The invention relates to vertical exhaust systems and exhaust water trap assemblies, including for heavy duty vehicles, such as trucks, tractors, off-road equipment, and the like which utilize a vertical exhaust system, for example in which the exhaust conduit extends vertically alongside the cab of the vehicle.
For reduced emissions, catalytic converters and soot filters have been incorporated in the exhaust system of buses, trucks, and so on. If the exhaust outlet is vertical, there is a possibility that water, such as rain, snow, or bus or truck wash, can enter the upper end of the exhaust system and flow downwardly into contact with the catalytic converter or soot filter unit. The water entering the system can be absorbed in the catalyst/filter mounting mat, e.g. vermiculite, that is typically located between the outer surface of the catalytic converter and the outer body of the exhaust conduit. Mounting mat that is exposed to water results in a much lower push-out force, a measure of the ability for the mat to retain the catalyst/filter in place. In another scenario, freezing of water in the catalytic converter can cause structural damage to the monolithic catalyst. As an additional problem, water flowing through the catalytic converter or soot filter may tend to wash particulate material downwardly where such material collects and clogs the lower surface of the catalytic converter/soot filter causing premature failure thereof.
The present invention arose during continuing development efforts directed toward an improved combination exhaust muffler and aftertreatment element and water trap assembly, including ultra-compact structure.
The following description of
A lower annular flange 78 has an inner circumference 80 at internal exhaust tube 52 and defining lower inlet 48, and has an outer circumference 82 at housing sidewall 46 and spanning and closing annular space 54 at a lower end thereof to form a collection space and water trap 84, comparable to water trap 27 in U.S. Pat. No. 5,321,215. An upper flange 86 has an inner circumference 88 spaced vertically above top end 56 of internal exhaust tube 52 and dome cap 60 by axial gap 58 and defining the noted upper outlet 50, and has an outer circumference 90 at housing sidewall 46. Dome cap 60 and upper flange 86 define upper outlet plenum 72 free of a perforated exhaust tube extending axially therethrough and into which exhaust would otherwise have to be re-introduced and which would otherwise increase restriction, for example, in the '215 patent, eliminating re-introduction of exhaust into exhaust tube 15 through perforations 20. Upper outlet plenum 72 unobstructedly fully occupies the lateral cross-sectional area of housing 42, without an exhaust tube, such as 15 of the '215 patent, extending axially therethrough.
External exhaust tube 76 extends upwardly from upper outlet 50 at upper annular flange 86. In one embodiment, a second upper annular flange 92 is spaced above upper annular flange 86 by an axial gap defining an upper annular space 94 axially between flanges 86 and 94 and radially between external exhaust tube 76 and housing sidewall 46. Each of upper annular flanges 86 and 92 has an inner circumference 88 and 96, respectively, mounted to external exhaust tube 76 at axially spaced locations therealong. This is desirable because it provides reinforcement against lever arm bending of exhaust tube 76 or extensions thereof, typically encountered in mounting of the exhaust system and in service during road and/or engine vibration. In a further embodiment, upper annular flange 86 may have one or more openings such as 98 therethrough communicating with upper annular space 94 to provide a resonant chamber in space 94, for cancellation or damping of designated frequencies or harmonics.
In a desirable aspect, the construction of the system separates and spaces first and second tubes 52 and 76, respectively. Second tube 76 is separate from and spaced vertically above first tube 52 by axial gap 58 therebetween defining upper outlet plenum 72 laterally spanning housing 42 above annular space 54 and above top end 56 of first tube 52. Tube 76 extends axially upwardly from the housing for discharging exhaust. Dome cap 60 on top end 56 of tube 52 blocks exhaust flow axially upwardly therepast, such that exhaust flows through the perforated portion of tube 52 as shown at arrow 68 through perforations 62 into annular space 54 then into plenum 72 then to tube 76. Dome cap 60 blocks entry of water axially downwardly therepast into top end 56 of tube 52 from tube 76 thereabove and instead diverts and sheds water radially outwardly into annular space 54. Annular flange 78 extends laterally between first tube 52 and housing sidewall 46 below top end 56 of tube 52 and defines collection space 84 for water shed from dome cap 60 into annular space 54. Flange 78 is preferably at the lower end of tube 52. Housing sidewall 46 has one or more drain holes 100 therethrough above flange 78 for draining water from collection space 84. If moisture collects in space 84 to the level of drain 100, the excess moisture will drain outwardly of sidewall 46.
