The presently disclosed subject matter relates to image projectors, and, more particularly, to compact collimated image projectors.
Compact image projectors such as may be used for certain augmented reality displays or other near-eye displays use a spatial light modulator (SLM) such as a Liquid Crystal on Silicon (LCOS) to generate the image to be displayed. In these projectors, various optical elements are arranged in order to i) distribute light from an illumination source across the LCOS at a uniform spatial distribution and at a required angular distribution, and ii) project the light reflected by the LCOS to infinity (collimated) and transmit it to the projector exit pupil. From there, the image may be further transmitted to a combiner for combining the projected image with a view of the real world. Typical combiners are based on a light guide element with a pair of parallel major faces, and a coupling-out arrangement such as a set of parallel inclined partially-reflective surfaces or a diffractive element.
Some of these projectors use an architecture in which a pair of parallel dielectric coated polarizing beam splitters (PBS) serve to both illuminate the LCOS and to collimate the light reflected from the LCOS towards the exit pupil in combination with collimating optics. However unlike structural polarizers, these PBSs suffer from the drawback that the light is separated according to the angle of intersection with the PBS surface. Therefore, any light that is not completely aligned with a PBS, such as off-angle skew rays, can leak through the PBS towards the exit pupil, causing image degradation.
Furthermore, in some cases, such as in short effective focal length (EFL) projectors, it is desirable that only a single optical element is placed along the light path between the SLM and collimating optics.
According to one aspect of the presently disclosed subject matter there is provided a collimated image projector that receives light from an illuminating source and propagates the light along a light path towards an exit pupil, the projector including: a first homogeneous dielectric polarizing beam splitter (PBS) deployed along the light path and defining a first transition from a first light path segment to a second light path segment; a second homogeneous dielectric PBS deployed parallel to the first PBS along the second light path segment and defining a second transition from the second light path segment to a third light path segment; and collimating optics deployed along the light path after the second PBS so as to direct a collimated image towards the exit pupil; wherein the first and second PBSs are deployed such that either the first and second transitions are both performed via transmission, or the first and second transitions are both performed via reflection.
According to some aspects the projector can include a spatial light modulator (SLM). The third light path segment can terminate at the SLM.
According to some aspects the projector can include one or more optical elements deployed along the light before the first PBS, including a scanning module deployed along the light path before the first PBS configured to generate an image in an image plane after the second PBS and before the collimating optics. The projector can further include at least one of a diffuser, micro lens array, or reflector deployed along the light path after the second PBS and before the collimating optics.
According to some aspects the first and second PBSs are coated on opposite surfaces of a prism.
According to another aspect of the presently disclosed subject matter there is provided a compound polarizing beam splitter apparatus including: a first single block prism for receiving input light; a second single block prism for transmitting output light, the first and second prism having a first refractive index (RI); and sandwiched between the first and second prisms: a pair of polarizing beam splitter coatings applied to parallel surfaces separated by a structural P polarizer, the polarizer having a second RI different than the first RI, and a first substantially transparent compensating plate having a third RI different than each of the first and second RI and a thickness so as to at least partially compensate for optical aberrations introduced by the polarizer as a result of the difference between the first RI and second RI; wherein a delta between the third RI and second RI is has an opposite sign as compared to a delta between the second RI and the first RI.
According to some aspects the apparatus includes a second compensating plate having the third RI, wherein the first and second plate have a combined thickness so as to at least partially compensate for optical aberrations introduced by the polarizer.
According to some aspects the apparatus includes a third coating parallel to the pair of coatings on an external surface of the first prism where input light is received.
According to some aspects the first compensating plate is between each of the coatings of the pair of dielectric coatings.
According to some aspects at least one of the coatings is adjacent to the second prism.
According to some aspects one of the coatings of the pair of coatings is adjacent to the first prism, and the other coating of the pair of coatings is adjacent to the second prism.
According to some aspects wherein the pair of coatings, polarizer, and first plate are arranged between the first and second prisms so that the P polarization component of the input light follows a transmission path passing sequentially through: the first prism, one of the pair of coatings, the compensating plate, the polarizer, the other one of the pair of coatings, and the second prism.
According to some aspects wherein the pair of coatings, polarizer, and first plate are arranged between the first and second prisms so that the P polarization component of the input light follows a transmission path passing sequentially through: the first prism, the first plate, one of the pair of coatings, the polarizer, the other one of the pair of coatings, and the second prism.
According to some aspects wherein the pair of coatings, polarizer, and first plate are arranged between the first and second prisms so that the P polarization component of the input light follows a transmission path passing sequentially through: the first prism, one of the pair of coatings, the first plate, the polarizer, the second plate, the other one of the pair of coatings, and the second prism.
According to another aspect of the presently disclosed subject matter there is provided a compound polarizing beam splitter apparatus including: a first single block prism for receiving input light, a second single block prism for transmitting output light; and, sandwiched between the first and second prisms, a pair of polarizing beam splitter coatings applied to parallel surfaces separated by a spacer layer comprised of an optically attenuating material having a transmittance of about 40% to about 90%.
According to some aspects the spacer layer is non-polarizing. According to some aspects, the optically attenuating material has a transmittance of about 50% to about 80%.
According to another aspect of the presently disclosed subject matter there is provided a collimated image projector including a compound polarizing beam splitter apparatus including: a first single block prism for receiving input light; a second single block prism for transmitting a P polarization component of the input light, the first and second prism having a first refractive index (RI); and sandwiched between the first and second prisms: a pair of polarizing beam splitter coatings applied to parallel surfaces separated by a structural P polarizer, the polarizer having a second RI different than the first RI, and a first substantially transparent compensating plate having a third RI different than each of the first and second RI and a thickness so as to at least partially compensate for optical aberrations introduced by the polarizer as a result of the difference between the first RI and second RI.
According to another aspect of the presently disclosed subject matter there is provided a collimated image projector including a compound polarizing beam splitter apparatus including: a first single block prism for receiving input light, a second single block prism for transmitting a P polarization component of the input light; and sandwiched between the first and second prisms, a pair of polarizing beam splitter coatings applied to parallel surfaces separated by a spacer layer comprised of an optically attenuating material having a transmittance of about 40% to about 90%.
In order to understand the invention and to see how it can be carried out in practice, embodiments will be described, by way of non-limiting examples, with reference to the accompanying drawings, in which:
In the following detailed description, numerous specific details are set forth in order to provide a thorough understanding of the invention. However, it will be understood by those skilled in the art that the presently disclosed subject matter may be practiced without these specific details. In other instances, well-known methods, procedures, and components have not been described in detail so as not to obscure the presently disclosed subject matter.
