Communications methods and apparatus using physical attachment point identifiers which support dual communications links

Information

  • Patent Grant
  • 9736752
  • Patent Number
    9,736,752
  • Date Filed
    Thursday, December 22, 2005
    18 years ago
  • Date Issued
    Tuesday, August 15, 2017
    7 years ago
Abstract
Methods and apparatus for routing messages between an end node and an access node via another access node are described. Physical layer identification information is used when identifying a remote, e.g., adjacent, access node as a message destination. Thus, when a connection identifier based on one or more physical layer identifiers is available to a wireless terminal, e.g., from one or more downlink signals received from a destination access node, the wireless terminal can use the connection identifier corresponding to the destination node to route a message via an access node with which it has an established uplink connection. Such connection identifier information can be used even when other addressing information, e.g., network layer address information, associated with the destination access node, may not be available to the wireless terminal.
Description
FIELD OF THE INVENTION

This invention relates to communications system and, more particularly, to methods and apparatus for routing messages based on physical layer information in wireless, e.g., cellular, communications networks.


BACKGROUND OF INVENTION

The Open System Interconnection (OSI) reference model is useful in explaining various communications and routing operations. The OSI reference model includes 7 layers with the application layer being the top most layer and the Physical Layer being the lowest layer. The physical layer is the layer which deals with actual physical connections and attributes of the physical connections in the system. Above the physical layer is a Data Link layer, sometimes referred to as the link layer. The link layer (Layer 2 in the OSI model) is sometimes described as a technology specific transfer layer. Above the link layer is the network layer (OSI Layer 3) where network routing and relaying is supported. The network layer is sometimes referred to as the packet layer. It is at the network layer that routing of messages/packets through the network is performed, e.g., on one or more paths. Different addressing may be used for directing messages and signals at the different levels. For example, a network address such as an IP address, maybe used for routing messages/packets at the network layer level. MAC addresses maybe use for controlling routing of messages at the data link layer level. At the lowest level of the OSI model, the physical level, one or more physical identifiers have a relationship to an actual physical attribute or characteristic of a source or destination device. An understanding of the different communication layers and different addressing techniques used for each of the layers will facilitate an understanding of the present invention.


Communications systems frequently include a plurality of network nodes which are coupled to access nodes through which end nodes, e.g., mobile devices, are coupled to the network. Network nodes may be arranged in a hierarchy. End nodes typically communicate with access nodes directly through connections that have been established with said access nodes. Such systems usually rely on the existence of a bidirectional communications link between an access node and end not to support two way communications between an end node and an access node. Note that in such systems the end node normally does not know the network layer address of a target destination access node but may be cognizant of information that it can receive over broadcast channels which typically can include physical layer identifier that are normally not used in such systems for message routing. This approach results in handoff delays and packet loss when the end node is only able to maintain one single bidirectional communications link at the time.


It should then be appreciated that there is a need for methods and apparatus that allows an end node that has no current uplink communications link to a target access node to communicate with said target access node via another access node with which the end node has a current uplink communications link even when said end node does nto know the network address of the target access node.


In some systems end nodes are capable of maintaining multiple bidirectional communications links with different access nodes at the same time. However, such systems typically require the end nodes to send messages intended for a specific access node, with which an end node has a connection, over the link that is directly connected to that specific access node. This approach, in some cases, is inefficient since links, especially when they are wireless links, tend to fluctuate in terms of quality (e.g., delay and loss characteristics). As a result the link to the target destination access node may not be the best link available to the end node at the time a message to said target destination access node needs to be sent. Typically this limitation is overcome by resorting to network layer communications that can be routed via multiple hops due to the use of network layer addresses (e.g., IP addresses). This approach of using network layer addresses is also inefficient especially when the messaging has to do with link layer specific functions, since network layer messages tend to be much larger than link layer messages in some systems. Such inefficient signaling is not well suited for communications over resource restricted air links.


It should then be appreciated that there is also a need for a method that allows an end node to send messages over any of its available wireless communications links independently of the access node the message is intended. It would be desirable is such messages could be sent, at least in some embodiments, without having to resort to inefficient network layer communications, e.g., communications involving the use of network layer addresses, such as IP layer addresses, for routing information to the destination access node.


SUMMARY OF THE INVENTION

The present invention is directed to methods and apparatus for routing messages between an end node and an access node via another access node. The methods and apparatus of the invention support the use of physical layer identification information when identifying a remote, e.g., adjacent, access node as a message destination. Thus, when a connection identifier based on one or more physical layer identifiers is available to a wireless terminal, e.g., from one or more downlink signals received from a destination access node, the wireless terminal can use the connection identifier corresponding to the destination node to route a message via an access node with which it has an established uplink connection. Such connection identifier information can be used even when other addressing information, e.g., network layer address information, associated with the destination access node, may not be available to the wireless terminal.


Various novel features are directed to end node methods of receiving broadcast information from an access node and determining a physical attachment point identifier, for example a connection identifier corresponding to the access node. Other features are directed to the sending of signals to one access node including a connection identifier corresponding to another access node. The connection identifier is based on one or more pieces of information which provide information relating to a physical layer attachment point. Thus, in accordance with the invention physical layer information can be used as a connection identifier.


In accordance with the invention, access nodes store information mapping connection identifiers which are based on physical layer identification information to one or more higher level addresses. The mapping information is stored in the access nodes. Access nodes include mapping information for connections identifiers corresponding to physical layer attachment points which are local to the access node in addition to connection identifiers corresponding to physical layer attachment points of other, e.g., neighboring, access nodes. This allows routing between physically adjacent base stations to be performed based on physical layer connection identifiers without the need for a wireless terminal to transmit a link layer or network layer address over the air when sending a message which is to be delivered to a neighboring access node via an existing connection with an access node currently serving the wireless terminal.


Thus various features of the invention are directed to end node methods of receiving signals from access nodes indicating an identifier to access node address resolution failure and causing said end node to send neighbor notification messages for the establishment of new access node neighbors.


While some features are directed to wireless terminal methods and apparatus, as well as to novel messages of the invention stored in a wireless terminal, other features are directed to novel access node methods and apparatus. The invention is also directed to data storage devices, e.g., memory devices, which store one or more of the novel messages of the present invention.


While various embodiments have been discussed in the summary above, it should be appreciated that not necessarily all embodiments include the same features and some of the features described above are not necessary but can be desirable in some embodiments. Numerous additional features, embodiments and benefits of the present invention are discussed in the detailed description which follows.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 illustrates a network diagram of an exemplary communications system implemented in accordance with the present invention.



FIG. 2 illustrates an exemplary end node implemented in accordance with the present invention.



FIG. 3 illustrates an exemplary access node implemented in accordance with the present invention.



FIG. 4 illustrates an exemplary Connection Identifier implemented according to this invention.



FIG. 5 illustrates an exemplary message using the Connection Identifier of FIG. 4 implemented according to this invention.



FIG. 6 illustrates exemplary signaling performed in accordance with the present invention when an end node maintains a bidirectional connection to one access node and wants to communicate with another access node.



FIG. 7 illustrates exemplary signaling performed in accordance with the present invention when an end node maintains bidirectional connections with multiple access nodes.



FIG. 8 illustrates exemplary signaling performed in accordance with the present invention when an end node triggers a neighbor discovery process between two access nodes.



FIG. 9 illustrates an exemplary PID to higher level address resolution table which may be used for mapping between (to/from) PIDs and corresponding higher level addresses.





DETAILED DESCRIPTION

The methods and apparatus of the present invention for routing messages based on physical layer information, e.g., physical layer indentifiers, which can be used to support communications sessions with one or more end nodes, e.g., mobile devices. The method and apparatus of the invention can be used with a wide range of communications systems. For example the invention can be used with systems which support mobile communications devices such as notebook computers equipped with modems, PDAs, and a wide variety of other devices which support wireless interfaces in the interests of device mobility.



FIG. 1 illustrates an exemplary communication system 100 implemented in accordance with the present invention, e.g., a cellular communication network, which comprises a plurality of nodes interconnected by communications links. Exemplary communications system 100 is, e.g., a multiple access spread spectrum orthogonal frequency division multiplexing (OFDM) wireless communications system. Nodes in the exemplary communication system 100 exchange information using signals, e.g., messages, based on communication protocols, e.g., the Internet Protocol (IP). The communications links of the system 100 may be implemented, for example, using wires, fiber optic cables, and/or wireless communications techniques. The exemplary communication system 100 includes a plurality of end nodes 144, 146, 144′, 146′, 144″, 146″, which access the communication system via a plurality of access nodes 140, 140′, 140″. The end nodes 144, 146, 144′, 146′, 144″, 146″ may be, e.g., wireless communication devices or terminals, and the access nodes 140, 140′, 140″ may be, e.g., base stations. The base stations may be implemented as wireless access routers. The exemplary communication system 100 also includes a number of other nodes 104, 106, 110, and 112, used to provide interconnectivity or to provide specific services or functions. Specifically, the exemplary communication system 100 includes a Server 104, used to support transfer and storage of state pertaining to end nodes. The Server node 104 may be, for example, an AAA server, or it may be a Context Transfer Server, or it may be a server including both AAA server functionality and Context Transfer server functionality.


The FIG. 1 exemplary system 100 depicts a network 102 that includes the Server 104 and the node 106, which are connected to an intermediate network node 110 by a corresponding network link 105 and 107, respectively. The intermediate network node 110 in the network 102 also provides interconnectivity to network nodes that are external from the perspective of the network 102 via network link 111. Network link 111 is connected to another intermediate network node 112, which provides further connectivity to a plurality of access nodes 140, 140′, 140″ via network links 141, 141′, 141″, respectively.