A portion of the moisture flowing outwardly on dome cap or umbrella 60 may flow inwardly through perforations 62 and along the inner surface of tube 52. This moisture flowing along the inner surface of tube 52 will be directed outwardly through the lowermost row of perforations 102 by a ring 104 secured to the inner surface of tube 52, comparably to ring 22 in the '215 patent. This moisture will then flow along the outer surface of tube 52 and be collected in collection space or trap 84. Most moisture collected in space 84 will drain through hole 100, however when the engine is started, any remaining moisture collected in collection space or trap 84 will be heated and evaporated and the vapor will pass out of the assembly through annular space 54 then upwardly as shown at arrows 70 and 74.
In a desirable aspect, the separation of tubes 52 and 76 (instead of a single tube 15 as in the '215 patent) enables the first tube 52 to have a different diameter than the second tube 76. This is desirable in applications where the second tube 76 is limited or required to be of a certain diameter, e.g. 4″, to match system requirements, yet allowing the first tube 52 to be a larger diameter, e.g. 6″, to reduce restriction, backpressure, and to improve flow distribution across the catalyst or soot filter. If tubes 52 and 76 are a single unitary tube, then the diameter thereof must match system requirements, including outlet dimensional requirements, which in turn limits the diameter of the internal exhaust tube to a diameter which may unnecessarily introduce restriction or increase backpressure. Different diameter separated tubes 52a and 76a are illustrated in
First tube 52 extends along a first axial centerline, and second tube 76 extends along a second axial centerline. In one embodiment, the noted axial centerlines are axially aligned with each other as shown at 44,
Internal exhaust tube 134 has an upper reduced diameter section 148 which is perforated such that exhaust flows radially outwardly therethrough as shown at arrows 130a. Dome cap 146 has a plurality of openings 150 therearound, for example as shown in
A lower flange 154,
An upper annular flange 180,
Internal exhaust tube 134 has the noted lower section 158 of a first outer circumference and extending axially through lower flange 154 at the latter's inner circumference 156. Internal exhaust tube 134 has the noted middle section 174 of a second outer circumference and extending axially upwardly from lower section 158 and defining at least in part the noted annular space 138 between outer housing sidewall 126 and the noted second outer circumference of middle section 174 at sidewall 172 of internal exhaust tube 134. Internal exhaust tube 134 has the noted upper section 148 of a third outer circumference and extending axially upwardly from middle section 174 and is perforated as shown at 149 to pass exhaust radially outwardly therethrough as shown at arrows 130a. The noted second outer circumference of middle section 174 is greater than each of the noted first and third outer circumferences of lower section 158 and upper section 148, respectively. An intermediate annular flange 190,
Housing 122 provides a first external housing extending axially along vertical axis 124 and having the noted first housing sidewall 126. Internal exhaust tube 134 provides a second housing within the first housing 122 and concentrically surrounded thereby and extending axially along vertical axis 124. Second internal housing 134 has a housing sidewall 172 spaced radially inwardly of first housing sidewall 126 by the noted radial gap 136 defining the noted annular space 138 therebetween. Second internal housing 134 has the noted lower inlet 128 for receiving exhaust from an internal combustion engine. First outer housing 122 has the noted upper outlet 132 for discharging the exhaust and is spaced above lower inlet 128. The second inner housing includes the noted internal exhaust tube having the noted lower section 158 extending upwardly from lower inlet 128, the noted middle section 174 extending upwardly from lower section 158 and defining at least in part the noted annular space 138, and the noted upper section 148 extending upwardly from middle section 174 and having the noted top end 142 spaced below upper outlet 132 by the noted axial gap 144. Dome cap 146 is provided at the noted top end 142 of and spans upper section 148 of the internal exhaust tube and blocks entry of water axially downwardly therepast into top end 142 of the internal exhaust tube from upper outlet 132 and instead diverts and sheds the water radially outwardly and then through holes 150 into annular space 138. The internal exhaust tube or housing 134 is mounted within outer housing 122 by a plurality of radial spokes or legs 194,