Throughout this description, unless otherwise noted, the terms “collimating optics” and “collimating lens” are used interchangeably, and refer to a reflecting lens or lens system that collimates the received light, and which is assumed to include a lamda-over-four wave plate (quarter wave plate) for polarization rotation. In addition, the illumination lens is also assumed to include a quarter wave plate.
By contrast,
PBSs 22, 28 are typically homogeneous prism-based dielectric coating polarizers that reflect S polarization and transmit P polarization. This type of PBS reflects the S polarization according to the light orientation relative to the PBSs' vertex. In other words, in contrast to a structural or “Cartesian” polarizer, the dielectric coating of the PBS separates components of polarization according to the local angle of intersection with the surface. Consequently, the polarization of skew rays (i.e. angled relative to the optical axis, and particularly with a significant component directed into the page in
In contrast to
According to a first aspect of the presently disclosed subject matter, there is disclosed a short effective focal length (EFL) compact collimated projector with a single homogeneous dielectric homogeneous PBS along a light path between the SLM and collimating optics, and a prior identical homogeneous dielectric PBS functioning as an entrance pre-polarizer, thereby eliminating light-leakage from skew rays onto the exit pupil. The compact collimated projector most preferably uses an air-gap free architecture. By “homogeneous” it is meant that the optical property is the same in all orientations. In other words, the “S” and “P” are defined by the incident ray direction rather than properties of the PBS (and has no polarizing effect on a perpendicular incident ray). The PBSs shown below in
It should be noted that in many of the drawings presented herein, an arrow depicting the light path is depicted by an arrow representing the center beam. Other beams are omitted for visual clarity. The term “light path” includes a folded light path. A “light path segment” refers to a part of the light path that is not folded by other optical elements, and may include the entirety of the non-folded part or a subsection thereof.
As shown in
It should be noted that embodiments of the disclosed projector may comprise one or more optical elements deployed along the light path after the second PBS and before the collimating optics and/or one or more optical elements deployed along the light path before the first PBS. In addition, projector embodiments are possible without the use of a SLM. For example, in some embodiments, the projector can include a scanning module (e.g. a laser scanner) deployed along the light path before the first PBS configured to generate an image in an image plane after the second PBS and before the collimating optics. In this embodiment, as opposed to a SLM after the second PBS, the projector may include a micro lens array, diffuser or reflector. Micro lens array
While projector embodiments described above are shown to utilize two parallel PBSs, preferably with no other optical element therebetween, in some cases the projector may utilize a compound beam splitter apparatus consisting of two PBS coating planes separated by one or more other layers. Embodiments described below include a P polarizing layer with a compensator layer, and an attenuating layer. In the examples that follow, the PBSs referred to are assumed to be preferably homogeneous dielectric coated PBSs as in the above examples, but are not limited to such, and in fact in other embodiments these PBSs alternatively can be inhomogeneous dielectric (such as that manufactured by 3M) or even wire-grid polarizers.
Realistically, the finite efficiency of dielectric beam splitter coatings can result in transmission of some of the S polarization onto the exit pupil and cause a reduction in image contrast. This S transmitted leakage can vary between 1% to 20% depending on the angle and coating properties of the PBS. Combining a structural polarizer and compensator layer can reduce or eliminate S polarization leakage.
Therefore, according to another aspect of the presently disclosed subject matter there is disclosed various embodiments of a compound PBS apparatus that includes two single block prisms, for receiving input light (polarized or unpolarized) and transmitting output light, respectively. Between parallel flat surfaces of the single block prisms are sandwiched (and bonded) a plurality of parallel planes of material including a pair of parallel of PBSs separated by a (structural) P polarizing layer, and a substantially transparent plate acting as a compensator layer. The compensator layer is made of a material and a thickness so as to at least partially compensate for optical aberrations introduced by the polarizer as a result of the difference in refractive index (RI) between the prisms and the polarizer.
In the description above and following, a coating on a surface of the first and/or second prism such that after the prisms are bonded the plane of coating is between the first and second prism is considered “sandwiched” between the prisms. Additionally, “substantially transparent” includes partially absorbing with at least 80% transmittance. A “structural polarizer” includes any polarization element that has a structure which inherently defines a polarization orientation of the transmitted polarized light. It is assumed that the structural polarizer referred to herein has parallel surfaces and is also thicker (wider) than the PBS coatings.
In the following description, the terms “compensator plate” and “transparent plate” are used interchangeably. In addition, the term “coating” should be understood to a multi-layer coating, in which any given layer may be the same or a different than any other layer.
Before describing the apparatus itself, the purpose of the apparatus will be now be explained with reference to
In
This aspect of the disclosed subject matter may be used advantageously alone, without prior pre-filtering of skew rays as in the configurations shown in
Referring now to
A further embodiment is possible in which the projector arrangement shown in
Another aspect of the presently disclosed subject matter will now be described with reference to
This aspect, which can be used either together with or independently of the features described thus far, provides an alternative approach to suppressing direct illumination by including a partial absorber to suppress resonance.
By way of introduction to this aspect, where an attempt is made to enhance contrast in a PBS by providing a pair of parallel beam splitter layers separated by an intermediate layer, it has been found that the second beam splitter layer makes relatively little contribution to eliminating S polarization leakage through the double beam splitter. This can be at least partly explained by rays that penetrate the first beam splitter layer and undergo multiple internal reflections within the intermediate layer prior to exiting through the second beam splitter layer.
For example, referring now to
In the above example, the series of secondary leaked ray components would have intensities corresponding roughly to (0.95)2×(0.05), (0.95)4×(0.05), (0.95)6×(0.05) etc., or 0.045, 0.041, 0.037 etc. The sum total of the intensities of leaked ray components results in a relatively high proportion of the light that leaked through the first beam splitter coating 40b1 also passing through the second beam splitter coating 40b2.
The above explanation holds true for beam splitter coating pairs with relatively large spacing between the coating (e.g. a relatively wide intermediate layer), where resonance/interference effects are not relevant. For smaller spacing on the order of a wavelength, interference effects may in some cases result in larger proportions of the S polarization leaking through the double beam splitter than would penetrate a single beam splitter.
