Spray nozzles are used in many applications for providing a distributed pattern of a fluid material, usually a liquid, into a space or volume. For example in the process industries, spray nozzles may be used for humidifying, moistening, cleaning, scrubbing, stripping, coating, and other processes. The use of spray nozzles in a system to reduce hydrocarbon emissions is described in commonly owned provisional applications 60/744,543, 60/744,615, and 60/862,536 which were filed Apr. 10, Apr. 11, and Oct. 23, 2006, respectively.
In certain instances, it may be desired to provide a spray nozzle with a check valve in order to prevent back flow or reverse flow of fluid (liquid or air) through the nozzle.
This invention relates to a nozzle provided with a check valve. In one embodiment the combined nozzle and check valve have a low profile and may be used where space is limited.
Most gasoline service stations in the United States use submersible turbine pumps (STP).
It has been described in the previously referenced applications how liquid fuel may be sprayed into the ullage space 115 from one or more spray devices 650 located in or on pipe 122. For example, these spray devices 650 may be nozzles in pipe 122 for allowing liquid (for example as spray 655) to pass from pipe 122 into the ullage space 115. The pump used may serve to supply the fuel dispensers through pump outlet line 130, or it may be provided as a separate pump.
A common submersible pump used at gasoline distribution facilities is manufactured by Red Jacket (a Veeder Root company). While the pump is in operation, the liquid may be at pressures between 10 psig and 70 psig. The pipe 122 may be tapped or converted such that sprayer nozzles may be fastened to the pipe. These nozzles may be of many varieties (including without limitation open cone, thin stream, fan spray, hydraulic atomizing, etc.) and any number of nozzles may be added, limited by the length and circumference of the pipe. An advantage of using the pipe between the sump and the head is that this part may be fairly accessible, for example for maintenance or replacement, and may thus lend itself to retrofitting with nozzles or other vaporizing devices.
When the pump is running, the pipe 122 becomes filled with liquid under pressure. If nozzles 650 are provided on pipe 122, they may provide a spray 655 as described previously. When the pump is not running, nozzles 650 may allow liquid to seep out of pipe 122, and air or vapor from the ullage space 115 may enter pipe 122. Having air or vapor within pipe 122 may be undesirable. In order to prevent incursion of air or vapor, a check valve may be incorporated into nozzle 650. In one embodiment a check valve may be provided that allows flow out through the nozzle when the pump is running, but then the check valve closes when the pump stops and the pressure within pipe 122 falls below a certain value.
The pipe 122 that runs between the pump head 120 and the motor/turbine/pickup sump 125 is generally 1.5-2″ diameter. Such a pump may penetrate the tank through a four inch diameter female threaded bung (not shown). In order for the pump to fit through the bung, the nozzles 650 attached to pipe 122 preferably will be of a compact size. The addition of certain types or designs of check valve to the nozzle 650 may increase the nozzle size. It would be advantageous to have a compact design for a nozzle with a check valve. One such design is shown in
Held between nozzle body 672 and check valve body 682 are a ball 686 and a spring 688. The spring 688 pushes ball 686 against a seat area, such as bevel 689. When the pump is running, fluid pressure pushes on the ball 686 and moves it away from bevel 689, allowing fluid to flow. When the pump is not running, or fluid pressure is not enough to counteract the force of spring 688, the ball will seat against bevel 689 and prevent flow.
Instead of ball 686, any other suitable shape may be used which is capable of forming a seal.
Methods of making and using the check valve in accordance with the invention should be readily apparent from the mere description of the structure and its varied appearances as provided herein. No further discussion or illustration of such methods, therefore, is deemed necessary.
While preferred embodiments of the invention have been described and illustrated, it should be apparent that many modifications to the embodiments and implementations of the invention can be made without departing from the spirit or scope of the invention. Although the example given here is for use of a spray nozzle in a particular gasoline service station system, the spray nozzle may be used elsewhere. It is understood therefore that the invention is not limited to the particular embodiments disclosed (or apparent from the disclosure) herein, but only limited by the claims appended hereto.
This non-provisional application relies on the filing date of provisional U.S. application Ser. No. 60/864,485 filed on Nov. 6, 2006, which is incorporated herein by reference, having been filed within twelve (12) months thereof, and priority thereto is claimed under 35 USC §1.19(e)
Number | Date | Country | |
---|---|---|---|
60864485 | Nov 2006 | US |