As noted above, exhaust aftertreatment element 140 is housed in second housing 134. The one or more drain holes 166 are at a vertical level below the vertical level of exhaust aftertreatment element 140. As shown in
The above noted inner and outer circumferences of annular space 138 provided by the respective housing sidewalls, and the noted inner and outer circumferences of the respective flanges, may have various shapes including cylindrical shapes, oval shapes, racetrack shapes, and other closed loop configurations. The term annular herein includes such shapes, and the terms inner and outer circumferences include the concording perimeter shapes thereof. Furthermore, respective inner and outer circumferences may or may not have identical shapes, for example an inner circumference may be round while the outer circumference is oval, and vice versa, etc. The inner and outer circumferences may share the same coincident vertical axis, or may have radially or laterally offset axes. The inlet and outlet may share the same coincident vertical axis, or may have different axes, as well as inner and outer circumferences of differing shape and/or alignment. The inlet and outlet may extend vertically parallel to vertical axis 124 as shown, or alternatively may extend radially or laterally through a respective housing sidewall, or may extend at some other angle relative to vertical.
The following description of
Joint 226 is a service joint. Housing sections 222 and 224 are separable from each other at service joint 226 such that upon separation of housing sections 222 and 224, axial end 214a of aftertreatment element 214 is axially spaced beyond housing section 224, and the aftertreatment element is readily accessible, for ease of servicing, e.g. cleaning. During such servicing, aftertreatment element 214 will typically, though not necessarily, remain attached to housing section 224, e.g. by welding. Connection 232 connects housing sections 222 and 224 to each other at service joint 226. In one form, the connection 232 is a band clamp known in the prior art, e.g. an inverted truncated V-shape band clamp, though other types of connections may be used, for example a bolted flange connection, or other typical arrangements for connecting housing or body sections. In some embodiments, a gasket 234 is provided between housing sections 222 and 224 at joint 226. A connection 236 connects housing sections 224 and 228 to each other at joint 230, which connection may be a band clamp, e.g. the noted standard inverted truncated V-shape type clamp, or other connections, as noted. In some embodiments a gasket 238 is provided between housing sections 224 and 228 at joint 230. Inlet 218 may extend radially from the housing as shown, or alternatively the inlet may extend axially from the housing as shown in dashed line at 218a. Outlet 220 may extend radially from the housing as shown, or alternatively may extend axially from the housing as shown in dashed line at 220a.
In
Sidewall 242 of outlet housing section 222 has a first span 258 extending from end wall 244 axially along the noted second axial direction 252 to a midpoint 260 radially aligned with outlet axial end 214a of aftertreatment element 214. Sidewall 242 has a second span 262 extending from midpoint 260 axially along the noted second axial direction 252 to end wall 246. Span 258 and end wall 244 define an open volume first plenum section 264 at outlet axial end 214a of aftertreatment element 214 and extending axially along the noted first axial direction 240 therefrom. Span 262 and end wall 246 define an annular volume second plenum section 266 at outlet axial end 214a of aftertreatment element 214 and extending axially along the noted second axial direction 252 therefrom and in circumscribing relation to aftertreatment element 214. In one embodiment, the axial length of second span 262 is greater than the axial length of first span 260 to reduce and save space at outlet axial end 214a of aftertreatment element 214 along the noted first axial direction 240 therefrom and reduce the amount of axial extension of housing 212 in the noted first axial direction 240 beyond outlet axial end 214a of aftertreatment element 214. Further in the preferred embodiment, sidewall 242 of outlet housing section 222 is of larger diameter than housing section 224.
