The present invention is related to a compact air purifier which is ideally suited for residential applications. More specifically, the present invention is related to an improved configuration for a compact bioreactor for purifying air passing there through.
Air purifiers are typically designed with a flow-through chamber wherein biocatalyst are on the interior surfaces of the bioreactor. The biocatalyst converts contaminants flowing in a medium, preferably water, into another material. The conversion can be by oxidation or other methods wherein the contaminant is preferably converted from a toxic, or undesirable, material into a non-toxic or desirable material.
Due to the desire for a high surface area the art has evolved towards spiral reactors as described in U.S. Pat. No. 6,916,630 to Sofer, or U.S. Pat. No. 4,689,302 to Goldberg et al. both of which are incorporated herein by reference. Those of skill in the art have optimized the spiral design to the extent that they are highly efficient and this configuration now represents what is considered to be the state of the art in flow through reactor design.
Unfortunately, spiral designs have a limited volume capability and are limited by slip-streams in the flow which limit effective interactions between contaminant and catalyst. Other designs, which afford high volume, virtually always have limited functionality with regards to the amount of material converted in the reactor.
Those of skill in the art have therefore been limited to either an efficient reactor or a high volume reactor with the only option there between being multiple parallel reactors. None of these options are conducive to a compact design as would be desired in residential applications.
The present invention provides a reactor design which affords high volume throughput in a compact design with excellent reactivity between biocatalyst and contaminant.
It is an object of the invention to provide an air purifier which is compact and suitable for residential applications.
It is another object of the invention to provide a compact bioreactor.
A particular feature of the present invention is the efficiency of the system with regards to the volume of air which can be purified in a compact design.
These and other embodiments, as will be realized, are provided in an air purifier. The air purifier has a tub capable of containing a liquid. Flow restrictor walls are in the tub. An outer arcuate reactor plate is in the tub wherein the outer arcuate reactor plate comprises a first truncated cylinder with a first truncation and a second truncation wherein the first truncation is an open truncation and the second truncation is attached to the flow restrictor walls. An intermediate arcuate reactor plate is interior to the outer arcuate reactor plate wherein the intermediate arcuate reactor plate comprises a second truncated cylinder. An interior arcuate reactor plate is interior to the intermediate arcuate reactor plate wherein the interior arcuate reactor plate comprises a third truncated cylinder comprising a third truncation and a fourth truncation wherein the third truncation is an open truncation and the fourth truncation is attached to the flow restrictor walls. A pump is situated to draw liquid containing a biocatalyst from a region formed by the interior arcuate reactor plate and the flow restrictor walls for distribution onto a cap. The cap is on the tub wherein the cap comprises liquid voids and liquid passes through the liquid voids and wets at least one of the outer arcuate reactor plate, the intermediate arcuate reactor plate, the interior arcuate reactor plate or the flow restrictor walls to form a moist surface. An air inlet brings contaminated air into contact with biocatalyst on at least one moist surface thereby forming purified air. An air outlet discharges purified air from the air purifier.
Yet another embodiment is provided in a method of purifying air. The method includes providing an air purifier comprising a tub capable of containing a liquid; flow restrictor walls in the tub; an outer arcuate reactor plate in the tub wherein the outer arcuate reactor plate comprises a first truncated cylinder with a first truncation and a second truncation wherein the first truncation is an open truncation and the second truncation is attached to the flow restrictor walls an intermediate arcuate reactor plate interior to the outer arcuate reactor plate wherein the intermediate arcuate reactor plate comprises a second truncated cylinder; an interior arcuate reactor plate interior to the intermediate arcuate reactor plate wherein the interior arcuate reactor plate comprises a third truncated cylinder comprising a third truncation and a fourth truncation wherein the third truncation is an open truncation and the fourth truncation is attached to the flow restrictor walls a pump situated to draw liquid from a region formed by the interior arcuate reactor plate and the flow restrictor walls for distribution onto a cap; the cap is on the tub wherein the cap comprises liquid voids wherein the liquid passes through the liquid voids and wets at least one of the outer arcuate reactor plate, the intermediate arcuate reactor plate or the interior arcuate reactor plate; an air inlet brings contaminated air into contact with moist biocatalyst on at least one moist surface thereby forming purified air; and an air outlet for discharging purified air from the air purifier. The method also includes providing a biocatalyst in a liquid and inserting the liquid in said tub. Contaminated air is drawn into the air purifier wherein the contaminant reacts with the biocatalyst thereby forming an inert material and the purified air is exhausted from the air purifier.
