This invention relates in general to mills for rolling metal products such as strands, strips, wires and profiles. More specifically, it relates to a cantilever apparatus of compact size for rolling a metallic material and a method of producing a metallic product.
Rolling mills are used for reducing the thickness and shaping of metallic products. There are two kinds of rolling mills. First there are rolling mills where work rolls have strong supportive bearings connecting the work rolls to the mill frame at both ends of the work rolls and the mill frame is covering the whole rolling mill. These are called “normal” rolling mills. The other kind of mills are called cantilever rolling mills, where the actual rolling is done outside the mill frame and the work rings are assembled on roll shafts which are supported by the mill frame only from the other side of the nip. The term “nip” is used herein to refer to the region where the work rolls or rolling rings are closest together.
The high forces associated with the rolling are guided to the work roll bearings/roll shaft bearings, which therefore have to be strong, that is heavily build. The forces directed to the bearings are over two times higher in cantilever rolling mills than in “normal” rolling mills due the structural design of the cantilever mill. The rolling forces in cantilever rolling mills are mainly carried by the heavy main bearings and the smaller bearings at the drive end of the roll shafts are just countering the bending moment caused by the rolling force. Traditional cantilever rolling mills are described e.g. in U.S. Pat. No. 4,581,911 and U.S. Pat. No. 5,056,345. The higher rolling forces with cantilever rolling mills are leading to even bigger/stronger bearings and mill frame construction as with the “normal” rolling mill and are preventing the use of cantilever rolling mill in some occasions.
In U.S. Pat. No. 4,581,911 are described a cantilever type rolling mill having a pair of roll shafts rotably supported in a roll housing on a roll stand. The assembly is designed to transmit torque to a ring roll by frictional force produced by application of compressive force on the opposite lateral sides of the ring roll.
In U.S. Pat. No. 5,056,345 are described a rolling stand with rolling rings supported as cantilever and having their axes at an angle to each other for the rolling of metallic products. The angle between the axes of the shafts is to compensate the bending of the shafts during rolling produced by the high rolling force. This high rolling force and the bending of the shafts are requiring very massive bearings and mill frame for the rolling stand.
In U.S. Pat. No. 5,524,469 are described a cantilevered cluster mill stand assembly for rolling long products. A basic improvement to normal cluster mill stands is the mounting of the rolling bearings upon a stationary cantilevered arbor directly under the roll ring, eliminating heavily loaded main reaction bearings within the stand housing in limited radial space. Individual drive motor assemblies for each shaft, rigidly coupled and directly supported by the drive shafts, are also advocated. However, even in this solution the forces with the support rolls are quite high because the unsuitable angles with the transfer of the rolling forces to the support rolls.
Despite the stronger bearings and other described solutions the cantilever rolling mills are not capable to handle as high rolling forces as “normal” rolling mills. This limits the use of the cantilever mills seriously despite of the many benefits achieved with this mill construction over “normal” mill construction.
The object of this invention is to eliminate the above-mentioned drawbacks of the prior art cantilever rolling mills and enable the use of lighter bearings and higher rolling forces with cantilever rolling mills.
It is also an object of this invention to provide an apparatus having a compact low cost construction without any parts having long lead times and a new method for rolling a metallic product.
The invention eliminates the heavy and expensive bearings altogether. This expands the usefulness of the cantilever mills into the applications where it could not be used earlier due the high rolling forces. This novel cantilever rolling mill is also much cheaper than the traditional cantilever rolling mill and also faster to build because the components having long lead times are eliminated.
Another object of this invention is to produce an apparatus and method for an easy adjustment of the gap in the nip.
The essential features and advantageous embodiments of the present invention are described herein.
The invention is described in more details referring to following drawings, where
In
In
In rolling contact with the second roll shaft 20 are assembled two intermediate rolls, first roll 27 and second roll 28. The purpose of these intermediate rolls 27 and 28 is to change the rolling direction of the second roll shaft 20 and on the other hand made possible to adjust the gap G in the nip 23. The third purpose for intermediate rolls 27 and 28 is to transmit the rolling force from the second roll shaft 20 to the ring 29.
Both shafts 19 and 20 and both intermediate rolls 27 and 28 are surrounded with a strong ring 29, which is in rolling contact with the first roll shaft 19 and with both intermediate rolls 27 and 28. When the metallic product is moving to the direction of the arrow 30 through the nip 23 the first roll shaft 19 is rotating according arrow 31, the second roll shaft 20 according to arrow 32, the intermediate rolls 27 and 28 according to arrows 33 and 34 and the ring 29 according to the arrow 35. The ring 29, which is surrounding the roll shafts 19 and 20 and the intermediate rolls 27 and 28 give them strong support and is carrying the main part of the rolling forces. This is enabling very light bearing assemblies (presented in
The gap control in the nip 23 is arranged with the movement of the intermediate rolls 27 and 28. By moving the intermediate rolls 27 and 28 apart from each other according to the arrows 36 and 37 the gap G in the nip 23 is increased and vice versa. The magnitude of the gap G can be changed by moving either one of the intermediate rolls 27 or 28, or both of them. Another possibility is to move both intermediate rolls 27 and 28 to the same direction and maintain their distance constant to achieve the same effect to the gap G in the nip 26. Also the adjustment of the gap G can be done with a combination of any of these methods.
In
With the above-described embodiments of the invention the cantilever rolling mill frame structure can be made significantly smaller. The rolling force is carried mainly by a strong ring. One shaft is directly transferring the rolling force to the inside of the ring and the other shaft transfers the force to the ring via one or two intermediate rolls. The roll gap is adjusted by changing the position of the intermediate roll(s). Attached to the second shaft is also a mechanism for keeping the shafts parallel (or in predetermined angle) while the roll gap is adjusted, for example by using linear bearing assembly. The forces needed for keeping the shafts parallel are only a small fraction of the rolling forces, therefore the bearing assemblies and other components in this mechanism need not to be as strong as the bearing assemblies in prior art cantilever rolling mills. Because all the main components are rotating together, it is only necessary to drive one shaft. In this sense the mill has an “internal gear box”. If necessary, then off course both shafts can be driven.
The construction does not show a skew adjustment, but naturally it can be easily added if needed. When rolling a strip it is necessary to have a skew adjustment, whereas when rolling a wire it may not be needed.
While the invention has been described with reference to its preferred embodiments, it is to be understood that modifications and variations will occur to those skilled in the art. Such modifications and variations are intended to fall within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1908269 | Palmgren | May 1933 | A |
4581911 | Shinomoto | Apr 1986 | A |
5056345 | Nonini | Oct 1991 | A |
5524469 | Sherwood | Jun 1996 | A |
Number | Date | Country |
---|---|---|
0772617 | Oct 1980 | SU |
Number | Date | Country | |
---|---|---|---|
20050279149 A1 | Dec 2005 | US |