Each access node 140, 140′, 140″ is depicted as providing connectivity to a plurality of N end nodes (144, 146), (144′, 146′), (144″, 146″), respectively, via corresponding access links (145, 147), (145′, 147′), (145″, 147″), respectively. In the exemplary communication system 100, each access node 140, 140′, 140″ is depicted as using wireless technology, e.g., wireless access links, to provide access. A radio coverage area, e.g., communications cell, 148, 148′, 148″ of each access node 140, 140′, 140″, respectively, is illustrated as a circle surrounding the corresponding access node.


The exemplary communication system 100 is subsequently used as a basis for the description of various embodiments of the invention. Alternative embodiments of the invention include various network topologies, where the number and type of network nodes, the number and type of access nodes, the number and type of end nodes, the number and type of Servers and other Agents, the number and type of links, and the interconnectivity between nodes may differ from that of the exemplary communication system 100 depicted in FIG. 1.


In various embodiments of the present invention some of the functional entities depicted in FIG. 1 may be omitted or combined. The location or placement of these functional entities in the network may also be varied.



FIG. 2 provides a detailed illustration of an exemplary end node 200, e.g., wireless terminal such as a mobile node, implemented in accordance with the present invention. The exemplary end node 200, depicted in FIG. 2, is a detailed representation of an apparatus that may be used as any one of the end nodes 144, 146, 144′, 146′, 144″, 146″, depicted in FIG. 1. In the FIG. 2 embodiment, the end node 200 includes a processor 204, a wireless communication interface 230, a user input/output interface 240 and memory 210 coupled together by bus 206. Accordingly, via bus 206 the various components of the end node 200 can exchange information, signals and data. The components 204, 206, 210, 230, 240 of the end node 200 are located inside a housing 202.


The wireless communication interface 230 provides a mechanism by which the internal components of the end node 200 can send and receive signals to/from external devices and network nodes, e.g., access nodes. The wireless communication interface 230 includes, e.g., a receiver module 232 with a corresponding receiving antenna 236 and a transmitter module 234 with a corresponding transmitting antenna 238 used for coupling the end node 200 to other network nodes, e.g., via wireless communications channels. In some embodiments, the transmitter module 234 includes an orthogonal frequency division multiplexing (OFDM) transmitter.


The exemplary end node 200 also includes a user input device 242, e.g., keypad, and a user output device 244, e.g., display, which are coupled to bus 206 via the user input/output interface 240. Thus, user input/output devices 242, 244 can exchange information, signals and data with other components of the end node 200 via user input/output interface 240 and bus 206. The user input/output interface 240 and associated devices 242, 244 provide a mechanism by which a user can operate the end node 200 to accomplish various tasks. In particular, the user input device 242 and user output device 244 provide the functionality that allows a user to control the end node 200 and applications, e.g., modules, programs, routines and/or functions, that execute in the memory 210 of the end node 200.


The processor 204 under control of various modules, e.g., routines, included in memory 210 controls operation of the end node 200 to perform various signaling and processing as discussed below. The modules included in memory 210 are executed on startup or as called by other modules. Modules may exchange data, information, and signals when executed. Modules may also share data and information when executed. In the FIG. 2 embodiment, the memory 210 of end node 200 of the present invention includes a signaling/control module 212 and signaling/control data 214.


The signaling/control module 212 controls processing relating to receiving and sending signals, e.g., messages, for management of state information storage, retrieval, and processing. Signaling/control data 214 includes state information, e.g., parameters, status and/or other information relating to operation of the end node. In particular, the signaling/control data 214 includes configuration information 216, e.g., end node identification information, and operational information 218, e.g., information about current processing state, status of pending responses, etc. The module 212 accesses and/or modify the data 214, e.g., updating the configuration information 216 and/or the operational information 218.


The message generation module 251 is responsible for generating messages for various operations of the end node 200. Neighbor notification message 280 and signaling message 281 are exemplary messages generated according to this invention.


The link selection module 213 is responsible for selecting a link, e.g., the best link, from the plurality of links available to end node 200 for the transmission of the next message ready to be transmitted by end node 200. The link selection algorithm is based on various link quality parameters including at least some of but not limited to link latency, link channel conditions, link error rate, and link transmission power requirements.


The physical layer attachment point identifier (PID) determination module 270 is responsible for determining the PID corresponding to broadcast signals received from an access node. The PID determination module 270 includes a cell identification module 271, a carrier identification module 272, and a sector identification module 273. In some but not all embodiments, a combination of a cell identifier, carrier identifier and sector identifier are used as physical attachment point identifiers. Each of these identifier elements corresponds to physical layer identification information. For example, the cell identifier identifies a physical cell or cell type. The carrier identifier identifies the physical carrier, e.g., the carrier frequency or tone block while the sector identifier identifies a sector in a corresponding cell. Not all of this information need be used to implement a PID and the particular element of a PID may vary depending on the system implementation. For example, in a system which does not use sectorized cells there would be no need for a sector ID. Similarly, in a single carrier system there may be no need for a carrier ID. Making a PID determination, in one exemplary system, includes the steps of operating the cell identification module 271 for the determination of a cell identifier, operating the carrier identification module 272 for the determination of a carrier identifier and operating the sector identification module 273 for the determination of a sector identifier. Thus, it should be appreciated that different signals which pass through a single physical transmitter element, e.g., antenna, can correspond to different physical layer attachment points, e.g., where each of the different physical layer attachment points may be uniquely identified at least within a local area, by a combination of physical identifiers. For example, it should be appreciated that a combination of an antenna or sector identifier in combination with a first carrier identifier might be used to identify a first physical layer attachment point while a second carrier identifier in combination with the same antenna or sector identifier may be used to identify a second physical layer attachment point.


The physical layer attachment point identifiers (PIDs) information 260 is a list of PIDs, (PID1261, PID2262) which are PIDs determined using the PID determination module 260. One exemplary implementation of a physical layer attachment point identifiers (PIDs) may be a connection identifier (CID) which may be included in messages when sending and/or receiving messages. Particular exemplary CIDs are discussed further below.


Memory 210 also includes a neighbor notification module 290, a message transmission control module 292, and a link establishment module 294. The neighbor notification module 290 is used for transmitting a neighbor notification, e.g., a neighbor notification message 280, to access nodes. Message transmission control module 292 is used for controlling the transmitter module 234. Link establishment module 294 is used for establishing a wireless communications links with access nodes.



FIG. 3 provides a detailed illustration of an exemplary access node 300 implemented in accordance with the present invention. The exemplary access node 300, depicted in FIG. 3, is a detailed representation of an apparatus that may be used as any one of the access nodes 140, 140′, 140″ depicted in FIG. 1. In the FIG. 3 embodiment, the access node 300 includes a processor 304, memory 310, a network/internetwork interface 320 and a wireless communication interface 330, coupled together by bus 306. Accordingly, via bus 306 the various components of the access node 300 can exchange information, signals and data. The components 304, 306, 310, 320, 330 of the access node 300 are located inside a housing 302.


The network/internetwork interface 320 provides a mechanism by which the internal components of the access node 300 can send and receive signals to/from external devices and network nodes. The network/internetwork interface 320 includes, a receiver module 322 and a transmitter module 324 used for coupling the node 300 to other network nodes, e.g., via copper wires or fiber optic lines. The wireless communication interface 330 also provides a mechanism by which the internal components of the access node 300 can send and receive signals to/from external devices and network nodes, e.g., end nodes. The wireless communication interface 330 includes, e.g., a receiver module 332 with a corresponding receiving antenna 336 and a transmitter module 334 with a corresponding transmitting antenna 338. The interface 330 is used for coupling the access node 300 to other network nodes, e.g., via wireless communication channels.


The processor 304 under control of various modules, e.g., routines, included in memory 310 controls operation of the access node 300 to perform various signaling and processing. The modules included in memory 310 are executed on startup or as called by other modules that may be present in memory 310. Modules may exchange data, information, and signals when executed. Modules may also share data and information when executed.


In the FIG. 3 embodiment, the memory 310 of the access node 300 of the present invention includes a signal generation module 314 for the generation of signals, a packet routing module 350 responsible for the routing of signals and messages, a mapping module 312 that is responsible for mapping PIDs to network layer addresses, an address resolution table 311 including PID to IP address mappings 317. Memory 310 also includes an end node identification module 351 identifying end nodes with which the access node 300 is in communications with, uplink resource allocation information 340 responsible for allocating uplink resources to end nodes, including resources allocated to an end node X 341 and, downlink resource allocation information 345 responsible for allocating downlink resources to end nodes, including resources allocated to an end node X 346.


Referring now briefly to FIG. 9, FIG. 9 illustrates an address resolution table 311′ which may be used as the address resolution table 311 shown in FIG. 3. The address resolution table 311′ includes PIDs 902, 904, 906, 908, 910, 912 and information indicating the corresponding IP addresses 903, 905, 907, 909, 911 and 913, respectively. The PIDs are each unique locally, e.g., the PIDs of immediately adjacent cells are unique from one another. Note that the content of the PIDs may vary depending on the physical characteristics of the access node and number of physical layer attachment points supported by the access node to which the PID corresponds. In the FIG. 9 example, PIDs 902, 904 correspond to a first access node (AN 1) which supports two sectors which use the same carrier. Accordingly, in the case of AN 1, it is sufficient for the PID to include a cell identifier and a sector type identifier to uniquely identify the physical layer attachment points in the cell. PIDs 906, 908, 910 correspond to a cell which supports multiple carriers and multiple sectors. Accordingly, the PIDs for access node 2 are implemented as CIDs in the same manner as used in various exemplary embodiments discussed further herein. PID 912 corresponds to a third access node which includes a single sector and uses a single carrier. Accordingly, it is sufficient for PID 6 which corresponds to the third access node to include just a cell identifier although additional physical layer identification, e.g., a sector and/or carrier identifier. The inclusion of such additional information may be desirable where, from a processing perspective, consistent PID formats across multiple cells is desirable.


Referring now to FIG. 4, FIG. 4 illustrates an exemplary Connection IDentifier (CID) 400 implemented according to this invention. CID 400 includes a Slope 410, which is a cell Identifier, a Sector 420 which is a Sector Identifier and a Carrier 430, which is a carrier frequency identifier also known as tone block identifier.