Yet another embodiment is provided in an improved air purifier. The air purifier has a tub capable of containing a liquid. Reactor plates are in the tub wherein the reactor plates provide a curvilinear path for air flow with abrupt directional change. A pump is situated to distribute the liquid onto the reactor plates to form a moist surface. An air inlet brings contaminated air into contact with biocatalyst on the moist surface thereby forming purified air. An air outlet discharges said purified air from the air purifier.
The present invention is related to a compact air purifier for removing contaminants from air. More specifically, the present invention is related to a compact air purifier which relies on a bioreactor adhered to moist interior surfaces thereof. The purifier is extremely efficient at purifying air flowing there through and the efficiency renders the purifier extremely useful for use in small environments such as a home.
The invention will be described with reference to the figures which are an integral component of the instant invention. Throughout the figures similar elements will be numbered accordingly.
An embodiment of the invention is illustrated in schematic perspective view in
A partial cut-away side schematic view is provided in
The inner workings are illustrated in isolated perspective schematic view in
Arcuate reactor plates are disposed within the tub. Their orientation relative to the water voids will be described with reference to
The reactor plates, taken together, form a preferably symmetric tortuous path for flow of air and water in a counter flowing relationship. The air which enters in opening 22 and later exits through opening 26 flows through gradually curved paths interrupted by abrupt directional changes. The inner reactor plate, 58, and the intermediate reactor plate, 56, forming the initial gradually curved airflow passages provide for a high surface area bioactive interface to the immediately adjacent portion of the curvilinear airstream. These portions of the airstream adjacent to the reactor plates are thus cleansed of airborne contaminants. The inner reactor plate, 58, and intermediate reactor plate, 56, for example form a geometry that requires the airflow to abruptly change direction and to reverse the curvilinear air flow. This abrupt change in direction produces local airflow turbulence resulting in a remixing of air and airborne contaminants. For the purposes of the instant application an abrupt change in direction is at least 90° relative to the direction of flow. The remixed contaminated air then flows through the gradually curved path formed by outer reactor plate, 50, and intermediate reactor plate, 56, which provides for a high surface area bioactive interface to the immediately adjacent portion of the curvilinear airstream. These portions of the airstream adjacent to the reactor plates are thus cleansed of airborne contaminate. The reversal of airflow and the remixing of the air and contaminants results in a two stage bioreactor. A biocatalyst, 90, on the walls of the reactor plates react with the contaminants thereby purifying the air as it is circulated through the tortuous path.
The reactor plates, taken together, form a preferably symmetric tortuous path for flow of air and water in a counter flowing relationship. This counter flowing design allows for the efficient flow of air within a compact space saving design and with quiet operation. These features are of unique importance in residential air purifiers.
With reference to
As would now be realized, the air flowing into the air inlet void, 22, contacts the interior of the flow restrictor walls and inner reactor plates. The air then exits the open truncation of the inner reaction plate and traverses between the inner reactor plate and intermediate reactor plate until the truncation of the intermediate reactor plate is reached at which point it will traverse between the intermediate reactor plate and outer reactor plate until the open truncation, 52, of the outer reactor plate is reached at which point it must traverse around the outside of the outer reactor plate to ultimately reach the air outlet voids, 26. As will be realized, the air flowing in the tortuous path contacts the moist surface of the reactor plates which contains a bioreactor which is continuously wetted during operation.
The liquid medium flow in the reservoir is generally transverse to the flow of air in one embodiment. The air flow could be reversed without detriment. The liquid is pumped upward from the bottom of the inner workings ultimately exiting a water exit void, 60, with a dam there around as illustrated in
Starting from the reservoir, the liquid flow is upward from the bottom of the inner workings to the face of the cap. Starting from the furthest extent for completeness, the liquid flows down the wall until it is reunited with the bulk of the liquid forming a reservoir in the bottom of the tub. The liquid in the reservoir then traverses around the outside of the outer reactor plate until it reaches the open truncation therein. The liquid then transits between the outer reactor plate and intermediate reactor plate. The liquid is then directed by the flow restrictor walls through the truncation of the intermediate reactor plate where it flows between the intermediate reactor plate and inner reactor plate until it reaches the open truncation of the inner reactor plate at which point it is in position to flow towards the pump to traverse back to the face of the cap. Alternatively, holes in the reactor plates can be utilized below the level of the liquid to minimize the flow length.