Outlet 220 is provided by an outlet tube extending radially from outlet housing section 222 at any desired circumferential position therearound, which is an advantage for accommodating different engine compartment requirements. In one embodiment, outlet tube 220 is radially aligned with outlet axial end 214a of aftertreatment element 214. Joint 230 is axially spaced from joint 226 by housing section 224 therebetween. Inlet 218 communicates with housing section 228, and outlet 220 communicates with housing section 222. Joint 230 is axially between joint 226 and inlet 218. Joint 230 is axially spaced from joint 226 on the opposite axial side thereof from end 214a of aftertreatment element 214. Joint 230 is slightly axially spaced from aftertreatment element 214. Housing section 224 axially spans axial end 214b of aftertreatment element 214. Axial end 214b of aftertreatment element 214 is axially between joints 226 and 230.
In
The systems provide a method for servicing an aftertreatment exhaust assembly comprising providing a joint as a service joint, as noted, at a location axially between the axial ends 214a and 214b of the aftertreatment element 214, and separating the housing sections 222 and 224, 274 and 276, from each other at the service joint 226, 282, such that upon separation of the noted housing sections, axial end 214a of the aftertreatment element 214 is axially spaced beyond the housing section 224, 276, and servicing the aftertreatment element 214. The system also provides a method for saving space in an aftertreatment exhaust assembly comprising providing an outlet housing section 222 wherein the aftertreatment element 214 extends axially into such outlet housing section 222, with the outlet axial end 214a of the aftertreatment element 214 being within outlet housing section 222, and providing the outlet housing section 222 with a sidewall 242 extending axially between first and second end walls 244 and 246 and of larger diameter than the aftertreatment element 214 and providing an outlet plenum 250 of reduced restriction and reduced axial extension along the noted first axial direction from the outlet axial end 214a of the aftertreatment element 214. The method further involves providing the joint 226 at a location axially between the axial ends 214a and 214b of the aftertreatment element 214. The method further involves spacing the first end wall 244 of the outlet housing section 222 axially from the outlet axial end 214a of the aftertreatment element 214 along the noted first axial direction 240, spacing the second end wall 246 and/or 254 of the outlet housing section 222 axially from the outlet axial end 214a of the aftertreatment element 214 along the noted second axial direction 252, providing the sidewall 242 of the outlet housing section 222 with a first span 258 extending from first end wall 244 axially along the noted second axial direction 252 to a midpoint 260 radially aligned with the outlet axial end 214a of the aftertreatment element 214, providing the sidewall 242 of the outlet housing section 222 with a second span 262 extending from the midpoint 260 axially along the noted second axial direction 252 to the noted second end wall 246, providing the first span 258 and the first end wall 244 defining an open volume first plenum section 264 at the outlet axial end 214a of the aftertreatment element 214 and extending axially along the noted first axial direction 240 therefrom, providing the second span 262 and the second end wall 246 defining an annular volume second plenum section 266 at the outlet axial end 214a of the aftertreatment element 214 and extending axially along the noted second axial direction 252 therefrom and in circumscribing relation to the aftertreatment element 214. The method further involves providing the second span 262 of greater axial length than the first span 258 to reduce and save space at the outlet axial end 214a of the aftertreatment element 214 along the noted first axial direction 240 therefrom and reduce the amount of axial extension of the housing 212 in the noted first axial direction 240 beyond the outlet axial end 214a of the aftertreatment element 214.