Accordingly, it has been found that the components of leakage that derive from multiple internal reflections between the beam splitter coatings can be disproportionately attenuated by including an attenuating layer between the two beam splitters. By careful choice of the degree of attenuation provided by the intermediate spacer layer, it is possible to keep attenuation of the main signal (e.g., image) within acceptable limits while achieving much greater attenuation of the multiply internally-reflected secondary leakage rays, and thereby achieve greatly enhanced output image contrast. This approach is applicable both to non-resonant implementations and to implementations with closely spaced beam splitters, where resonance effects are significant.
Various exemplary embodiments of this aspect will now be described. In
The intensity transmittance of the output ray 104 can be approximated as:
T_out=Sr1·Lr·Pt1·Mt·Pt2·Sr2
For simplicity, it is assumed that PBS coating 40b1 is equivalent to PBS coating 40b2 (which also corresponds to a non-limiting but particularly preferred example of this aspect of the disclosed subject matter), and therefore:
T_out=Sr2·Lr·Pt2·Mt
The undesired illumination includes direct transmittance ray 106 and internally guided light (between the PBS coatings 40b1, 40b2) that couples-out as rays 108. The total output illumination of this internal resonance can be approximated as a geometric series. For clarity, in the following, an incoherent summation is assumed (no phase calculation) as is equivalence of PBS coatings 40b1, 40b2. The transmittance of direct illumination after internal resonance (rays 106, 108) is:
T_direct=St2·Mt/(1−Sr2·Mt2)
Where St is the transmittance of S polarization through the PBS layer and can be approximated as St=1−Sr. This is the sum of an infinite converging series where edge effects are neglected. The ratio between the image transmittance and direct illumination (contrast) is:
R=T_out/T_direct=Sr2·Lr·Pt2·(1−Sr2·Mt2)/St2
It is apparent that as the transmittance Mt of medium 100 is reduced, the contrast improves:
At maximal resonance (if medium 100 is fully transparent):
R(Mt=100%)=Sr2·Lr·Pt2·(1−Sr2)/St2
At no resonance (if medium 100 has very low transmittance and practically no image transmittance) the contrast converges to:
R(Mt→0%)=Sr2·Lr·Pt2/St2
According to this invention a desired contrast is achieved by setting moderate transmittance of medium 100 that introduces an acceptable level of signal/image attenuation (preferably attenuation of less than 50%) in order to achieve the enhanced S/N ratio (contrast).
It is apparent that without absorption the contrast is R(Mt=100%)=17 (not acceptable for imaging systems) while at minimal transmittance the contrast is R(Mt→0)=170 (the low image transmittance is also not acceptable). However, at medium transmittance the contrast R(Mt=68%)=100. This is an optimal system having good contrast and acceptable 32% image loss. Depending on the particular design considerations, solutions which have medium transmissivity Mt in the range of 40%-90%, and more preferably 50%-80%, are of particular advantage.
The above description relating to incoherence, while neglecting phase, was made for clarity and is accurate if the thickness of medium 100 is larger than the coherence length of the light. In practice, PBS coating 40b1, followed by medium 100 and PBS coating 40b2 can be generated as a continuous sequence of coatings having minimal gap and thickness. For example, medium 100 can be a thin (e.g., a few nanometers thickness) metallic layer of absorbing Nickel. In such a case, a numerical iterative design method that considers phase should be used while basing on the same principle of more than one PBS coating having an absorber in between.
It should be noted that the interim absorbing layer separates the two PBS coatings to be practically independent. Consequently, no high accuracy is required between the two PBSs therefore production is more robust to tolerances and inaccuracies.
Preferably, the refractive index of absorbing layer (medium) 100 is close to that of the surrounding prism or coating layers. It should be noted that a large difference in refractive index associated with a large thickness of this layer is likely to cause image distortion as described above with reference to
Referring now to
It should be noted that prisms 60, 80 can have an external surface (where light enters) that is parallel to the pair of parallel dielectric coatings, and this surface can be coated with a third dielectric coating for pre-filtering of skew rays, thereby combining the features of the various aspects of the invention described above.
In a similar vein,