In an exemplary communication system using OFDM technology, in the physical layer, the spectrum is divided into a number of tones and reused in cells and sectors in neighboring geographical areas. In order to improve the interference characteristics, the tones used in each cell/sector hop over time, and different cells and sectors in neighboring geographical areas use different hopping sequences, which specify how the tones shall hop. The hopping sequences are generated using a predetermined function controlled with two input variables, namely, the cell identifier, e.g., slope value, and a sector identifier. The sector identifier may be implemented as a sector type identifier that indicates which of a plurality of possible sector types a particular sector corresponds to. In one embodiment, the slope value is an integer from 1 to 112, and the sector identifier value is an integer from 0 to 5. Neighboring cells and sectors use different pairs of slope and sector identifier so that the generated hopping sequences are different. In one embodiment, all the sectors in a cell use the same slope value but different sector identifiers, and neighboring, e.g., physically adjacent, cells use different slope values.


Furthermore, the exemplary OFDM communication system, in some embodiments, uses multiple carriers or tone blocks, so that the available tones are grouped into multiple tone blocks. Tones in a tone block are preferably contiguous. In one exemplary system, hopping of the tones in a given tone block is limited to that tone block. That is, the hopping sequences are such that the tones can hop within the tone block but cannot hop across multiple tone blocks. Tone blocks are indexed with a carrier identifier. In one embodiment, the carrier identifier is an integer 0, 1, or 2.


When an end node sets up a connection to get wireless networking services, the entity on the network side is an access node, e.g., a base station in a cell/sector, and the connection is defined with respect to a single tone block. Therefore, in the above exemplary OFDM communication system, a combination of slope, sector identifier and carrier identifier can be used as a locally unique identifier that identifies the connection for the wireless terminal. The combination is thus a connection identifier based on one or more physical layer identifiers. In one embodiment, multiple wireless terminals can have connections with the same base station cell/sector on the same tone block. Those connections normally will share the same connection identifier since they are connected to the same physical layer attachment point as defined by the combination of cell, sector and tone block. The combination of the connection identifier and a wireless terminal identifier can be used to indicate a communication connection with a particular wireless terminal.


In general, the connection identifier is a number or a combination of numbers that locally uniquely identifies a connection. In various embodiments, the number or numbers are physical layer characteristic parameters. In another embodiment, e.g., an exemplary embodiment of a CDMA communication system, the connection identifier can be the combination of a pseudo noise (PN) sequence offset and another parameter, e.g., a carrier identifier if multiple carriers are used.



FIG. 5 illustrates an exemplary message 500, in accordance with the present invention, which uses the Connection Identifier of FIG. 4. Exemplary message 500 is a link layer message which includes a CID destination/source address. The CID destination/source address is an optional field in link layer messages in accordance with some embodiments of the present invention. Link layer message 500 includes a Link Layer Control (LLC) Type field 510 identifying the type of Message Body 530 included in the message 500. CID 520 is a Connection ID in the form of the Connection ID 400 of FIG. 4. In one embodiment of this invention the CID field 520 identifies a destination physical attachment point when sent from an end node to an access node in accordance with the invention and identifies a source physical attachment when sent from an access node to an end node in accordance with the invention.



FIG. 6 illustrates an exemplary communications method and corresponding signaling performed in accordance with various exemplary embodiments of the invention. In FIG. 6 end node 630 communicates with access node 620 via access node 610 without a wireless uplink link between end node 630 and access node 620 and without the end node having to know an IP address of the access node 620. The signaling is illustrated in the context of exemplary system 100 illustrated in FIG. 1. Access Nodes 610 and 620 are similar to access nodes 140, 140′ and 140″ of system 100 in FIG. 1 and they are implemented according to the access node 300 of FIG. 3. The End Node 630 is similar to end node 144, 146, 144′, 146′, 144″ and 146″ of system 100 in FIG. 1, and it is implemented according to end node 200 in FIG. 2.


In FIG. 6, end node 630 maintains a bidirectional link with access node 610, which means that it can send messages to and receive message from access node 610. End node 630 in FIG. 6, although inside the transmission range of access node 620, does not have an uplink with access node 620. This means that while end node 630 can receive and process broadcast information sent by access node 620 (e.g., broadcast messages 640), end node 630 can not send messages to access node 620 over the air and access node 620 can not receive and process messages sent to it by end node 630 over the air interface. In one embodiment of this invention this may be because end node 630 and access node 620 do not have sufficient timing synchronization. Due to certain limitations, e.g., limited hardware capability, end node 630 may not be able to establish an uplink connection with access node 620 while end node 630 currently has a bidirectional connection with access node 610. In one embodiment, the uplinks used by access node 610 and access node 620 are in different carriers, e.g., the frequency band of the uplink used by access node 610 is different from the frequency band of the uplink used by access node 620. If end node 630 can only generate uplink signal in one band at a given time, for example, because end node 630 only has one radio frequency (RF) chain due to cost considerations, then end node 630 cannot simultaneously maintain two uplink connections in two separate frequency bands. In another embodiment where the uplinks used by access nodes 610 and 620 are in the same band, the two uplinks may not be time synchronized, because the two access nodes are not time synchronized or because of the difference in the propagation delay for the signal to reach access nodes 610 and 620 from the end node 630. If end node 630 can generate just one uplink signal according to one timing synchronization scheme at a time, for example, because end node 630 has a single digital processing chain limited to one timing scheme at a time, then end node 630 cannot simultaneously maintain two uplink connections, when the connections are not sufficiently timing synchronized with one another.


End node 630 receives broadcast signal(s) 640 which are transmitted by access node 620. The signal(s) 640, according to the embodiment of this invention, are sufficient to determine the Connection ID, similar to CID 400 of FIG. 4, corresponding to the specific physical attachment of access node 620 that transmits broadcast signal 640. The signals or signals 640 may include beacon and/or pilot signals which may be transmitted over one or more symbol transmission time periods.


End node 630 transmits a message 650 to access node 610. In an exemplary embodiment of this invention, said message 650 is the same as, or similar to, exemplary message 500 of FIG. 5. The CID field, equivalent to CID 520 of FIG. 5, of said message 650 is set to the connection identifier that identifies the physical attachment point of access node 620 that broadcasted signal 640. Said message 650 is thus destined for access node 620 although it is sent to access node 610. Note that since end node 630, in the FIG. 6 example, does not have an uplink with access node 620 it can not send message 650 directly to said access node 620.


Access node 610 receives message 650 and examines the CID field, corresponding to CID 520 of FIG. 5, of message 650 and realizes, from the stored CID to link layer identification information that it does not identify one of its own physical attachment points. In such a case, access node 610 searches its memory for said CID of message 650 to find a mapping to a corresponding higher layer identifier for access node 620 (e.g., an IP address).


For example, a base station which includes multiple sectors operating under a single link layer controller and/or multiple carriers used under a single link layer controller may have multiple CIDs corresponding to a link layer identifier corresponding to a single link layer controller. In embodiments where separate link layer controllers are used for each sector and/or carrier, different link layer identifiers may be used for each for the different sector and/or carriers. In some embodiments, there is a one to one mapping between physical attachment points and link layers but this is not necessary and there may be several physical attachment points operating under a single link layer. Thus, multiple physical layer identifiers may correspond to the same link layer link identifier but each physical layer identifier connection identifier normally maps to, at most, a single link layer link identifier.


Assuming a mapping to a higher layer address is found, access node 610 encapsulates at least part of message 650 into a network layer message 660 which includes a destination address set to the identifier of access node 620 and transmits said message 660 to access node 620. According to this invention message 660 also includes an end node 630 identifier, said identifier being, depending on the embodiment, one of an end node 630 IP address, end node 630 Network Access Identifier (NAI) and a temporary identifier. Access node 620 receives said message 660 and extracts the encapsulated part of message 650 from it. Access node 620 inspects the CID field of the extracted encapsulated part of message 650 and recognizes that the CID field identifies one of its own physical attachments points.


Access node 620 sends message 670 which includes at least part of message 650 received encapsulated in message 660 by access node 620. Said message 670 also includes an end node 630 identifier similar to the one included in message 660. Access node 610 then receives message 670 and by examining the end node identifier included determines that the message 670 encapsulates a message 680 destined to end node 630. Access node 610 then sends message 680 which includes at least part of the message 670. According to this invention message 680 includes the CID of the physical attachment point of access node 620 that broadcasts signal 640.


End node 630 receives message 680 from access node 610 but by examining the CID field included in said message 680, e.g., by comparing it to stored CID information, it determines that message 680 is originated from access node 620 in response to message 650 sent to it earlier.



FIG. 7 illustrates exemplary signaling performed in accordance with various embodiments of the invention. The signaling is illustrated in the context of exemplary system 100 illustrated in FIG. 1. End node 710 is a simplified depiction of end node 200 of FIG. 2 and it is the same as, or similar to, to the end nodes 144, 146, 144′, 146′, 144″, 146″ of system 100 in FIG. 1. Access Nodes 740 and 750 are similar to access nodes 140, 140′ and 140″ of system 100 in FIG. 1 and they are implemented using access node 300 of FIG. 3. In FIG. 7, end node 710 includes a message generation module 720 and a link selection module 730. The message generation module 720 of FIG. 7, can be used by applications running in end node 710 to generate messages for their purposes. For example a connection control protocol application maybe included and active in end node 710 allowing the end node 710 to communicate with access nodes for the purpose of creating, disconnecting and/or modifying links between end node 710 and one or both of access nodes 740, 750. Another example is a quality of service (QoS) application which may be included in end node 710. The QOS application when present can modify QoS characteristics of the various links of end node 710. Link selection module 730 of FIG. 7 measures various metrics for the quality of connections including link latency, link channel conditions, link error rate, and link transmission power requirements to determine, e.g., on a message by message basis or at a particular point in time, which of the available links is the most appropriate for the transmission of the next message.