In
Perforated tube 346 has a first axial extension portion 360 horizontally aligned with axial gap 350 above outlet face 356 of aftertreatment element 312. Perforated tube 346 has a second axial extension portion 362 below first axial extension portion 360 and horizontally aligned with aftertreatment element 312 below outlet face 356 thereof. Exhaust flows upwardly as shown at 322 through aftertreatment element 312 as shown at arrows such as 364 from inlet face 354 then upwardly as shown at arrows 366 to outlet face 356 then axially upwardly as shown at arrows 368 into axial gap 350 then radially outwardly as shown at arrows 370 in first axial gap 350 then along first and second branches as shown at arrows 372 and 374. First branch 372 extends radially outwardly as shown at arrow 376 through first axial extension portion 360 of perforated tube 346 then axially upwardly as shown at arrows 378 in second annular subspace 358. Second branch 374 extends axially downwardly as shown at arrows 380 in first annular subspace 356 then radially outwardly as shown at arrows 382 through second axial extension portion 362 of perforated tube 346 then axially upwardly as shown at arrows 384 in second annular subspace 358 and rejoining the noted first branch. The exhaust then flows as shown at arrows 386 radially inwardly in axial gap 352 and exits at upper outlet 324 as shown at arrow 326. The noted second branch 374 provides double flow reversal from outlet face 356 of aftertreatment element 312 to first annular subspace 356 to second annular subspace 358, i.e. a first flow reversal from upward axial flow 368 to downward axial flow 380, and a second flow reversal from downward axial flow 380 to upward axial flow 384.
A dam 388,
Lower inlet 320b and upper outlet 324b of housing 314b communicate respectively with axially distally opposite ends of aftertreatment element 312b, namely lower inlet face 354b and upper outlet face 356b. The housing has first and second housing sections 222b and 224b meeting at a joint 226b axially between axial ends 354b and 356b of aftertreatment element 312b. Joint 226b is a service joint. Housing sections 222b and 224b are separable from each other at service joint 226b such that upon separation of housing sections 222b and 224b, one of the axial ends 354b and 356b of the aftertreatment element is axially spaced beyond one of the separated housing sections 222b and 224b, such that aftertreatment element 312b is readily accessible for ease of servicing, e.g. cleaning. During such servicing, aftertreatment element 312b will typically, though not necessarily, remain attached to one of the housing sections 222b or 224b, e.g. by welding. A connection 232b, comparable to above noted connection 232, connects housing sections 222b and 224b to each other at service joint 226b. In one form, the connection 232b is a band clamp known in the prior art, e.g. an inverted truncated V-shape band clamp, though other types of connections may be used, for example a bolted flange connection, or other typical arrangements for connecting housing or body sections, as above noted. In some embodiments, a gasket comparable to gasket 238 may be provided between the housing sections, as above.
In
In
The system provides a method for servicing a combination exhaust muffler and aftertreatment element and water trap assembly comprising providing a joint as a service joint, as noted, at a location axially between the axial ends 356b and 354b of the aftertreatment element 312b, and separating the housing sections 222b and 224b from each other at the service joint 226b, such that upon separation of the noted housing sections, one of the axial ends 356b, 354b of the aftertreatment element 312b is axially spaced beyond one of the housing sections 224b, 222b, and then servicing the aftertreatment element 312b. The system also provides a method for saving space in a combination exhaust muffler and aftertreatment element and water trap assembly comprising providing an outlet housing section 222b wherein the aftertreatment element 312b extends axially into such outlet housing section 222b, with the outlet axial end 356b of the aftertreatment element 312b being within outlet housing section 222b, and providing the outlet housing section 222b with a sidewall 318b extending axially between first and second end walls 244b and 342b and of larger diameter than aftertreatment element 312b and providing an outlet plenum 350b of reduced axial extension along the noted first axial direction 240b from the outlet axial end 356b of the aftertreatment element 312b. The method further involves providing the joint 226b at a location between the axial ends 356b and 354b of the aftertreatment element 312b. The method further involves spacing the first end wall 244b of the outlet housing section 222b axially from the outlet axial end 356b of the aftertreatment element 312b along the noted first axial direction 240b, spacing the second end wall 342b of the outlet housing section 222b axially from the outlet axial end 356b of the aftertreatment element 312b along the noted second axial direction 252b, providing the sidewall 218b of the outlet housing section 222b with a first span 258b extending from the first end wall 244b along the noted second axial direction 252b to a midpoint 260b radially aligned with the outlet axial end 356b of the aftertreatment element 312b, providing the sidewall 318b of the outlet housing section 222b with a second span 262b extending from the midpoint 260b axially along the noted second axial direction 252b to the noted second end wall 342b, providing the first span 258b and the first end wall 244b defining an open volume first plenum section at the outlet axial end 256b of the aftertreatment element 312b and extending axially along the noted first axial direction 240b therefrom, providing the second span 262b and the second end wall 342b defining an annular volume second plenum section at the outlet axial end 356b of the aftertreatment element 312b and extending axially along the noted second axial direction 252b therefrom and in circumscribing relation to the aftertreatment element 312b. The method further involves optionally providing the second span 262b of greater axial length than the first span 258b to reduce and further save space at the outlet axial end 356b of the aftertreatment element 312b along the noted first axial direction 240b therefrom and further reduce the amount of axial extension of the housing 314b in the noted first axial direction 240b beyond the outlet axial end 356b of the aftertreatment element 312b.