In the combined embodiments, the entry light prism may have an external surface through which the light enters that is parallel to the pair of parallel dielectric coatings. This surface can be coated with a third dielectric coating, thereby combining the features of the various aspects of the invention described above in a single apparatus.
Although the invention has been described herein in the context of an image projection system particularly suited to near-eye displays, it should be noted that this aspect of the invention is widely applicable to any and all situations where it is desirable to achieve enhanced contrast between a signal of a desired polarization and noise of an undesired polarization passing through a PBS. For example, in
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2020/051679 | 2/27/2020 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2020/174433 | 9/3/2020 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2748659 | Geffcken et al. | Jun 1956 | A |
2795069 | George | Jun 1957 | A |
2886911 | George | May 1959 | A |
3491245 | George | Jan 1970 | A |
3626394 | Nelson et al. | Dec 1971 | A |
3667621 | Barlow | Jun 1972 | A |
3677621 | Smith | Jul 1972 | A |
3737212 | Antonson et al. | Jun 1973 | A |
3802763 | Cook et al. | Apr 1974 | A |
3829197 | Thelen | Aug 1974 | A |
3857109 | Pilloff | Dec 1974 | A |
3873209 | Schinke et al. | Mar 1975 | A |
3940204 | Withrington | Feb 1976 | A |
3969023 | Brandt et al. | Jul 1976 | A |
4084883 | Eastman et al. | Apr 1978 | A |
4191446 | Arditty et al. | Mar 1980 | A |
4309070 | St. Leger Searle | Jan 1982 | A |
4331387 | Wentz | May 1982 | A |
4355864 | Soref | Oct 1982 | A |
4516828 | Steele | May 1985 | A |
4613216 | Herbec et al. | Sep 1986 | A |
4662717 | Yamada et al. | May 1987 | A |
4711512 | Upatnieks | Dec 1987 | A |
4715684 | Gagnon | Dec 1987 | A |
4720189 | Heynen et al. | Jan 1988 | A |
4775217 | Ellis | Oct 1988 | A |
4798448 | Van Raalte | Jan 1989 | A |
4805988 | Dones | Feb 1989 | A |
4932743 | Isobe et al. | Jun 1990 | A |
4978952 | Irwin | Dec 1990 | A |
5033828 | Haruta | Jul 1991 | A |
5076664 | Migozzi | Dec 1991 | A |
5096520 | Faris | Mar 1992 | A |
5157526 | Kondo et al. | Oct 1992 | A |
5208800 | Isobe et al. | May 1993 | A |
5231642 | Scifres et al. | Jul 1993 | A |
5235589 | Yokomori et al. | Aug 1993 | A |
5301067 | Bleier et al. | Apr 1994 | A |
5353134 | Michel et al. | Oct 1994 | A |
5367399 | Kramer | Nov 1994 | A |
5369415 | Richard et al. | Nov 1994 | A |
5453877 | Gerbe et al. | Sep 1995 | A |
5543877 | Takashi et al. | Aug 1996 | A |
5555329 | Kuper et al. | Sep 1996 | A |
5619601 | Akashi et al. | Apr 1997 | A |
5650873 | Gal et al. | Jul 1997 | A |
5680209 | Meinrad | Oct 1997 | A |
5712694 | Taira et al. | Jan 1998 | A |
5724163 | Yair | Mar 1998 | A |
5745199 | Suzuki et al. | Apr 1998 | A |
5751480 | Kitagishi | May 1998 | A |
5764412 | Suzuki et al. | Jun 1998 | A |
5829854 | Jones | Nov 1998 | A |
5883684 | Millikan et al. | Mar 1999 | A |
5896232 | Budd et al. | Apr 1999 | A |
5919601 | Nguyen et al. | Jul 1999 | A |
5966223 | Yaakov et al. | Oct 1999 | A |
5982536 | Swan | Nov 1999 | A |
6021239 | Minami et al. | Feb 2000 | A |
6052500 | Takano et al. | Apr 2000 | A |
6091548 | Chen | Jul 2000 | A |
6137461 | Deter et al. | Oct 2000 | A |
6144347 | Mizoguchi et al. | Nov 2000 | A |
6185015 | Silviu et al. | Feb 2001 | B1 |
6222676 | Togino et al. | Apr 2001 | B1 |
6231992 | Niebauer et al. | May 2001 | B1 |
6239092 | Papasso et al. | May 2001 | B1 |
6264328 | Williams | Jul 2001 | B1 |
6322256 | Inada et al. | Nov 2001 | B1 |
6324330 | Stites | Nov 2001 | B1 |
6349001 | Spitzer | Feb 2002 | B1 |
6362861 | Hertz et al. | Mar 2002 | B1 |
6384982 | Spitzer | May 2002 | B1 |
6388814 | Tanaka | May 2002 | B2 |
6404550 | Yajima | Jun 2002 | B1 |
6404947 | Matsuda | Jun 2002 | B1 |
6483113 | Sealy et al. | Nov 2002 | B1 |
6490104 | Gleckman et al. | Dec 2002 | B1 |
6509982 | Steiner | Jan 2003 | B2 |
6542307 | Gleckman | Apr 2003 | B2 |
6556282 | Jamieson et al. | Apr 2003 | B2 |
6577411 | David | Jun 2003 | B1 |
6671100 | McRuer | Dec 2003 | B1 |
6690513 | Hulse et al. | Feb 2004 | B2 |
6710902 | Takeyama | Mar 2004 | B2 |
6775432 | Basu | Aug 2004 | B2 |
6791760 | Janeczko et al. | Sep 2004 | B2 |
6798579 | Robinson et al. | Sep 2004 | B2 |
6829095 | Amitai | Dec 2004 | B2 |
6847488 | Travis | Jan 2005 | B2 |
6880931 | Moliton et al. | Apr 2005 | B2 |
6927694 | Smith et al. | Sep 2005 | B1 |
6942925 | Lazarev et al. | Sep 2005 | B1 |
7016113 | Choi et al. | Mar 2006 | B2 |
7021777 | Amitai | Apr 2006 | B2 |
7088664 | Kim et al. | Aug 2006 | B2 |
7175304 | Wadia et al. | Feb 2007 | B2 |
7205960 | David | Apr 2007 | B2 |
7355795 | Yamazaki et al. | Apr 2008 | B1 |
7384159 | Takeda | Jun 2008 | B2 |
7391573 | Amitai | Jun 2008 | B2 |
7418170 | Mukawa et al. | Aug 2008 | B2 |
7430355 | Heikenfeld et al. | Sep 2008 | B2 |
7448170 | Milovan et al. | Nov 2008 | B2 |