The resulting link quality information can, and in various embodiments is, used to determine which of the plurality of simultaneous links to which a message should be transmitted at a particular point in time.


In FIG. 7, end node 710 maintains bidirectional links with access nodes 740 and 750, which means that it can send messages to and received message from access node 740 and 750. In this embodiment of the invention the message generation module 720 of end node 710 generates message 759 with ultimate destination access node 740. Message 759 is first sent in link selection module 730 of end node 710. Link selection module 730 selects the link between the links to access nodes 740 and 750 over which the next message is to be transmitted. The link determination function is based on link characteristics including at least one of link latency, link channel conditions, link error rate, and link transmission power requirements.


In the exemplary embodiment of this invention depicted in FIG. 7, the link selection module 730 selects the link to access node 740 and transmits message 760 over it. Message 760 includes at least some part of message 759 and, in some embodiment of the invention, includes additional fields used for the transmission of a message over the link between end node 710 and access node 740. For example, the additional fields are, in some embodiments, link framing fields. Since the ultimate destination of message 759 and 760 is access node 740, access node 740 receives message 760, processes the received message and responds, e.g., by transmitting message 765 to end node 710. Message 765 is received by end node 710 and delivered to the message generation module as message 766. Message generation module 720, generates a second message 769 with the ultimate destination being the access node 740. Message 769 is sent to link selection module 730 which selects the link over which message 769 is to be transmitted. In this embodiment of the invention the link to access node 750 is selected and message 770 is transmitted to access node 750. Message 770 includes at least a part of message 769 and in some embodiments of this invention includes additional fields used for the transmission of the message over the link between end node 710 and 750. For example, the additional fields are, in some embodiments link framing fields.


In one embodiment of this invention the link selection module 730 adds an identifier, e.g., a physical attachment point identifier, of access node 740 together with at least a part of message 769 in comprising message 770, because the link selected by link selection module 730 for the transmission of message 770 does not correspond to the ultimate destination of message 770, which is access node 740. In another embodiment of this invention the link selection module adds the identifier of the ultimate destination of message 760 and 770 before it transmits said messages 760 and 770, independently from which link is selected for their transmission. In a further embodiment of this invention messages 759, 769 include the identifier of their ultimate destination. For example in an example of the exemplary embodiment of FIG. 7 the identifier of the ultimate destination corresponds to access node 740.


In one exemplary embodiment of this invention, message 770 is implemented according to message 500 of FIG. 5, where CID field 520 identifies access node 740. Access node 750, receives message 770 and processes it. By examining the ultimate destination of message 770, e.g., a physical attachment point identifier in the CID field 520 of message 500 of FIG. 5, access node 750 determines that message 770 is not intended for itself but for some other node identified by the ultimate destination identifier (e.g., a CID in the CID field). The Access node 750 looks up the physical attachment point identifier (PID) included in message 770 in its address resolution table (see address resolution table 311 in access node 300 of FIG. 3) to find the network address (e.g., IP Address) corresponding to the PID included in message 770.


Access node 750 encapsulates at least a part of message 770 in an appropriate network layer header and transmits message 775 to access node 740. Message 775 includes at least: a part of message 770, and at least some of the IP address of access node 740. In addition the message 775 may ad in various embodiments does include some or all of the following: the IP address of access node 750, the PID of access node 740 included in message 770, the PID of access node 750 over which message 770 was received, end node 710 identifier and session identifiers for the encapsulation (also called tunneling) of messages between access node 750 and access node 740. Access Node 740 receives message 775 which it recognizes as a message intended for itself from the destination PID included in message 775.


In one embodiment of this invention access node 740 responds by transmitting message 780 which includes at least part of message 775. Access node 750 receives message 780, which includes end node 710 identifier and sends message 785 to end node 710. Message 785 includes at least part of message 780. End node 710 receives message 785 and forwards message 786 to message generation module 720.


In another embodiment of this invention access node 740 responds by transmitting, to endnote 710, message 780′ including at least part of message 775. Message 780′ is transmitted over the direct link between access node 740 and end node 710.



FIG. 8 illustrates exemplary signaling performed in accordance with exemplary embodiments of the invention where an end node is used as part of a neighbor discovery and CID routing information update process. The signaling is illustrated in the context of an exemplary system such as the system 100 illustrated in FIG. 1. End node 810 is a simplified depiction of end node 200 of FIG. 2 and it is the same as or similar to the end nodes 144, 146, 144′, 146′, 144″, 146″ of system 100 in FIG. 1. Access Nodes 840 and 850 are the same as or similar to access nodes 140, 140′ and 140″ of system 100 in FIG. 1 and they may be implemented, e.g., using access nodes of the type illustrated in FIG. 3. In the FIG. 8 example end node 810 has a bidirectional communications link with access node 840, allowing it to send messages to, and receive message from access node 840.


In FIG. 8, end node 810 generates and transmits message 860 to access node 840. Message 860 includes an identifier that identifies access node 850 as the destination of said message. Access node 840 receives message 860 and attempts to resolve the access node 850 identifier included in said message to a network address, by searching its address resolution table, e.g., address resolution table 311 of access node 300 of FIG. 3. In the FIG. 8 example access node 840 fails to resolve said identifier. Access node 840 then transmits message 865 to end node 810. Message 865 includes an indication that routing of a message was not possible due to a resolution failure.


In one embodiment of this invention end node 810 at this point establishes a bidirectional communications link with access node 850 by exchanging a variety of messages shown as double arrowed message 870 in FIG. 8. However, this is not necessary if a bidirectional link already exists with access node 850. In another example in which the invention is used end node 810 already has a bidirectional link with access node 850 in addition to the link with access node 840


Using the link with access node 850, the end node 810 transmits a new neighbor notification message 875 to access node 850. Message 875 includes at least an identifier of access node 840 and the network layer address of access node 840. In this way, the access node 850 is supplied with both an identifier, e.g., PID of access node 840 and a corresponding link layer address, e.g., MAC address which the access node 850 can address and store for future resolution of physical layer to network layer identifier. In one embodiment of this invention the access node 840 identifier is a physical attachment point identifier; in another embodiment of this invention it is a link layer identifier. The network layer identifier of access node 840 is known to end node 810 from communication messages 897 communicated to end node 810 during or after the establishment of the link with access node 840.


In an alternative embodiment of this invention end node 810 sends message 875′ instead of message 875. Message 875′ has the same or similar message content to message 875 but is sent to access node 850 via access node 840, instead of access node 850 directly. Access node 840 then routes message 875′ as message 875″ to access node 850. Note that unlike message 860, message 875′ is a network layer message including the access node 850 network address as its destination. The network address of access node 850 is known to end node 810 from communication messages 899 communicated during or after the establishment of the link with access node 850. For this reason, access node 840 can route message 875″ to access node 850 using a network address of access node 850 e.g., IP address, without having to perform a CID to address resolution operation.


Access node 850 receives message 875 and sends new neighbor creation message 880 to the network address of access node 840, retrieved from message 875. Message 880 includes connection identifier to network layer address mappings for access node 850. In another embodiment of this invention, message 880 includes link layer identifiers to network layer address mappings for access node 850. In another embodiment of this invention message 880 includes additional neighbor information used for the accommodation of end node handoffs, including but not limited to tunnel address and tunnel session identifiers for packet redirection between access nodes 840 and 850, access node 850 capabilities with respect to quality of service, loading, protocols, and applications supported. Access node 840 receives message 880 and stores information included in message 880 in its memory e.g., for future use in CID to network address resolution operations. Access node 840 responds with message 882 acknowledging the reception of said information included in message 880.


In one embodiment of this invention access node 840 includes in message 882 some of connection identifier to network layer address mappings for access node 850, link layer identifiers to network layer address mappings for access node 850, neighbor information used for the accommodation of end node handoffs, including but not limited to tunnel address and tunnel session identifiers for packet redirection between access nodes 840 and 850, and or information indicating capabilities of access node 840 with respect to quality of service, loading, protocols, and applications supported. Access node 840 receives message 880 and stores information included in message 880 in its memory, or e.g., for future use in routing messages. In this particular embodiment of the invention messages 883 and 884 are not used.


In another embodiment of this invention access node 840 message 882 includes an acknowledgement of the reception of the information included in message 880. In this embodiment of the invention access node 840 sends message 883 including at least some of connection identifier to network layer address mappings for access node 850, link layer identifiers to network layer address mappings for access node 850, neighbor information used for the accommodation of end node handoffs, including but not limited to tunnel address and tunnel session identifiers for packet redirection between access nodes 840 and 850, access node 840 capabilities with respect to quality of service, loading, protocols, and applications supported. Access node 850 receives message 883 and stores the information included in message 883 in its memory, e.g., for future use. Access node 850 responds with message 884 acknowledging the reception of said information.


Following the exchanges of neighboring information and identifier to address mappings between access node 840 and 850 via message 880, 882 and optionally 883 and 884, end node 810 sends message 890 to access node 840. Like message 860, in one embodiment of the invention message 890 is also the same as or similar to message 500 of FIG. 5. Message 890 identifies as its ultimate destination access node 850. Access node 840, receives message 890, searches its memory for a mapping between the access node 850 identifier and a network address for said node 850 and finds said network address in its address resolution table which was earlier populated by message 880. Access node 840 encapsulates message 890 according to information in the resolution table and sends it to access node 850 in the form of message 891. Access node 850 responds with message 892 again using information in its address resolution table and message 891. Access node 840 sends message 893 to end node 810 including at least part of message 892 received from access node 850 completing the communication exchange between end node 810 and access node 850 via access node 840.


In the above described manner, through the use of messages from end node 810, access nodes 840 and 850 are provided with address and/or PID information about each other that can be used in routing subsequently received messages. Accordingly, as access nodes are added to the network, end nodes can serve to discover their presence from broadcast signals and notify access nodes of new neighbors. As part of the notification process sufficient address information is distributed to facilitate network PID based routing of messages after the notification process has been completed.


