This application is related to U.S. patent application Ser. No. 11/527,296, filed on Sep. 26, 2006, and assigned to the same assignee as the present invention, and which is herein incorporated by reference in its entirety.
1. Field of Invention
The present invention relates to digital camera modules used in digital equipment and mobile phones, and in particular to actuators for shutter and aperture control to allow miniaturized zoom modules.
2. Description of Related Art
Today there are various types of actuators used to perform shutter and aperture functions. In traditional digital still cameras where there is a focal-plane implementation with moving shutter/aperture actuators, the actuators are mounted onto the lens group where the mechanics of the shutter is mounted. The electrical connection to the shutter/aperture actuators requires design solutions, which allow the electrical connections to withstand a series of movements during camera lifetime. Most commonly a flex-cable solution is used.
In addition to problems with accommodating the electrical connection, the size of the mechanical integration is growing to achieve a stable movement, which is not a problem in traditional digital still cameras as there is enough space available. However, in miniature digital camera applications, e.g. mobile phones and portable digital assistants (PDA), space is a premium. Not only must there be space allocation for a lens group, but also for a shutter motor and the electrical cable to power the shutter motor. Also motors used in present day digital cameras require considerable power, which puts a drain on the battery of miniature devices, and requires power drivers that are not easily integrated into the camera control chip.
In FR 823395 (Lavet) a low energy stepper motor is directed to horological devices such as watches and clocks. U.S. Pat. No. 5,206,983 (Guckel et al.) is directed to a micromechanical device formed on a substrate using X-ray lithography process to form a rotating micro motor which is driven magnetically.
In
In the watch industry precision, compact and low power actuators have been implemented using a Lavet motor concept. The Lavet type motors are capable of driving watch mechanisms with very low voltages and consuming very low current. This is a result of the Lavet style motors being active only when a step is performed, which leads to a very low power consumption resulting in battery life up to five years. Applying the Lavet concept to actuators in motorized camera modules produces lower power consumption along with a smaller size and simple electronic control, wherein the actuator power consumption is approximately fifteen times lower with approximately ten times lower current consumption at a one and a half times lower voltage. This leads to operating product containing digital cameras longer than product using conventional actuator and is particularly important to the mobile phone market.
It is an objective of the present invention to reduce the overall size of a camera module, which integrates a focal-plane shutter and aperture without a moving electrical connection.
It is also an objective of the present invention to use a horological three-phase motor concept to control the shutter and aperture device of a digital camera function, thereby minimizing the power drain on batteries.
It is further an objective of the present invention to drive the actuator of the shutter and aperture device with integrated CMOS I/O drivers allowing the integration of all electronic picture capture functions onto a single semiconductor chip including the necessary pixel array.
In the present invention an actuator motor for a shutter and aperture device of a miniature digital camera is located in a stationary position, and the resulting actuation of the shutter and aperture device, which is moveable along an optical axis, is accomplished through mechanical coupling. The mechanical coupling provides actuation of the shutter and aperture without restricting the movement of the shutter and aperture device along the optical axis of a lens group to which the shutter and aperture device is physically attached. This allows the required mechanical space for the actuator while permitting the shutter and aperture mechanics to be driven with the actuator motor and allowing the overall system to be miniaturized. The shutter and aperture are placed in the focal plane with a shutter drive shaft coupling the shutter and aperture device to the actuator motor.
The actuator motor of the present invention is a three-phase motor using the Lavet horological motor concept with a predefined number of positions to allow various aperture positions and the overall shutter functionality. The actuator motor is designed to produce a minimum shutter speed in the order of approximately one thousandth of a second. Overall current consumption is reduced by using stable positions within the three-phase horological type actuator motor where no current is required to maintain selected aperture positions thereby increasing battery life.
The three-phase horological motor of the present invention is used to reduce power consumption by the shutter actuator for digital camera functions that form a part of electronic devices comprising portable digital assistant (PDA) and mobile phones as well as digital still cameras (DSC) and camcorders (CC). The current necessary to drive an actuator formed from the three-phase motor allows the actuator to be driven directly with integrated CMOS drivers, thereby allowing an integration of all picture capture functions, including the pixel array, into a single chip forming a system on chip (SOC) implementation.