An embodiment of the invention will be described with reference to
The reactor plates are preferably cylindrical as described herein and most preferably the reactor plates are truncated cylinders. For the purposes of the present invention a cylinder is defined as the surface traced by a straight line moving at a fixed angle, and preferably parallel, to a fixed line and intersecting a fixed planar closed curved. The closed curve is preferably selected from oval, round and obround with round being most preferred. The separation between semi-curves forming related reactor plates is preferably about the diameter of the truncated cylinder. By way of example, and with reference to
An embodiment of a truncated cylinder is illustrated in
Cylindrical reactor plates with a consistent radius are desired due to manufacturing simplicity. Related shapes such as oval cylinders and obround cylinders can be employed to demonstrate the invention but these are less desirable due to manufacturing complexities.
The reaction plates are preferably corrugated with corrugations being perpendicular to the axis of the cylinder. The corrugations increase the surface area of the reactor plates. The corrugations may be sinusoidal or truncated sinusoidal with flattened peaks and or valleys. It is preferred that the reaction plate is a solid with the inner and outer faces being parallel, however, the inner and outer faces may have different patterns or at least one of the surfaces can be smooth.
The liquid, or medium, is not particularly limited herein with the proviso that it must be compatible with the biocatalyst. Typical liquids include lower molecular weight organic materials and water. Water is the most preferred.
An embodiment of the invention will be described with reference to
An embodiment of the invention is illustrated in
In use, the bioreactor is charged with an immobilized biocatalyst such as an enzyme. The biocatalyst adheres to any surface within the bioreactor which is in a wet environment. As understood by one of skill in the art the biocatalyst may grow, or multiply, depending on the type of biocatalyst.
While not limited thereto, the preferred reactant is a biocatalyst. The biocatalyst may be aerobic or anaerobic with particularly preferred biocatalyst selected from the group consisting of enzymes, bacteria, organelles, leucocytes, hemocytes, yeast, fungi, similar materials or their products. A particularly preferred biocatalyst is an enzyme with BioOx® Enzymes available from sgblue inc. of Arden, N.C. being most preferred.
The reaction system preferably includes oxidation, either alone or in combination with other reactive systems such as anaerobic digestion, fermentation, immune reactions, blood cell or tissue cell reactions, enzyme reactions, organelle reactions or ordinary chemical reactions. A particularly preferred reaction system is a self-immobilization catalyst which is a biocatalyst immobilized on the interior walls of the bioreactor in a proteinaceous preparation.
The invention has been described with reference to the preferred embodiments without limit thereto. One of skill in the art would realize additional embodiments and improvements which are not specifically stated but are within the scope of the claims appended hereto.
The present application claims priority to U.S. Provisional Appl. No. 61/358,643 filed Jun. 25, 2010 which is incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
1702804 | Winslow | Feb 1929 | A |
1955518 | Sherwood | Apr 1934 | A |
4032407 | Scott et al. | Jun 1977 | A |
4689302 | Goldberg et al. | Aug 1987 | A |
4839014 | Park et al. | Jun 1989 | A |
6248155 | Seaman | Jun 2001 | B1 |
6916630 | Sofer | Jul 2005 | B2 |
D633996 | Laut et al. | Mar 2011 | S |
20060096461 | Kim et al. | May 2006 | A1 |
20070004023 | Trachtenberg | Jan 2007 | A1 |
20070278702 | French et al. | Dec 2007 | A1 |
Entry |
---|
Xu , Derwent abs of CN 2899905, May 16, 2007. |
Kim Jae Jung, International Search Report and Written Opinion, PCT/US2011/04514, Jan. 20, 2012. |
Number | Date | Country | |
---|---|---|---|
20110318817 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
61358643 | Jun 2010 | US |