In various embodiments nodes described herein are implemented using one or more modules to perform the steps corresponding to one or more methods of the present invention, for example, signal processing, message generation and/or transmission steps. Thus, in some embodiments various features of the present invention are implemented using modules. Such modules may be implemented using software, hardware or a combination of software and hardware. Many of the above described methods or method steps can be implemented using machine executable instructions, such as software, included in a machine readable medium such as a memory device, e.g., RAM, floppy disk, etc. to control a machine, e.g., general purpose computer with or without additional hardware, to implement all or portions of the above described methods, e.g., in one or more nodes. Accordingly, among other things, the present invention is directed to a machine-readable medium including machine executable instructions for causing a machine, e.g., processor and associated hardware, to perform one or more of the steps of the above-described method(s).


Numerous additional variations on the methods and apparatus of the present invention described above will be apparent to those skilled in the art in view of the above description of the invention. Such variations are to be considered within the scope of the invention. The methods and apparatus of the present invention may be, and in various embodiments are, used with CDMA, orthogonal frequency division multiplexing (OFDM), or various other types of communications techniques which may be used to provide wireless communications links between access nodes and mobile nodes. In some embodiments the access nodes are implemented as base stations which establish communications links with mobile nodes using OFDM and/or CDMA. In various embodiments the mobile nodes are implemented as notebook computers, personal data assistants (PDAs), or other portable devices including receiver/transmitter circuits and logic and/or routines, for implementing the methods of the present invention.