7457040 | Amitai | Nov 2008 | B2 |
7577326 | Amitai | Aug 2009 | B2 |
7612879 | Stumpe et al. | Nov 2009 | B2 |
7643214 | Amitai | Jan 2010 | B2 |
7672055 | Amitai | Mar 2010 | B2 |
7724443 | Amitai | May 2010 | B2 |
7778508 | Hirayama | Aug 2010 | B2 |
7808625 | Nakamura et al. | Oct 2010 | B2 |
7949214 | Dejong | May 2011 | B2 |
7995275 | Maeda et al. | Aug 2011 | B2 |
8000020 | Amitai | Aug 2011 | B2 |
8035872 | Ouchi | Oct 2011 | B2 |
8098439 | Amitai et al. | Jan 2012 | B2 |
8187481 | Hobbs | May 2012 | B1 |
8369019 | Baker | Feb 2013 | B2 |
8405573 | Lapidot et al. | Mar 2013 | B2 |
8432614 | Amitai | Apr 2013 | B2 |
8472119 | Kelly | Jun 2013 | B1 |
8479119 | Hörentrup et al. | Jul 2013 | B2 |
8643948 | Amitai et al. | Feb 2014 | B2 |
8655178 | Capron et al. | Feb 2014 | B2 |
8665178 | Wang | Mar 2014 | B1 |
8666208 | Amirparviz et al. | Mar 2014 | B1 |
8718437 | Sullivan et al. | May 2014 | B2 |
8736963 | Robbins et al. | May 2014 | B2 |
8743464 | Amirparviz | Jun 2014 | B1 |
8913865 | Bennett | Dec 2014 | B1 |
8965152 | Simmonds | Feb 2015 | B2 |
9025253 | Hadad et al. | May 2015 | B2 |
9523852 | Brown et al. | Dec 2016 | B1 |
9541762 | Mukawa et al. | Jan 2017 | B2 |
9551880 | Amitai | Jan 2017 | B2 |
9709809 | Miyawaki et al. | Jul 2017 | B2 |
9798061 | Hsiao et al. | Oct 2017 | B2 |
9805633 | Zheng | Oct 2017 | B2 |
9933684 | Brown et al. | Apr 2018 | B2 |
10222535 | Remhof et al. | Mar 2019 | B2 |
10302957 | Sissom | May 2019 | B2 |
10466479 | Shih et al. | Nov 2019 | B2 |
10908426 | Amitai | Feb 2021 | B2 |
10951867 | Pappas et al. | Mar 2021 | B2 |
20010000124 | Joel et al. | Apr 2001 | A1 |
20010030860 | Kimura et al. | Oct 2001 | A1 |
20020015233 | Park | Feb 2002 | A1 |
20020097762 | Yoshimura et al. | Jul 2002 | A1 |
20020176173 | Song | Nov 2002 | A1 |
20020191297 | Gleckman et al. | Dec 2002 | A1 |
20030007157 | Hulse et al. | Jan 2003 | A1 |
20030020006 | Janeczko et al. | Jan 2003 | A1 |
20030063042 | Friesem et al. | Apr 2003 | A1 |
20030072160 | Kuepper et al. | Apr 2003 | A1 |
20030090439 | Spitzer et al. | May 2003 | A1 |
20030165017 | Amitai | Sep 2003 | A1 |
20030169504 | Kaminsky et al. | Sep 2003 | A1 |
20030197938 | Schmidt et al. | Oct 2003 | A1 |
20030218718 | Moliton et al. | Nov 2003 | A1 |
20030235768 | Fincher et al. | Dec 2003 | A1 |
20040032660 | Amital | Feb 2004 | A1 |
20040033528 | Amitai | Feb 2004 | A1 |
20040085649 | Repetto et al. | May 2004 | A1 |
20040013068 | Aastuen et al. | Jul 2004 | A1 |
20040130681 | Aastuen | Jul 2004 | A1 |
20040137189 | Tellini et al. | Jul 2004 | A1 |
20040233534 | Nakanishi et al. | Nov 2004 | A1 |
20050012842 | Miyagawa et al. | Jan 2005 | A1 |
20050018308 | Cassarly et al. | Jan 2005 | A1 |
20050024849 | Parker et al. | Feb 2005 | A1 |
20050078388 | Amitai | Apr 2005 | A1 |
20050083592 | Amital | Apr 2005 | A1 |
20050084210 | Cha | Apr 2005 | A1 |
20050168697 | Bruzzone | Aug 2005 | A1 |
20050174641 | Greenberg | Aug 2005 | A1 |
20050174658 | Long et al. | Aug 2005 | A1 |
20050180687 | Amitai | Aug 2005 | A1 |
20050265044 | Chen et al. | Dec 2005 | A1 |
20060126182 | Levola | Jun 2006 | A1 |
20060171046 | Recco et al. | Aug 2006 | A1 |
20060268421 | Shimizu et al. | Nov 2006 | A1 |
20070000219 | Hashezumi et al. | Jan 2007 | A1 |
20070002191 | Hashizume et al. | Jan 2007 | A1 |
20070035707 | Margulis | Feb 2007 | A1 |
20070070859 | Hirayama | Mar 2007 | A1 |
20070091445 | Amitai | Apr 2007 | A1 |
20070097513 | Amital | May 2007 | A1 |
20070155277 | Amitai | Jul 2007 | A1 |
20070159673 | Freeman et al. | Jul 2007 | A1 |
20070165192 | Prior | Jul 2007 | A1 |
20070188837 | Shimizu et al. | Aug 2007 | A1 |
20080025667 | Amitai | Jan 2008 | A1 |
20080009458 | Hirayama | Apr 2008 | A1 |
20080094586 | Hirayama | Apr 2008 | A1 |
20080106775 | Amitai | May 2008 | A1 |
20080151375 | Lin | Jun 2008 | A1 |
20080151379 | Amitai | Jun 2008 | A1 |
20080186604 | Amitai | Aug 2008 | A1 |
20080192239 | Shin-Etsu | Aug 2008 | A1 |
20080198471 | Amitai | Aug 2008 | A1 |
20080247150 | Itoh et al. | Sep 2008 | A1 |
20080259429 | Kamm et al. | Oct 2008 | A1 |
20080278812 | Amitai | Nov 2008 | A1 |
20080285140 | Amitai | Nov 2008 | A1 |
20090010023 | Kanade et al. | Jan 2009 | A1 |
20090052046 | Amitai | Feb 2009 | A1 |
20090052047 | Amitai | Feb 2009 | A1 |
20090097127 | Amitai | Apr 2009 | A1 |
20090122414 | Amitai | May 2009 | A1 |
20090153437 | Aharoni | Jun 2009 | A1 |
20090190222 | Simmonds et al. | Jul 2009 | A1 |
20100027289 | Aiki et al. | Feb 2010 | A1 |
20100053148 | Khazeni et al. | Mar 2010 | A1 |
20100067110 | Yaakov et al. | Mar 2010 | A1 |
20100111472 | DeJong | May 2010 | A1 |
20100171680 | Lapidot et al. | Jul 2010 | A1 |
20100201128 | Robert | Aug 2010 | A1 |
20100202048 | Amitai et al. | Aug 2010 | A1 |
20100202128 | Saccomanno | Aug 2010 | A1 |
20100214635 | Sasaki et al. | Aug 2010 | A1 |