It is recognized that various equivalents, alternatives and modifications are possible within the scope of the appended claims.
This application is a continuation-part of U.S. patent application Ser. No. 11/243,694, filed Oct. 5, 2005, now U.S. Pat. No. 7,582,267 and a continuation-in-part of U.S. patent application Ser. No. 11/142,085, filed Jun. 1, 2005, now U.S. Pat. No. 7,347,044 which is a continuation-in-part of U.S. patent application Ser. No. 11/085,715, filed Mar. 21, 2005, now U.S. Pat. No. 7,114,330 which is a continuation of Ser. No. 10/376,424, filed Feb. 28, 2003 U.S. Pat. No. 6,868,670, all incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
2273210 | Lowther et al. | Jan 1942 | A |
2363236 | Fluor | Nov 1944 | A |
2446631 | Burks | Aug 1948 | A |
2482577 | Dahlstrom | Sep 1949 | A |
2721619 | Cheairs | Oct 1955 | A |
2732913 | Higgins | Jan 1956 | A |
2732092 | Lawrence | Jun 1956 | A |
2921432 | Marcotte et al. | Jan 1960 | A |
3078650 | Anderson et al. | Feb 1963 | A |
3423909 | Bennett et al. | Jan 1969 | A |
3616618 | Gronholz et al. | Nov 1971 | A |
3672464 | Rowley et al. | Jun 1972 | A |
3817221 | Nohira et al. | Jun 1974 | A |
3834134 | McAllister | Sep 1974 | A |
4020783 | Anderson et al. | May 1977 | A |
4278455 | Nardi | Jul 1981 | A |
4312651 | Easki et al. | Jan 1982 | A |
4378983 | Martin | Apr 1983 | A |
4450934 | Davis | May 1984 | A |
4488889 | McCarroll | Dec 1984 | A |
4527659 | Harrington | Jul 1985 | A |
4629226 | Cassel et al. | Dec 1986 | A |
4632216 | Wagner et al. | Dec 1986 | A |
5170020 | Kruger et al. | Dec 1992 | A |
5216809 | Abbott et al. | Jun 1993 | A |
5321215 | Kicinski | Jun 1994 | A |
5746630 | Ford et al. | May 1998 | A |
5808245 | Wiese et al. | Sep 1998 | A |
6152258 | Deavers et al. | Nov 2000 | A |
6158546 | Hanson et al. | Dec 2000 | A |
6250075 | Funakoshi et al. | Jun 2001 | B1 |
6412595 | Horak et al. | Jul 2002 | B1 |
6430921 | Stuart et al. | Aug 2002 | B1 |
6802387 | Kreger et al. | Oct 2004 | B1 |
6824743 | Pawson et al. | Nov 2004 | B1 |
6868670 | Schellin | Mar 2005 | B1 |
7451594 | Blaisdell | Nov 2008 | B2 |
Number | Date | Country |
---|---|---|
882647 | Nov 1961 | GB |
02 919 378 | Jun 1979 | GB |
358202323 | Nov 1983 | JP |
411072018 | Mar 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20070039316 A1 | Feb 2007 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10376424 | Feb 2003 | US |
Child | 11085715 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11243694 | Oct 2005 | US |
Child | 11315998 | US | |
Parent | 11142085 | Jun 2005 | US |
Child | 11243694 | US | |
Parent | 11085715 | Mar 2005 | US |
Child | 11142085 | US |