to hear from the ICS 700, the wireless device 800 and/or the wired device 900. Alternatively or additionally, a pair of audio amplifiers may be incorporated into the headset 1000a, perhaps with either an automatic or manually-operable gain control, to enable a user to more easily hear whatever audio they may wish to hear.
The provision of one or more of such functions as may be provided by the headset 1000a beyond aircraft communications through the ICS 700, such as wireless communications with the wireless device 800, wired communications with the wired device 900, ANR, combining of audio, distribution of audio, and audio amplification of what is acoustically output by the acoustic drivers 160 and 165 require electric power. The power multiplexer 260 provides an output of such electric power onto a VCC conductor that couples the power multiplexer 260 to whichever one(s) of the audio circuit 550, the ANR circuit 155 or a pair of audio amplifiers (not shown) is present. The power multiplexer 260 is coupled to and able to receive electric power from each of the injected voltage tap 245 and the local power source 260. Being coupled to both the alt-mic-low and system-gnd conductors, if a DC voltage differential is being created between these two conductors by the injection voltage source 445 of the power injector 470a, the injected voltage tap 245 is a circuit that receives and conveys this electric power to the power multiplexer 260. Otherwise, if no such DC voltage differential is being created such that the injected voltage tap 245 is unable to convey electric power to the power multiplexer 260, then the power multiplexer 260 switches to drawing electric power from the local power source 265. It is envisioned that the local power source 265 is one of a variety of possible types of battery or other relatively large capacity device able to store a useable electric charge (perhaps a capacitor of relatively large charge capacity).
Given that pilots are envisioned to be among the users of the headset 1000a, it is preferable that the headset 1000a have different power modes of operation that include at least one power mode in which a lack of electric power being provided either through the lower assembly 300a (e.g., electric power from the power injector 470a) or by the local power source 265 is responded to in a “failsafe” manner in which a pilot will still be able to use the headset 1000a to communicate through the ICS 700 despite the lack of available electric power for the headset 1000a. Thus, it is preferred that in this one power mode, the microphone router 540 defaults to conveying the alt-mic-high and alt-mic-low conductors all the way between the connector 395x and the microphone 140 to enable full microphone functionality; and that the audio router 560, the ANR circuit 155 and/or any audio amplifiers along the path between the connector 395y and the acoustic drivers 160 and 165 default to conveying the audio-left and audio-right conductors all the way between the connector 395y and the acoustic drivers 160 and 165 to enable full audio acoustic output functionality. In various embodiments, there may various other power modes by which different ones of the wireless transceiver 580, the ANR circuit 155 and/or other components of the headset 1000a are selectively provided with electric power or not, depending on whether electric power is provided through the lower assembly 300a (e.g., from the power injector 470a) or from the local power source 265, and/or possibly depending on how much electric power remains stored within the local power source 265.
As part of causing the injection voltage source 445 to create the DC voltage differential between the system-gnd and alt-mic-low conductors such that electric power is provided to the headset 1000a through the lower assembly 300a, the resistor 250 is coupled to the system-gnd conductor to provide the triggering resistance to the PTT separator 450 via the alt-PTT conductor, as previously discussed. However, in an alternate embodiment, the resistor 250 may be coupled to the VCC conductor onto which the power multiplexer 260 outputs electric power and the PTT separator 450 may be configured to be triggered by the presence of a triggering voltage on the alt-PTT conductor, instead of a triggering resistance. It is preferred that the resistor 250 have a resistance high enough to avoid trigger the PTT function of an aircraft ICS where the power injector 470a is not present (such that the PTT and alt-PTT conductors become one and the same), and yet also low enough to be distinguishable from the very high resistance consistent with their being nothing coupling the alt-PTT and alt-mic-low conductors.
a and 5b, together, depict portions of the electrical architecture in the headset 1000b that differ from the possible electrical architecture depicted for the headset 1000a in
As those skilled in the art of aircraft communications systems will readily recognize, and as can be clearly seen, neither of the Lemo or U-174 interface standard support the provision of any form of PTT conductor. Therefore, to provide the triggering resistance needed to cause the PTT separator 450 of the power injector 470a (referring back to either
However, where the interfaces 380b and 390b are made to conform to the Lemo interface standard, then as depicted in
Where the interface 380b conforms to the Lemo interface standard,
It should be noted that although the components for “injecting” electric power by creating a DC voltage differential in the manner that has been described have been depicted as being incorporated into either a distinct power injector (e.g., the power injectors 470a and 470b) or an adapting cable (e.g., the adapting cables of
Other embodiments and implementations are within the scope of the following claims and other claims to which the applicant may be entitled.
Number | Name | Date | Kind |
---|---|---|---|
20040136522 | Wurtz | Jul 2004 | A1 |
20060013410 | Wurtz | Jan 2006 | A1 |
20070025561 | Gauger et al. | Feb 2007 | A1 |
20100254542 | Schunack et al. | Oct 2010 | A1 |
20110013780 | Yamkovoy | Jan 2011 | A1 |
Number | Date | Country |
---|---|---|
202009004276 | Jul 2009 | DE |
Entry |
---|
Aeroelectric, “Aircraft Microphone Jack Wiring”, 2007, p. 2. |
International Search Report and Written Opinion for International Application No. PCT/US2012/04035, dated Aug. 9, 2012. |
Number | Date | Country | |
---|---|---|---|
20120308030 A1 | Dec 2012 | US |