20100278480 | Vasylyev et al. | Nov 2010 | A1 |
20100291489 | Moskovits et al. | Nov 2010 | A1 |
20110002019 | Routley et al. | Jan 2011 | A1 |
20110096566 | Tsai et al. | Apr 2011 | A1 |
20110176218 | Noui | Jul 2011 | A1 |
20110227661 | Numata et al. | Sep 2011 | A1 |
20110242661 | Simmonds | Oct 2011 | A1 |
20120039576 | Dangel et al. | Feb 2012 | A1 |
20120062850 | Travis | Mar 2012 | A1 |
20120062998 | Schultz et al. | Mar 2012 | A1 |
20120147361 | Mochizuki et al. | Jun 2012 | A1 |
20120154920 | Ga et al. | Jun 2012 | A1 |
20120176682 | DeJong | Jul 2012 | A1 |
20120179369 | Lapidot et al. | Jul 2012 | A1 |
20120194781 | Agurok | Aug 2012 | A1 |
20120200938 | Totani et al. | Aug 2012 | A1 |
20120274751 | Smith et al. | Nov 2012 | A1 |
20120306940 | Machida | Dec 2012 | A1 |
20130016292 | Mlao et al. | Jan 2013 | A1 |
20130022316 | Pelletier et al. | Jan 2013 | A1 |
20130027655 | Blum et al. | Jan 2013 | A1 |
20130135749 | Akutsu et al. | May 2013 | A1 |
20130229717 | Amitai | Sep 2013 | A1 |
20130250430 | Robbuns et al. | Sep 2013 | A1 |
20130276960 | Amitai | Oct 2013 | A1 |
20130279017 | Levi et al. | Oct 2013 | A1 |
20130321432 | Burns et al. | Dec 2013 | A1 |
20130334504 | Thompson et al. | Dec 2013 | A1 |
20140003762 | Macnamara | Jan 2014 | A1 |
20140043688 | Schrader et al. | Feb 2014 | A1 |
20140118813 | Amitai et al. | May 2014 | A1 |
20140118836 | Amitai et al. | May 2014 | A1 |
20140118837 | Amitai et al. | May 2014 | A1 |
20140126051 | Amitai et al. | May 2014 | A1 |
20140126052 | Amitai et al. | May 2014 | A1 |
20140126056 | Amitai et al. | May 2014 | A1 |
20140126057 | Amitai et al. | May 2014 | A1 |
20140126175 | Amitai et al. | May 2014 | A1 |
20140160577 | Dominici et al. | Jun 2014 | A1 |
20140185142 | Gupta et al. | Jul 2014 | A1 |
20140226215 | Komatsu et al. | Aug 2014 | A1 |
20140226361 | Vasylyev | Aug 2014 | A1 |
20140232619 | Hiraide | Aug 2014 | A1 |
20140240834 | Mason | Aug 2014 | A1 |
20140334777 | Dubroca et al. | Nov 2014 | A1 |
20150016777 | Abovitz et al. | Jan 2015 | A1 |
20150081313 | Boross et al. | Mar 2015 | A1 |
20150131059 | Fischer et al. | May 2015 | A1 |
20150138451 | Amitai | May 2015 | A1 |
20150138646 | Tatsugi | May 2015 | A1 |
20150153569 | Yonekubo | Jun 2015 | A1 |
20150160529 | Popovich et al. | Jun 2015 | A1 |
20150182348 | Siegal et al. | Jul 2015 | A1 |
20150198805 | Mansharof et al. | Jul 2015 | A1 |
20150205140 | Mansharof et al. | Jul 2015 | A1 |
20150205141 | Mansharof et al. | Jul 2015 | A1 |
20150219834 | Nichol et al. | Aug 2015 | A1 |
20150241619 | Richards et al. | Aug 2015 | A1 |
20150277127 | Amitai | Oct 2015 | A1 |
20150293360 | Amitai | Oct 2015 | A1 |
20150309312 | Ackerman | Oct 2015 | A1 |
20150331546 | Craven-Bartle et al. | Nov 2015 | A1 |
20160062119 | Fitch et al. | Mar 2016 | A1 |
20160116743 | Amitai | Apr 2016 | A1 |
20160170212 | Amitai | Jun 2016 | A1 |
20160170213 | Amitai | Jun 2016 | A1 |
20160170214 | Amitai | Jun 2016 | A1 |
20160187656 | Amitai | Jun 2016 | A1 |
20160202048 | Meng | Jul 2016 | A1 |
20160234485 | Robbins et al. | Aug 2016 | A1 |
20160238844 | Dobschal | Aug 2016 | A1 |
20160267309 | High | Sep 2016 | A1 |
20160313567 | Kurashige | Oct 2016 | A1 |
20160314564 | Jones | Oct 2016 | A1 |
20160341964 | Amitai | Nov 2016 | A1 |
20160349518 | Amitai et al. | Dec 2016 | A1 |
20160363679 | Jurok et al. | Dec 2016 | A1 |
20160370589 | Wang | Dec 2016 | A1 |
20160370693 | Watanabe | Dec 2016 | A1 |
20170003504 | Vallius et al. | Jan 2017 | A1 |
20170004574 | Deats et al. | Jan 2017 | A1 |
20170045743 | Dobschal et al. | Feb 2017 | A1 |
20170045744 | Amitai | Feb 2017 | A1 |
20170052376 | Amitai | Feb 2017 | A1 |
20170052377 | Amitai | Feb 2017 | A1 |
20170075119 | Schultz et al. | Mar 2017 | A1 |
20170097506 | Schowengerdt et al. | Apr 2017 | A1 |
20170122725 | Yeoh | May 2017 | A1 |
20170242249 | Wall | Aug 2017 | A1 |
20170255012 | Tam | Sep 2017 | A1 |
20170276947 | Yokoyama | Sep 2017 | A1 |
20170336636 | Amitai et al. | Nov 2017 | A1 |
20170343822 | Border et al. | Nov 2017 | A1 |
20170357095 | Amitai | Dec 2017 | A1 |
20170357100 | Ouderkirk et al. | Dec 2017 | A1 |
20170363799 | Ofir et al. | Dec 2017 | A1 |
20180021020 | Lefevre et al. | Jan 2018 | A1 |
20180039082 | Amitai | Feb 2018 | A1 |
20180067315 | Amitai et al. | Mar 2018 | A1 |
20180157057 | Gelberg et al. | Jun 2018 | A1 |
20180210202 | Danziger | Jul 2018 | A1 |
20180267295 | Dalrymple et al. | Sep 2018 | A1 |
20180267317 | Amitai | Sep 2018 | A1 |
20180275384 | Danziger et al. | Sep 2018 | A1 |
20180284440 | Popovich et al. | Oct 2018 | A1 |
20180292592 | Danziger | Oct 2018 | A1 |
20180292599 | Ofir et al. | Oct 2018 | A1 |
20180322845 | Machida | Nov 2018 | A1 |
20180373039 | Amitai | Dec 2018 | A1 |
20190011710 | Amitai | Jan 2019 | A1 |
20190020858 | Pappas et al. | Jan 2019 | A1 |