Claims
  • 1. A wireless terminal configured to select one of multiple available communications links for transmitting messages, comprising: circuitry configured to simultaneously maintain a first communications link with a first access node and a second communications link with a second access node, determine a first physical layer attachment point identifier from multiple broadcast signals transmitted by the first access node, determine a second physical layer attachment point identifier from multiple broadcast signals transmitted by the second access node, generate a message including the first physical layer attachment point identifier, select only the second communications link to communicate the message, and transmit the message with the first physical layer attachment point identifier that identifies the first access node to the second access node via the second communications link, wherein the first communications link terminates at the first access node at a first physical attachment point identified by the first physical layer attachment point identifier, wherein the second communications link terminates at the second access node at a second physical attachment point identified by the second physical layer attachment point identifier, and wherein selecting only the second communications link occurs while the first communications link and the second communications link are simultaneously maintained.
  • 2. The wireless terminal of claim 1, wherein selecting only the second communications link is based on at least one of link latency, link channel conditions, link error rate, and link transmission power requirements.
  • 3. The wireless terminal of claim 1, wherein the first physical layer attachment point identifier comprises a cell identifier.
  • 4. The wireless terminal of claim 3, wherein the first physical layer attachment point identifier further comprises a carrier identifier.
  • 5. The wireless terminal of claim 4, wherein the first physical layer attachment point identifier further comprises a sector identifier.
  • 6. The wireless terminal of claim 1, wherein the first and second access nodes are base stations, and wherein transmitting the message comprises transmitting orthogonal frequency division multiplexing signals.
  • 7. A method for selecting one of multiple available communications links for transmitting messages, comprising: simultaneously maintaining, by a wireless terminal, a first communications link with a first access node and a second communications link with a second access node, wherein the first communications link terminates at the first access node at a first physical attachment point identified by a first physical layer attachment point identifier, and wherein the second communications link terminates at the second access node at a second physical attachment point identified by a second physical layer attachment point identifier;determining the first physical layer attachment point identifier from multiple broadcast signals transmitted by the first access node;determining the second physical layer attachment point identifier from multiple broadcast signals transmitted by the second access node;generating a message including the first physical layer attachment point identifier;selecting only the second communications link to communicate the message while the first communications link and the second communications link are simultaneously maintained; andtransmitting the message with the first physical layer attachment point identifier that identifies the first access node to the second access node via the second communications link.
  • 8. The method of claim 7, wherein selecting only the second communications link is based on at least one of link latency, link channel conditions, link error rate, and link transmission power requirements.
  • 9. A non-transitory machine-readable medium for a wireless terminal, the machine-readable medium comprising instructions that are executable by a processor to: simultaneously maintain a first communications link with a first access node and a second communications link with a second access node, wherein the first communications link terminates at the first access node at a first physical attachment point identified by a first physical layer attachment point identifier, and wherein the second communications link terminates at the second access node at a second physical attachment point identified by a second physical layer attachment point identifier;determine the first physical layer attachment point identifier from multiple broadcast signals transmitted by the first access node;determine the second physical layer attachment point identifier from multiple broadcast signals transmitted by the second access node;generate a message including the first physical layer attachment point identifier; select only the second communications link to communicate the message while the first communications link and the second communications link are simultaneously maintained; andtransmit the message with the first physical layer attachment point identifier that identifies the first access node to the second access node via the second communications link.
  • 10. The machine-readable medium of claim 9, wherein selecting only the second communications link is based on at least one of link latency, link channel conditions, link error rate, and link transmission power requirements.
US Referenced Citations (340)
Number Name Date Kind
4833701 Comroe et al. May 1989 A
5117502 Onoda et al. May 1992 A
5128938 Borras Jul 1992 A
5200952 Bernstein et al. Apr 1993 A
5208837 Richey May 1993 A
5229992 Jurkevich et al. Jul 1993 A
5247516 Bernstein et al. Sep 1993 A
5251209 Jurkevich et al. Oct 1993 A
5267261 Blakeney, II et al. Nov 1993 A
5268933 Averbuch Dec 1993 A
5388102 Griffith et al. Feb 1995 A
5490139 Baker et al. Feb 1996 A
5491835 Sasuta et al. Feb 1996 A
5509027 Vook et al. Apr 1996 A
5539925 Yli-Kotila et al. Jul 1996 A
5561841 Markus Oct 1996 A
5572528 Shuen Nov 1996 A
5574720 Lee Nov 1996 A
5594943 Balachandran Jan 1997 A
5694548 Baugher et al. Dec 1997 A
5722044 Padovani et al. Feb 1998 A
5737328 Norman et al. Apr 1998 A
5794137 Harte Aug 1998 A
5854785 Willey Dec 1998 A
5870427 Tiedemann, Jr. et al. Feb 1999 A
5974036 Acharya et al. Oct 1999 A
5978366 Massingill et al. Nov 1999 A
6016316 Moura et al. Jan 2000 A
6018521 Timbs et al. Jan 2000 A
6031863 Jusa et al. Feb 2000 A
6034950 Sauer et al. Mar 2000 A
6049543 Sauer et al. Apr 2000 A
6055428 Soliman Apr 2000 A
6073021 Kumar et al. Jun 2000 A
6084969 Wright et al. Jul 2000 A
6094427 Yi Jul 2000 A
6097952 Kawabata Aug 2000 A
6101394 Illidge Aug 2000 A
6137787 Chawla et al. Oct 2000 A
6144671 Perinpanathan et al. Nov 2000 A
6151502 Padovani et al. Nov 2000 A
6157668 Gilhousen et al. Dec 2000 A
6157833 Lawson-Jenkins et al. Dec 2000 A
6157978 Ng et al. Dec 2000 A
6161008 Lee et al. Dec 2000 A
6163692 Chakrabarti et al. Dec 2000 A
6195552 Jeong et al. Feb 2001 B1
6195705 Leung Feb 2001 B1
6201971 Purnadi et al. Mar 2001 B1
6256300 Ahmed et al. Jul 2001 B1
6272129 Dynarski et al. Aug 2001 B1
6285665 Chuah Sep 2001 B1
6300887 Le Oct 2001 B1
6308267 Gremmelmaier Oct 2001 B1
6345043 Hsu Feb 2002 B1
6347091 Wallentin et al. Feb 2002 B1
6360100 Grob et al. Mar 2002 B1
6366561 Bender Apr 2002 B1
6370380 Norefors et al. Apr 2002 B1
6397065 Huusko et al. May 2002 B1
6400722 Chuah et al. Jun 2002 B1
6445922 Hiller et al. Sep 2002 B1
6446127 Schuster et al. Sep 2002 B1
6449481 Kwon et al. Sep 2002 B1
6456604 Lee et al. Sep 2002 B1
6466964 Leung et al. Oct 2002 B1
6473418 Laroia et al. Oct 2002 B1
6493725 Iwai et al. Dec 2002 B1
6496704 Yuan Dec 2002 B2
6510153 Inoue et al. Jan 2003 B1
6516352 Booth et al. Feb 2003 B1
6519457 Jiang et al. Feb 2003 B1
6529732 Vainiomaki et al. Mar 2003 B1
6535493 Lee et al. Mar 2003 B1
6553227 Ho et al. Apr 2003 B1
6587680 Ala-Laurila et al. Jul 2003 B1
6611547 Rauhala Aug 2003 B1
6640248 Jorgensen Oct 2003 B1
6654363 Li et al. Nov 2003 B1
6671512 Laakso Dec 2003 B2
6701155 Sarkkinen et al. Mar 2004 B2
6708031 Purnadi et al. Mar 2004 B2
6714524 Kim et al. Mar 2004 B1
6714777 Naqvi et al. Mar 2004 B1
6714788 Voyer Mar 2004 B2
6728365 Li et al. Apr 2004 B1
6754492 Stammers et al. Jun 2004 B1
6763007 La Porta et al. Jul 2004 B1
6768908 Jalloul et al. Jul 2004 B1
6771962 Saifullah et al. Aug 2004 B2
6785256 O'neill Aug 2004 B2
6807421 Ahmavaara Oct 2004 B1
6842621 Labun et al. Jan 2005 B2
6842630 Periyalwar Jan 2005 B2
6862446 O'neill et al. Mar 2005 B2
6901063 Vayanos et al. May 2005 B2
6917605 Kakemizu et al. Jul 2005 B2
6937566 Forslow Aug 2005 B1
6947401 El-Malki et al. Sep 2005 B2
6950650 Roeder Sep 2005 B2
6954442 Tsirtsis et al. Oct 2005 B2
6961579 Inukai et al. Nov 2005 B2
6965585 Grilli et al. Nov 2005 B2
6970445 O'neill et al. Nov 2005 B2
6990088 Madour Jan 2006 B2
6990337 O'neill et al. Jan 2006 B2
6990339 Turanyi et al. Jan 2006 B2
6990343 Lefkowitz Jan 2006 B2
6992994 Das et al. Jan 2006 B2
6993332 Pedersen et al. Jan 2006 B2
7003311 Ebata et al. Feb 2006 B2
7006826 Cao et al. Feb 2006 B2
7016317 Pathak et al. Mar 2006 B1
7027400 O'Neill Apr 2006 B2
7027449 Garcia-Luna-Aceves et al. Apr 2006 B2
7068640 Kakemizu et al. Jun 2006 B2
7068654 Joseph et al. Jun 2006 B1
7069040 Iwanaga et al. Jun 2006 B2
7079511 Abrol et al. Jul 2006 B2
7089008 Back et al. Aug 2006 B1
7116654 Kim Oct 2006 B2
7123599 Yano et al. Oct 2006 B2
7130291 Kim et al. Oct 2006 B1
7155236 Chen et al. Dec 2006 B2
7161913 Jung Jan 2007 B2
7177641 Miernik et al. Feb 2007 B1
7184771 Mouly et al. Feb 2007 B1
7197318 Schwarz et al. Mar 2007 B2
7233583 Asthana et al. Jun 2007 B2
7233794 Grob et al. Jun 2007 B2
7263357 Lee et al. Aug 2007 B2
7266100 Le et al. Sep 2007 B2
7272122 Trossen et al. Sep 2007 B2
7283495 Lee et al. Oct 2007 B2
7283511 Hans et al. Oct 2007 B2
7290063 Kalliokulju et al. Oct 2007 B2
7315554 Baum et al. Jan 2008 B2
7330542 Kauhanen et al. Feb 2008 B2
7369855 ONeill et al. May 2008 B2
7369859 Gallagher May 2008 B2
7391741 Kang Jun 2008 B2
7403789 Takano et al. Jul 2008 B2
7408917 Kyung et al. Aug 2008 B1