In the actuator of the present invention a current physical position of the rotor of the three-phase horological type motor is held in position by a static torque, which allows the system to be handled and turned without loosing position of the actuator even when power is turned off. In other motor concepts without static torque either power must be maintained or a frictional force is required to keep track of the position of the actuator.
The actuator of the present invention moves in predefined steps creating changes in position of the actuator that are on the order of approximately six degrees for each step. The small steps allow the motor to operate against a mechanical barrier in order to calibrate the position of the motor. The mechanical construction of the actuator allows placing the actuator into miniaturized camera modules to support requirements of a mobile phone and other electronic devices that contain a digital camera function. The actuator for shutter/aperture is stationary and can be located in a camera module at a convenient location, e.g. a backside of the digital camera module where the required space is available. Also the supply voltage for the shutter/aperture actuator is between approximately 2V and 3.3V.
This invention will be described with reference to the accompanying drawings, wherein:
The shutter motor 23 is a horological type stepper motor that consumes power only when the stepper motor is being stepped from one rotational position to a next rotational position and uses three phases to control the rotational position of the shutter and aperture device 20. The shutter motor rotates in small steps in the order of magnitude of six degrees allowing the shutter motor to be calibrated against physical stops and is driven by CMOS I/O drivers 26 located on an integrated circuit chip 25 comprising control circuitry. The integration of the CMOS I/O drivers and the control circuitry with image processing circuitry and a photo imager array allows a system-on-chip configuration to be used in a digital camera module, which in turn reduces space and power consumed by the electronics to control and capture digital images.
It should be noted that it is within the scope of the present invention to drive the shutter motor 23 with non-CMOS I/O drivers where the non-CMOS I/O drivers may or may not be integrated with the control circuitry and may or may not form a part of the system on chip configuration.
It should be noted that any equivalent variation of coupling between the stationary actuator motor 30 and the moving shutter and aperture device, including the driving of the drive shaft 42 directly from the stepper motor 30 without the use of gears 44 and 45, is within the scope of the present invention when the coupling between the stationary stepper motor 30 and the moving shutter and aperture device 41 accomplishes the same or similar functional operations.
In
In
While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made without departing from the spirit and scope of the invention.
Number | Date | Country | Kind |
---|---|---|---|
06368013 | Sep 2006 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3667210 | Meitinger | Jun 1972 | A |
4322159 | Takahashi et al. | Mar 1982 | A |
4504132 | Martin et al. | Mar 1985 | A |
4563604 | Xuan | Jan 1986 | A |
5206983 | Guckel et al. | May 1993 | A |
5287140 | Kohno | Feb 1994 | A |
5349574 | Edwin et al. | Sep 1994 | A |
5685062 | McCarthy et al. | Nov 1997 | A |
5838080 | Couderchon et al. | Nov 1998 | A |
5893651 | Sakamoto | Apr 1999 | A |
5918078 | Imura et al. | Jun 1999 | A |
5978602 | Toyofuku et al. | Nov 1999 | A |
6130993 | Hayakawa | Oct 2000 | A |
6285154 | Yasuda et al. | Sep 2001 | B1 |
6301441 | Kato | Oct 2001 | B1 |
6339306 | Hara | Jan 2002 | B1 |
6339682 | Suzuki et al. | Jan 2002 | B1 |
6407774 | Mabuchi et al. | Jun 2002 | B1 |
6430368 | Hata | Aug 2002 | B1 |
6614998 | Senba et al. | Sep 2003 | B1 |
7016122 | Okawara | Mar 2006 | B2 |
7203011 | Ito et al. | Apr 2007 | B2 |
7274805 | Horie et al. | Sep 2007 | B2 |
7374353 | Masuda | May 2008 | B2 |
20040212723 | Lin | Oct 2004 | A1 |
20060062559 | Naka et al. | Mar 2006 | A1 |
20060176389 | Kaneda | Aug 2006 | A1 |
20070041103 | Huang | Feb 2007 | A1 |
Number | Date | Country |
---|---|---|
06 368 013.6 | Feb 2007 | EP |
09274127 | Oct 1997 | JP |
2000 098444 | Apr 2000 | JP |
Number | Date | Country | |
---|---|---|---|
20080075453 A1 | Mar 2008 | US |