20190022731 | Yabuoshi | Jan 2019 | A1 |
20190056600 | Danziger et al. | Feb 2019 | A1 |
20190064518 | Danziger | Feb 2019 | A1 |
20190137818 | Saito | May 2019 | A1 |
20190155035 | Amitai | May 2019 | A1 |
20190170327 | Eisenfeld et al. | Jun 2019 | A1 |
20190187482 | Lanman | Jun 2019 | A1 |
20190208187 | Danziger | Jul 2019 | A1 |
20190212487 | Danziger et al. | Jul 2019 | A1 |
20190227215 | Danziger et al. | Jul 2019 | A1 |
20190227317 | Trail et al. | Jul 2019 | A1 |
20190278086 | Ofir | Sep 2019 | A1 |
20190285900 | Amitai | Sep 2019 | A1 |
20190293856 | Danziger | Sep 2019 | A1 |
20190339530 | Amitai | Nov 2019 | A1 |
20190346609 | Eisenfeld | Nov 2019 | A1 |
20190361240 | Gelberg | Nov 2019 | A1 |
20190361241 | Amitai | Nov 2019 | A1 |
20190377187 | Rubin et al. | Dec 2019 | A1 |
20190391408 | Mansharof | Dec 2019 | A1 |
20200033572 | Danziger et al. | Jan 2020 | A1 |
20200041713 | Danziger | Feb 2020 | A1 |
20200089001 | Amitai et al. | Mar 2020 | A1 |
20200110211 | Danziger et al. | Apr 2020 | A1 |
20200120329 | Danziger | Apr 2020 | A1 |
20200133008 | Amitai | Apr 2020 | A1 |
20200150330 | Danziger et al. | May 2020 | A1 |
20200183159 | Danziger | Jun 2020 | A1 |
20200183170 | Amitai et al. | Jun 2020 | A1 |
20200200963 | Eisenfeld et al. | Jun 2020 | A1 |
20200209667 | Sharlin et al. | Jul 2020 | A1 |
20200225484 | Takagi et al. | Jul 2020 | A1 |
20200241308 | Danziger et al. | Jul 2020 | A1 |
20200249481 | Danziger et al. | Aug 2020 | A1 |
20200278557 | Greenstein et al. | Sep 2020 | A1 |
20200278558 | Yamamoto et al. | Sep 2020 | A1 |
20200285060 | Amitai | Sep 2020 | A1 |
20200292417 | Lobachinsky et al. | Sep 2020 | A1 |
20200292744 | Danziger et al. | Sep 2020 | A1 |
20200292819 | Danziger et al. | Sep 2020 | A1 |
20200310024 | Danziger et al. | Oct 2020 | A1 |
20200326545 | Amitai et al. | Oct 2020 | A1 |
20200371311 | Lobachinsky et al. | Nov 2020 | A1 |
20210003849 | Amitai et al. | Jan 2021 | A1 |
20210018755 | Amitai | Jan 2021 | A1 |
20210033773 | Danziger et al. | Feb 2021 | A1 |
20210033862 | Danziger et al. | Feb 2021 | A1 |
20210033872 | Rubin et al. | Feb 2021 | A1 |
20210055218 | Aldaag et al. | Feb 2021 | A1 |
20210055466 | Eisenfeld | Feb 2021 | A1 |
20210055561 | Danziger et al. | Feb 2021 | A1 |
20210063733 | Ronen | Mar 2021 | A1 |
20210072553 | Danziger | Mar 2021 | A1 |
20210099691 | Danziger | Apr 2021 | A1 |
20210109351 | Danzinger et al. | Apr 2021 | A1 |
20210116367 | Gelberg et al. | Apr 2021 | A1 |
20210141141 | Danziger et al. | May 2021 | A1 |
20210149199 | Guan | May 2021 | A1 |
20210149204 | Amitai | May 2021 | A1 |
20210157150 | Amitai | May 2021 | A1 |
20210165231 | Gelberg et al. | Jun 2021 | A1 |
20210239898 | Danziger et al. | Aug 2021 | A1 |
20210271006 | Ronen et al. | Sep 2021 | A1 |
20220003914 | Danziger et al. | Jan 2022 | A1 |
20220004001 | Danziger et al. | Jan 2022 | A1 |
20220004014 | Ronen et al. | Jan 2022 | A1 |
20220019018 | Gilo et al. | Jan 2022 | A1 |
20220030205 | Danziger | Jan 2022 | A1 |
20220043272 | Amitai | Feb 2022 | A1 |
20220057643 | Eisenfeld et al. | Feb 2022 | A1 |
20220075194 | Ronen | Mar 2022 | A1 |
20220091413 | Grabarnik et al. | Mar 2022 | A1 |
20220099885 | Ronen et al. | Mar 2022 | A1 |
20220100032 | Ronen | Mar 2022 | A1 |
20220128816 | Danziger et al. | Apr 2022 | A1 |
20220234277 | Song | Jul 2022 | A1 |
20220043269 | Maziel | Oct 2022 | A1 |
Number | Date | Country |
---|---|---|
1914544 | Feb 2007 | CN |
200941530 | Sep 2007 | CN |
100405096 | Jul 2008 | CN |
101542346 | Sep 2009 | CN |
101542356 | Sep 2009 | CN |
101846799 | Sep 2010 | CN |
103837988 | Jun 2014 | CN |
106104569 | Nov 2016 | CN |
106154569 | Nov 2016 | CN |
107238928 | Oct 2017 | CN |
106154569 | Feb 2019 | CN |
1422172 | Nov 1970 | DE |
19725262 | Dec 1998 | DE |
102013106392 | Dec 2014 | DE |
0365406 | Apr 1990 | EP |
0380035 | Aug 1990 | EP |
0399865 | Nov 1990 | EP |
0543718 | May 1993 | EP |
0566004 | Oct 1993 | EP |
1158336 | Nov 2001 | EP |
1180711 | Feb 2002 | EP |
1326102 | Jul 2003 | EP |
1385023 | Jan 2004 | EP |
1485747 | Dec 2004 | EP |
1562066 | Aug 2005 | EP |
0770818 | Apr 2007 | EP |
1779159 | May 2007 | EP |
2530510 | Dec 2012 | EP |
2496905 | Jun 1982 | FR |
2638242 | Apr 1990 | FR |
2721872 | Jan 1996 | FR |
1514977 | Jun 1978 | GB |
2220081 | Dec 1989 | GB |
2272980 | Jun 1994 | GB |
2278222 | Nov 1994 | GB |
2278888 | Dec 1994 | GB |
H04159503 | Jun 1992 | JP |
H08-070782 | Mar 1996 | JP |
H09304036 | Nov 1997 | JP |
2001021448 | Jul 1999 | JP |
2001021448 | Jan 2001 | JP |
2001343608 | Dec 2001 | JP |
2002539498 | Nov 2002 | JP |
2003065739 | Mar 2003 | JP |
2003140081 | May 2003 | JP |
2003149643 | May 2003 | JP |
2012163659 | May 2003 | JP |
2003536102 | Dec 2003 | JP |
2004145330 | May 2004 | JP |
2004527801 | Sep 2004 | JP |
2005084522 | Mar 2005 | JP |