7408950 Okuyama Aug 2008 B2
7409428 Brabec et al. Aug 2008 B1
7418264 Kim Aug 2008 B2
7420957 Kim et al. Sep 2008 B2
7460504 Tsirtsis et al. Dec 2008 B2
7492762 Chowdhury Feb 2009 B2
7499401 Buddhikot et al. Mar 2009 B2
7505765 Frangione et al. Mar 2009 B2
7529239 Seppanen May 2009 B2
7567639 Huh et al. Jul 2009 B2
7593364 Asthana Sep 2009 B2
7623493 Baba et al. Nov 2009 B2
7653415 Van Rooyen Jan 2010 B2
7668541 ONeill et al. Feb 2010 B2
7672254 Kim et al. Mar 2010 B2
7702309 Faccin et al. Apr 2010 B2
7706739 Kjellberg Apr 2010 B2
7729350 Singh et al. Jun 2010 B2
7742781 Chen et al. Jun 2010 B2
7773947 Gerlach Aug 2010 B2
7962142 O'neill et al. Jun 2011 B2
8112102 Fischer Feb 2012 B2
8144664 Pani et al. Mar 2012 B2
8165587 Dahlen et al. Apr 2012 B2
8184615 Tsirtsis et al. May 2012 B2
8229120 Iwamura et al. Jul 2012 B2
8583044 Dua Nov 2013 B2
20010019545 Okubo et al. Sep 2001 A1
20020061009 Sorensen May 2002 A1
20020064144 Einola et al. May 2002 A1
20020065785 Tsuda May 2002 A1
20020067706 Bautz et al. Jun 2002 A1
20020075859 Mizell et al. Jun 2002 A1
20020082038 Mochizuki Jun 2002 A1
20020085518 Lim Jul 2002 A1
20020107908 Dharanikota Aug 2002 A1
20020114308 Takano et al. Aug 2002 A1
20020126701 Requena Sep 2002 A1
20020136226 Christoffel et al. Sep 2002 A1
20020161927 Inoue et al. Oct 2002 A1
20020168982 Sorokine et al. Nov 2002 A1
20020199012 Cable et al. Dec 2002 A1
20030009580 Chen et al. Jan 2003 A1
20030009582 Qiao et al. Jan 2003 A1
20030018774 Flinck et al. Jan 2003 A1
20030026220 Uhlik et al. Feb 2003 A1
20030027572 Karlsson et al. Feb 2003 A1
20030032430 Lee Feb 2003 A1
20030036392 Yukie Feb 2003 A1
20030078047 Lee et al. Apr 2003 A1
20030092444 Sengodan et al. May 2003 A1
20030101307 Gemelli et al. May 2003 A1
20030103496 Lakshmi Narayanan et al. Jun 2003 A1
20030104814 Gwon et al. Jun 2003 A1
20030104815 Lee Jun 2003 A1
20030112766 Riedel et al. Jun 2003 A1
20030119516 Tomishima et al. Jun 2003 A1
20030204599 Trossen et al. Oct 2003 A1
20030212764 Trossen et al. Nov 2003 A1
20030214922 Shahrier Nov 2003 A1
20030216140 Chambert Nov 2003 A1
20030217096 McKelvie et al. Nov 2003 A1
20030227871 Hsu et al. Dec 2003 A1
20030236103 Tamaki et al. Dec 2003 A1
20040002362 Chuah et al. Jan 2004 A1
20040004736 Ogura et al. Jan 2004 A1
20040004967 Nakatsugawa et al. Jan 2004 A1
20040008630 Corson Jan 2004 A1
20040008632 Hsu et al. Jan 2004 A1
20040015607 Bender et al. Jan 2004 A1
20040016551 Bennett Jan 2004 A1
20040017792 Khaleghi et al. Jan 2004 A1
20040017798 Hurtta et al. Jan 2004 A1
20040018841 Trossen Jan 2004 A1
20040076186 Chen et al. Apr 2004 A1
20040087319 Bos et al. May 2004 A1
20040090913 Scudder et al. May 2004 A1
20040090937 Chaskar et al. May 2004 A1
20040092264 Koodli et al. May 2004 A1
20040104544 Fan et al. Jun 2004 A1
20040116153 Kaminski et al. Jun 2004 A1
20040120317 Forssell Jun 2004 A1
20040139201 Chaudhary et al. Jul 2004 A1
20040151148 Yahagi Aug 2004 A1
20040151193 Rune et al. Aug 2004 A1
20040165551 Krishnamurthi et al. Aug 2004 A1
20040166857 Shim et al. Aug 2004 A1
20040166898 Tajima Aug 2004 A1
20040176094 Kim et al. Sep 2004 A1
20040179544 Wilson et al. Sep 2004 A1
20040192307 Watanabe et al. Sep 2004 A1
20040192390 Tajima Sep 2004 A1
20040218607 Hurtta et al. Nov 2004 A1
20040228301 Rudolf et al. Nov 2004 A1
20040228304 Riedel et al. Nov 2004 A1
20040242222 An et al. Dec 2004 A1
20040253954 Lee et al. Dec 2004 A1
20050020262 Kim Jan 2005 A1
20050020265 Funabiki et al. Jan 2005 A1
20050030924 Yano et al. Feb 2005 A1
20050047390 Park et al. Mar 2005 A1
20050053043 Rudolf et al. Mar 2005 A1
20050058151 Yeh Mar 2005 A1
20050059417 Zhang et al. Mar 2005 A1
20050063338 Tsui Mar 2005 A1
20050063389 Elliott et al. Mar 2005 A1
20050079823 Kurek et al. Apr 2005 A1
20050089043 Seckin et al. Apr 2005 A1
20050090260 Semper et al. Apr 2005 A1
20050124344 Laroia et al. Jun 2005 A1
20050128949 Ku et al. Jun 2005 A1
20050128990 Eom et al. Jun 2005 A1
20050141468 Kim et al. Jun 2005 A1
20050143072 Yoon et al. Jun 2005 A1
20050201324 Zheng Sep 2005 A1
20050265303 Edwards et al. Dec 2005 A1
20050268153 Armstrong et al. Dec 2005 A1
20060002344 Ono et al. Jan 2006 A1
20060003768 Chiou Jan 2006 A1
20060007936 Shrum et al. Jan 2006 A1
20060029028 Kim et al. Feb 2006 A1
20060056348 Marinier et al. Mar 2006 A1
20060067526 Faccin et al. Mar 2006 A1
20060069809 Serlet Mar 2006 A1
20060089141 Ho et al. Apr 2006 A1
20060099948 Hoghooghi et al. May 2006 A1
20060099950 Klein et al. May 2006 A1
20060104232 Gidwani May 2006 A1
20060121883 Faccin Jun 2006 A1
20060149845 Malin et al. Jul 2006 A1
20060183479 Liu et al. Aug 2006 A1
20060217119 Bosch et al. Sep 2006 A1
20060230019 Hill et al. Oct 2006 A1
20060268924 Marinier et al. Nov 2006 A1
20060285520 Venkitaraman Dec 2006 A1
20070016637 Brawn et al. Jan 2007 A1
20070019584 Qi et al. Jan 2007 A1
20070032255 Koo Feb 2007 A1
20070064948 Tsirtsis et al. Mar 2007 A1
20070066918 Dewald et al. Mar 2007 A1
20070076653 Park et al. Apr 2007 A1
20070076658 Park et al. Apr 2007 A1
20070078999 Corson et al. Apr 2007 A1
20070083669 Tsirtsis et al. Apr 2007 A1
20070086389 Park et al. Apr 2007 A1
20070091810 Kim et al. Apr 2007 A1
20070099618 Kim May 2007 A1
20070105555 Miernik et al. May 2007 A1
20070105584 Grob et al. May 2007 A1
20070121542 Lohr et al. May 2007 A1
20070147283 Laroia et al. Jun 2007 A1
20070147377 Laroia et al. Jun 2007 A1
20070171875 Suda Jul 2007 A1
20070189282 Lohr et al. Aug 2007 A1
20070191054 Das et al. Aug 2007 A1
20070191065 Lee et al. Aug 2007 A1
20070195788 Vasamsetti et al. Aug 2007 A1
20070277074 Yeo Nov 2007 A1
20080019293 Chang et al. Jan 2008 A1
20080031198 Hwang et al. Feb 2008 A1
20080037478 Na Feb 2008 A1
20080049674 Cha Feb 2008 A1
20080051091 Phan et al. Feb 2008 A1
20080074994 Jen Mar 2008 A1
20080076424 Barber et al. Mar 2008 A1
20080089287 Sagfors et al. Apr 2008 A1
20080146231 Huang et al. Jun 2008 A1
20080160999 Eklund Jul 2008 A1
20080240039 Parekh Oct 2008 A1
20080242292 Koskela et al. Oct 2008 A1
20080253332 Ore et al. Oct 2008 A1
20080259855 Yoon et al. Oct 2008 A1
20080261600 Somasundaram et al. Oct 2008 A1
20090029706 Prakash Jan 2009 A1
20090046573 Damnjanovic Feb 2009 A1
20090080351 Ryu Mar 2009 A1
20090175448 Watanabe et al. Jul 2009 A1
20090181673 Barrett Jul 2009 A1
20090190556 Venkitaraman Jul 2009 A1
20090191878 Hedqvist et al. Jul 2009 A1
20090274086 Petrovic et al. Nov 2009 A1
20090285218 Adamczyk et al. Nov 2009 A1
20090296661 Lee Dec 2009 A1
20100027462 Lee Feb 2010 A1
20100080126 Higashida Apr 2010 A1
20110019614 ONeill et al. Jan 2011 A1
20110039546 Narasimha et al. Feb 2011 A1
20110039552 Narasimha et al. Feb 2011 A1
20110051660 Arora et al. Mar 2011 A1
20110103347 Dimou May 2011 A1
20110250892 Gupta et al. Oct 2011 A1
20110268085 Barany et al. Nov 2011 A1
20120087312 Laroia et al. Apr 2012 A1
20120327908 Gupta et al. Dec 2012 A1
20130208709 Corson et al. Aug 2013 A1
20130294324 Corson et al. Nov 2013 A1
20150030003 O'Neill et al. Jan 2015 A1
Foreign Referenced Citations (118)
Number Date Country
2002353616 May 2003 AU
36022006 Jun 2007 CL
36052006 Jun 2007 CL
36032006 Jul 2007 CL
36042006 Jul 2007 CL
1043052 Jun 1990 CN
1344477 Apr 2002 CN
1345518 Apr 2002 CN
1416284 May 2003 CN
1481119 Mar 2004 CN
1514607 Jul 2004 CN
1568043 Jan 2005 CN
1650178 Aug 2005 CN
1859529 Nov 2006 CN
0740440 Oct 1996 EP
0813346 Dec 1997 EP
0974895 Jan 2000 EP
1088463 Apr 2001 EP
1128704 Aug 2001 EP
1345370 Sep 2003 EP
0926608 Mar 2004 EP
1 458 209 Sep 2004 EP
1473872 Nov 2004 EP
1489808 Dec 2004 EP
1507421 Feb 2005 EP
1565024 Aug 2005 EP
1720267 Nov 2006 EP
1764942 Mar 2007 EP
2322046 Aug 1998 GB
2395629 May 2004 GB
2084807 Mar 1990 JP
08116329 May 1996 JP
11338273 Nov 1999 JP
H11341541 Dec 1999 JP
2000125343 Apr 2000 JP
2001217830 Aug 2001 JP
2001237878 Aug 2001 JP
2001245355 Sep 2001 JP
2002111732 Apr 2002 JP
2002513527 May 2002 JP
2002165249 Jun 2002 JP
2002281069 Sep 2002 JP
2002281539 Sep 2002 JP
2002534923 Oct 2002 JP
2002537739 Nov 2002 JP
2003060685 Feb 2003 JP
2003111134 Apr 2003 JP
2003348007 May 2003 JP
2003304571 Oct 2003 JP
2003338833 Nov 2003 JP
2004007578 Jan 2004 JP
2004104544 Apr 2004 JP
2004147228 May 2004 JP
2004187256 Jul 2004 JP
2004201289 Jul 2004 JP
2004297130 Oct 2004 JP
2004328637 Nov 2004 JP
2005531173 Oct 2005 JP
2007513569 May 2007 JP
2007521759 Aug 2007 JP
2007527177 Sep 2007 JP
2008053889 Mar 2008 JP
4827994 Nov 2011 JP
20040004918 Jan 2004 KR
20040105069 Dec 2004 KR
20050023194 Mar 2005 KR
20050065123 Jun 2005 KR
20050066287 Jun 2005 KR
20070031810 Mar 2007 KR
2117396 Aug 1998 RU
2256299 Jul 2005 RU
2005115564 Nov 2005 RU
2267864 Jan 2006 RU
2292669 Jan 2007 RU
2294596 Feb 2007 RU
200527930 Aug 2005 TW
200708018 Feb 2007 TW
9501706 Jan 1995 WO
WO9512297 May 1995 WO
9804094 Jan 1998 WO
WO9833288 Jul 1998 WO
WO9847302 Oct 1998 WO
WO9856140 Dec 1998 WO
WO9905828 Feb 1999 WO
WO9927718 Jun 1999 WO
WO9966748 Dec 1999 WO
WO0018173 Mar 2000 WO
0041426 Jul 2000 WO
WO0041401 Jul 2000 WO
WO0128160 Apr 2001 WO
WO0158196 Aug 2001 WO
WO0163947 Aug 2001 WO
WO0178440 Oct 2001 WO
0219746 Mar 2002 WO
WO0243409 May 2002 WO
WO02056551 Jul 2002 WO
WO03007484 Jan 2003 WO
WO03017582 Feb 2003 WO
WO03092316 Nov 2003 WO
WO03098816 Nov 2003 WO
WO03105516 Dec 2003 WO
2004039022 May 2004 WO
2004068739 Aug 2004 WO
WO2004070989 Aug 2004 WO
WO2004079949 Sep 2004 WO
2004105272 Dec 2004 WO
2004114695 Dec 2004 WO
WO2004107638 Dec 2004 WO
WO2005029790 Mar 2005 WO
2005048629 May 2005 WO
WO2005062633 Jul 2005 WO
WO-2005078966 Aug 2005 WO
WO2005084146 Sep 2005 WO
WO2005120183 Dec 2005 WO
WO2006002676 Jan 2006 WO
2006083131 Aug 2006 WO
WO2008113373 Sep 2008 WO
WO-2008131401 Oct 2008 WO
Non-Patent Literature Citations (56)
Entry
International Preliminary Report on Patentability, PCT/US06/048915, International Preliminary Examining Authority, United States, Jun. 24, 2008.
Dirk Trossen Govind Krishnamurthi Hemant Chaskar; Nokia Research Center, Robert C Chalmers UC Santa Barbara “A Dynamic Protocol for Candidate Access-Router Discovery”, pp. 1-36 Mar. 14, 2003.
International Search Report from International Application No. PCT/US2006/048915 with Written Opinion of International Searching Authority dated Jul. 17, 2007; pp. 1-9.