2006003872 | Jan 2006 | JP |
2006145644 | Jun 2006 | JP |
2006145644 | Jun 2006 | JP |
2006201637 | Aug 2006 | JP |
2008158446 | Dec 2006 | JP |
2008053517 | Mar 2008 | JP |
2010014705 | Jan 2010 | JP |
2010044172 | Feb 2010 | JP |
2011221235 | Nov 2011 | JP |
2012058404 | Mar 2012 | JP |
2012123936 | Jun 2012 | JP |
2012198263 | Oct 2012 | JP |
2016028275 | Feb 2016 | JP |
2016033867 | Mar 2016 | JP |
2018189906 | Nov 2018 | JP |
20190032382 | Mar 2019 | KR |
201809798 | Mar 2018 | TW |
9510106 | Apr 1995 | WO |
9815868 | Apr 1998 | WO |
1998058291 | Dec 1998 | WO |
9952002 | Oct 1999 | WO |
0004407 | Jan 2000 | WO |
0063738 | Oct 2000 | WO |
0127685 | Apr 2001 | WO |
0195025 | Dec 2001 | WO |
02082168 | Oct 2002 | WO |
03058320 | Jul 2003 | WO |
2004109349 | Dec 2004 | WO |
2005024485 | Mar 2005 | WO |
2005024491 | Mar 2005 | WO |
2005093493 | Oct 2005 | WO |
2006098097 | Sep 2006 | WO |
2009009268 | Jan 2009 | WO |
2009074638 | Jun 2009 | WO |
2011130720 | Oct 2011 | WO |
2013065656 | May 2013 | WO |
2013188464 | Dec 2013 | WO |
2015081313 | Jun 2015 | WO |
2015158828 | Oct 2015 | WO |
2016103251 | Jun 2016 | WO |
2016132347 | Aug 2016 | WO |
2017106873 | Jun 2017 | WO |
2017199232 | Nov 2017 | WO |
2018013307 | Jan 2018 | WO |
2021260708 | Feb 2022 | WO |
Entry |
---|
Salter, P. S. and Booth, M. J. et al. “Designing and aligning optical systems incorporating Liquid crystal spatial light modulators (SLMs)”, Department of Engineering, University of Oxford, vr1.0, doi: 10.5281/zenodo.4518992 (published online Feb. 12, 2020) Salter, P. S. and Booth, M. J. Feb. 12, 2020 (Feb. 12, 2020). |
Jinying Li et al “Improvement of pointing accuracy for Risley prisms by parameter identification”, Sep. 2017Applied Optics 56(26):7358; DOI:10.1364/AO.56.007358. |
Klaus Ehrmann et al “Optical power mapping using paraxial laser scanning”, Proceedings vol. 7163, Ophthalmic Technologies XIX; 71631E (2009) https://doi.org/10.1117/12.806765 Event: SPIE BIOS, 2009, San Jose, California, United States. |
Erhui Qi et al “The Application of Pentaprism Scanning Technology on the Manufacturing of M3MP”, Proc. of SPIE vol. 9682 96821A-1 Downloaded From: http://proceedings.spiedigitallibrary.org/ on Dec. 8, 2016 Terms of Use: http://spiedigitallibrary.org/ss/termsofuse.aspx. |
Wei Chen et al“An Image Quality Evaluation Method of near-eye display”, First published: May 25, 2016 https://doi.org/10.1002/sdtp.10935. |
Amotchkina T. et al.; “Stress compensation with antireflection coatings for ultrafast laser applications: from theory to practice,” Opt. Express 22, 30387-30393 (2014) Amotchkina T et al. Dec. 31, 2014 (Dec. 31, 2014). |
Mori H. et al., “Reflective coatings for the future x-ray mirror substrates”, Proc. SPIE 10699, Space Telescopes and Instrumentation 2018: Ultraviolet to Gamma Ray, 1069941 (Jul. 6, 2018); available at URL <http://doi.org/10.1117/12.2313469> Mori H. et al. Jul. 6, 2018 (Jul. 6, 2018). |
Chalifoux B.D. et al., “Compensating film stress in thin silicon substrates using ion implantation,” Opt. Express 27, 11182-11195 (Jan. 21, 2019) Chalifoux B.D et al. Jan. 21, 2019 (Jan. 21, 2019). |
Petros I. Stavroulakis, Stuart A. Boden, Thomas Johnson, and Darren M. Bagnall, “Suppression of backscattered diffraction from sub-wavelength ‘moth-eye’ arrays,” Opt. Express 21, 1-11 (2013). |
R. J. Weiblen, C. R. Menyuk, L. E. Busse, L. B. Shaw, J. S. Sanghera, and I. D. Aggarwal, “Optimized moth-eye anti- reflective structures for As2S3 chalcogenide optical fibers,” Opt. Express 24, 10172-10187 (2016). |
Qiaoyin Yang et al. “Antireflection effects at nanostructured material interfaces and the suppression of thin-film interference” 2013 Nanotechnology, vol. 24, No. 23 May 15, 2013. |
S. Chattopadhyay et al. “Anti-reflecting and photonic nanostructures,” Materials Science and Engineering: R: Reports, vol. 69, Issues 1-3, 2010, pp. 1-35, ISSN 0927-796X, https://doi.org/10.1016/j.mser.2010.04.001. |
Qiao, DY., Wang, SJ. & Yuan, WZ. A continuous-membrane micro deformable mirror based on anodic bonding of SOI to glass wafer. Microsyst Technol 16, 1765-1769 (2010). https://doi.org/10.1007/s00542-010-1102-0. |
J. Wei, S.M.L. Nai, C.K. Wong, L.C. Lee, “Glass-to-glass anodic bonding process and electrostatic force” Thin Solid Films, vols. 462-463, 2004, pp. 487-491, ISSN 0040-6090, https://doi.org/10.1016/j.tsf.2004.05.067. (https://www.sciencedirect.com/science/article/pii/S0040609004006613). |
Da-Yong et al., “A Continuous Membrance Micro Deformable Mirror Based on Anodic Bonding of SOI to Glass Water”, Microsystem Technologies, Micro and Nanosystems Information Storage and Processing Systems, vol. 16, No. 10, May 20, 2010 pp. 1765-1769. |
Number | Date | Country | |
---|---|---|---|
20220113549 A1 | Apr 2022 | US |
Number | Date | Country | |
---|---|---|---|
62811583 | Feb 2019 | US |