Baker, et al., IETF, Network Working Group, Request for Comments: 2206, “RSVP Management Information Base Using SMIv2,” Sep. 1997, pp. 1-60.
Berger, L., et al., “RSVP Extensions for IPSEC Data Flows,” IETF, Network Working Group, Request for Comments: 2207, pp. 1-14 (Sep. 1997).
Berger, L., “RSVP Refresh Overhead Reduction Extensions,” IETF Network Working Group, Request for Comments: 2961, pp. 1-32 (Apr. 2001).
Bos et al., “A Framework for End-to-End Perceived Quality of Service Negotiation”, IETF Internal Draft, draft-bos-mmusic-sdpqos-framework-00.txt, Nov. 2001, pp. 1-22.
Braden, R., “Resource ReSerVation Protocol (RSVP)—Ver. 1, Message Processing Rules,” IETF, Network Working Group, Request for Comments: 2209, pp. 1-24 (Sep. 1997).
Braden, R., “Resource ReSerVation Protocol (RSVP)—Ver. 1 Functional Specification”. IETF, Network Working Group, Request for Comments: 2205, pp. 1-105 (Sep. 1997).
Camarillo, G., et al., “Integration of Resource Management and SIP,” IETF Internet Draft, draft-ietf-sip-manyfolks-resource-04.ps, Feb. 25, 2002, pp. 1-18.
Campbell, Andrew T. et al., “IP Micro-Mobility Protocols”, Mobile Computing and Communications Review (MC2R), vol. 4, No. 4, pp. 45-53, (Oct. 2001).
Etri, “Source Specific Multicast (SSM) Explicit Multicast (Xcast)” pp. 1-27 (Jun. 28, 2001).
Ho, Michael. “Integration AAA with Mobile IPv4”, Internet Draft, pp. 1-59, Apr. 2002.
Johnson, D. et al. IETF Mobile IP Working Group, “Mobility Support In IPv6,”; Feb. 26, 2003 Downloaded From http://www.join.uni-muenster.de on Dec. 29, 2004, pp. 1-169.
Karagiannis, Georgios. “Mobile IP: State of the Art Report,” Ericsson, No. 3/0362-FCP NB 102 88 UEN, pp. 1-63, (Jul. 13, 1999).
Koodli, R. et al.: “Fast Handover and Context Transfers in Mobile Networks” Computer Communication Review, ACM, New York, NY, US, vol. 31, No. 5, Oct. 1, 2001 (Oct. 1, 2001), pp. 37-47, XP001115324 ISSN: 0146-4833 abstract p. 2, right-hand column, last paragraph—p. 3, left-hand column, paragraph 3 p. 5, right-hand column, last paragraph—p. 7, right-hand column, last paragraph.
Leon-Garcia, Alberto; “Communication Networks: Fundamental Concepts and Key Architectures” McGraw-Hill; 2nd Edition; Copyright 2004, pp. 44-52, 429-431.
Li, Yalun et al. “Protocol Architecture for Universal Personal Computing,” IEEE Journal on Selected Areas in Communications, IEEE Inc. New York, US, vol. 15, No. 8, Oct. 1, 1997, pp. 1467-1476, XP000721278 ISSN: 0733-8716.
Loughney, J. et al. “Context Transfer Protocol (CXTP)” IETF Standard, Request for Comments: 4067, Internet Engineering Task Force, IETF, CH, Jul. 2005 (Jul. 2005), XP015041932 ISSN: 0000-0003 pp. 1 to 33.
Mankin, A., et al., “Resource ReSerVation Protocol (RSVP) Version 1, Applicability Statement: Some Guidelines on Deployment”, IETF, Network Working Group, Request for Comments; 2208, pp. 1-6 (Sep. 1997).
Marshall, W. et al. “Integration of Resource Management and SIP: SIP Extensions for Resource Management,” IETF Internet Draft, draft-ietf-sip-manyfolks-resource-02.txt, Feb. 2001, pp. 1-28.
Miorandi D. et al.: “Analysis of master-slave protocols for real-time industrial communications over IEEE 802.11 WLANs” Industrial Informatics, 2004. Indin 2004. Piscataway, NJ, USA IEEE, Jun. 24, 2004, pp. 143-148, XP010782619, ISBN 0789385136, Para 3, point B.
Moy, J., “OSPF Version 2”, Network Working Group, Request for Comments: 2328, pp. 1-244 (Apr. 1998).
Papalilo, D. et al. “Extending SIP for QoS Support”, www.coritel.it/publications/IP—download/papalilo-salsano-veltri.pdf, Dec. 8, 2001, pp. 1-6.
Perkins, C., “IP Mobility Support for IPv4”, Nokia Research Center, Network Working Group, Request for Comments: 3220, Jan. 2002, downloaded from http://www.ietf.org on Dec. 29, 2004, pp. 1-92.
Perkins, C., “IP Mobility Support”, IBM, Network Working Group, Request for Comments: 2002; pp. 1-79 (Oct. 1996).
Rosenberg, J., et al., “SIP: Session Initiation Protocol”, IETF Network Working Group, Request for Comments: 3261, pp. 1-269. (Jun. 2002).
Schulzrinne et al., “Application-Layer Mobility Using SIP”, 0-7803-7133 IEEE, pp. 29-36, Jan. 2000.
Thulasi, A., et al., “IPv6 Prefix Delegation Using ICMPv6”, Network Working Group, Hewlett-Packard, pp. 1-33, Apr. 2004.
TIA/EIA/IS-707A.8 “Data Service Options for Spread Spectrum Systems: Radio Link Protocol Type 2” pp. 1-1:4:12 (Mar. 1999).
Valko, A.G. et al.: “Cellular IP: A New Approach to Internet Host Mobility” Computer Communication Review, Association for Computing Machinery. New York, USvol. 29, No. 1, Jan. 1999, pp. 50-65, XP000823873 ISSN: 0146-4833, p. 56, Line 7-Line 13.
Wedlund et al: “Mobility Support Using SIP”, Proc. of ACM/IEEE International Conference on Wireless and Mobile Multimedia (WoWMoM '99), Seattle, Washington, Aug. 1999.
Wroclawski, J., “The Use of RSVP with IETF Integrated Services,” IETF, Network Working Group, Request for Comments: 2210, pp. 1-31 (Sep. 1997).
Zhou, S., et al., “A Location Management Scheme for Mobility Support in Wireless IP Networks Using Session Initiation Protocol (SIP)”, 1531-2216/01 IEEE, pp. 486-491, Oct. 2001.
3GPP, “3rd Generation Partnership Project, Technical Specification Group Radio Access Network, E-UTRAN Mobility Evaluation and Enhancement,(Release 9)”, 3GPP Draft, R1-090856 TP for TR for Mobility Studies, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921 Sophia-Antipolis Cedex, France, No. Athens, Greece, Feb. 3, 2009, Feb. 3, 2009 (Feb. 3, 2009), XP050318707.
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 9) , 3GPP Standard; 3GPP TS 36.300, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, No. V9.2.0, Jan. 7, 2010 (Jan. 7, 2010); pp. 1-178, XP050401821, [retrieved on Jan. 7, 2010].
“3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol specification (Release 8)” 3GPP Standard; 3GPP TS 36.331, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex; France, No. V8.2.0, May 1, 2008 (May 1, 2008), pp. 1-151, XP050377645.
3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Evolved Universal Terrestrial Radio Access (E-UTRA) Radio Resource Control (RRC); Protocol specification (Release 9), 3GPP Standard; 3GPP TS 36.331, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, No. V9.1.0, Jan. 7, 2010 (Jan. 7, 2010), pp. 1-221, XP050401822, [retrieved on Jan. 7, 2010].
Huawei, et al., “Clarification of definitions of HO failure cases”, RAN3, 3GPP Draft; 36300—CR0202—(REL-9)—R2-101906—R3-100635, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, vol. RAN WG2, No. San Francisco, USA, Feb. 22, 2010, Mar. 4, 2010 (Mar. 4, 2010), XP050422194, [retrieved on Mar. 4, 2010].
Ian F.A., et al., “Mobility Management in Next-Generation Wireless Systems”, Proceedings of the IEEE, IEEE. New York, us, vol. 87, No. 8, Aug. 1, 1999 (Aug. 1, 1999) , XP011044241, ISSN: 0018-9219.
Nortel: “Forward Hand-Off options”, R2-071980, 3GPP TSG-RAN WG2 Meeting #58, Kobe, Japan, May 7-11, 2007, sections 2-3.
Pallini, G P et al., “Trends in Handover Design” IEEE 34(3), pp. 82-90, Mar. 1, 1996 (Mar. 1, 1996), XP00557380.
Panasonic, “Necessity of forward handover”, 3GPP Draft, R2-062146, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre, 650, Route Des Lucioles, F-06921 Sophia-Antipolis Cedex, France, vol. RAN WG2, No. Tallinn, Aug. 23, 2006, Aug. 23, 2006 (Aug. 23, 2006), XP050131764.
Zte, et al., “Handover Cause Report for Mobility Robustness Optimization”, 3GPP Draft; R3-092982, 3rd Generation Partnership Project (3GPP), Mobile Competence Centre ; 650, Route Des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, No. Jeju; Nov. 9, 2009, Nov. 9, 2009 (Nov. 9, 2009), XP050392455, [retrieved on Nov. 19, 2009].
3GPP TS 36.423, “3rd Generation Partnership Project Technical Specification Group Radio Access Network, Evolved Universal Terrestrial Radio Access (E UTRA) and Evolved Universal Terrestrial Radio Access Network (EUTRAN); X2 Application Protocol (X2AP)”, version 0.0.1, Release 8, year 2007, pp. 9.
Basic Knowledge of Communications Term of Switching HUB, Nov. 9, 2006, 2 pgs.
Droms, R.: “Dynamic Host Configuration Protocol,” IETF Standard, RFC 2131, Internet Engineering Task Force, IETF, CH, pp. 1-45, (Mar. 1997) XP015007915.
Mockapetris P., “Doman Names—Implentation and Specification”, IETF RFC 1935, Nov. 1987.
“Network Layer Protocol,” Ju. 13, 2002. chap. 6, pp. 1-35. URL: http://www2.yamanashi-ken.ac.jp/˜itoyo/lecture/network/network06/index06.htm.
“Terms for Use in Textbooks and Lectures on Distributed Computing,” Feb. 13, 2005, URL: http://web.archive.org/web/20050213090736/http://www.nuis.ac.jp/˜nagai/lecture/dce.html.
Takako Mita, et al., A Proposal for Seamless QoS Support in Mobile Networks, Research Report of Information Processing Society 2004-MBL-29, Japan, Information Processing Society of Japan, May 13, 2004, vol. 2004, No. 44, pp. 129 to 134.
Translation of Office Action in Japanese application 2008-532335 corresponding to U.S. Appl. No. 11/487,446, citing Takako—A—Proposal—pgs—129—134—year—2004, JP2003060685, WO2005084146, JP200752177 and JP2003304571 dated Jan. 11, 2011.
Translation of Office Action in Japanese application 2008-532335 corresponding to U.S. Appl. No. 11/486,654, citing US20040047366, WO0041401, JP2002534923, WO2005029790, JP2004328637 and JP2007521759 dated Jan. 11, 2011.
Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2 (Release 9), 3GPP TS 36.300 V9.2.0, Dec. 2009, pp. 56-61, Retrieved from the internet: URL: http://www.3gpp.org/ftp/Specs/archive/36—series/36.300/36300-920.zip.
Qualcomm Europe, T-Mobile, “Network based solutions to inbound mobility in the presence of PCI confusion”, 3GPP TSG-RAN WG3 #64, R3-091027, May 2008, pp. 1-4, Retrieved from the internet: URL: http://www.3gpp.org/ftp/tsg—ran/WG3—lu/TSGR3—64/Docs/R3-091027.zip.
Qualcomm Incorporated, “UE context fetch procedure stage 2”, 3GPP TSG-RAN WG3 Meeting #67, R3-100893, Feb. 2010, pp. 1-4, Retrieved from the internet URL: http://www.3gpp.org/ftp/tsg—ran/WG3—lu/TSGR3—67/Docs/R3-100893.zip.
Related Publications (1)
Number Date Country
20070147286 A1 Jun 2007 US