The present invention relates generally to antennas, and more particularly to a compact combined cellular/Global Navigation Satellite Systems (GNSS) antenna with low mutual coupling.
Modern high-precision positioning receivers provide for both reception of GNSS (global navigation satellite system) signals and transmission of corrections via cellular networks. Therefore, receivers are typically equipped not only with GNSS antennas, but also cellular antennas, for example, of the 4G/LTE (fourth generation Long Term Evolution) standard. Since antennas are generally designed to reduce overall housing dimensions, the cellular and GNSS antennas may be located too close to each other, resulting in an increase in mutual coupling between the cellular and GNSS antennas and an increase in interference during GNSS signal reception.
Recently, antennas have been proposed having a cellular antenna disposed relatively close to a GNSS antenna, but oriented sideways. It has been shown that isolation between the GNSS and cellular antennas is about −10 dB (decibels). Since the cellular antenna in this design has a height noticeably exceeding that of the GNSS antenna, the cellular antenna may negatively affect the radiation pattern of the GNSS antenna. In particular, the cellular antenna may cause partial deterioration of the azimuth radiation pattern of the GNSS antenna, considerable offset of the phase center towards the symmetry axis of the GNSS antenna, and a high level of radiation pattern back lobe for the GNSS antenna.
U.S. Pat. No. 10,483,633 discloses a multifunctional GNSS antenna comprising a first and a second dielectric board arranged in a stacked manner. These boards include a metallization layer, and radiating elements of both GNSS and 4G antennas are formed using this metallization layer. The radiating element of the cellular antenna is disposed at an edge and a lateral surface of the first dielectric plate. In this design, the cellular antenna is positioned below the GNSS antenna, and the influence of the cellular antenna on the radiation pattern of the GNSS antenna is reduced. However, the radiation pattern of the cellular antenna can be distorted due to impacting metalized layers of the GNSS antenna. Since the design of the cellular antenna has no symmetry relative to the design of the GNSS antenna, the negative influence of the GNSS antenna on the cellular antenna can be relatively strong. To diminish mutual coupling between the GNSS and cellular antennas, an extra filter is proposed, which increases antenna cost.
A reduction in the lateral dimension of the receiver's housing results in decreasing the ground plane of the GNSS antenna. Correspondingly, the level of back lobe of the radiation pattern in the GNSS antenna increases causing greater positioning error due to multipath reception. It is especially the case for the low-frequency portion of the GNSS band, as the ratio of ground plane dimension to the wavelength is the smallest.
U.S. Pat. No. 10,381,734 discloses a patch antenna where the back lobe of the radiation pattern decreases due to a set of wires connecting the radiation patch and the ground plane. However, said wires are located in the peripheral area of the patch antenna, thereby preventing the placement of elements of the cellular antenna in this peripheral area. In addition, the close arrangement of the wires of the GNSS antenna and elements of the cellular antenna makes adjustment of the cellular antenna difficult, especially in the low-frequency range.
The present invention proposes a compact cellular/GNSS (global navigation satellite systems) antenna comprising a cellular antenna and a GNSS antenna with low mutual coupling. The cellular antenna has a symmetrical azimuth radiation pattern without distortion in radiation pattern and the phase center of the GNSS antenna. In addition, when arranged in the housing of a compact receiver, the GNSS antenna has a low level of the back lobe.
In accordance with one embodiment, a combined cellular/GNSS (global navigation satellite systems) antenna is provided. The combined cellular/GNSS antenna comprises an external area and an internal area delineated by a boundary defined by a circumference of a circle. The combined cellular GNSS antenna further comprises a cellular antenna and a GNSS antenna. The cellular antenna comprises a set of cellular radiators disposed in the external area and connected to a cellular feeding network for excitation of the set of cellular radiators. The GNSS antenna comprises radiation elements disposed in the internal area and having a center located substantially at a center of the circle.
In one embodiment, the cellular antenna further comprises an output port. An output port of the cellular feeding network is the output port of the cellular antenna. The cellular feeding network and a ground plane of the GNSS antenna may be disposed on a PCB (printed circuit board).
In one embodiment, the set of cellular radiators of the cellular antenna provide for a low level of back lobe for the GNSS antenna. Each cellular radiator in the set of cellular radiators comprises at least one vertical conductor substantially parallel to a center axis of the circle and at least one horizontal conductor substantially perpendicular to the center axis of the circle. The at least one horizontal conductor of the set of cellular radiators of the cellular antenna and the radiation elements of the GNSS antenna are disposed on a PCB. Each of the at least one horizontal conductor of the set of cellular radiators comprises a first end and a second end, the first end being connected to a corresponding one of the at least one vertical conductor of the set of cellular radiators and the second end being insulated. A first side of the combined cellular/GNSS antenna comprises the at least one horizontal conductor of the set of cellular radiators and a second side of the combined cellular/GNSS antenna comprises a ground plane of the GNSS antenna. The first end and the second end of each of the at least one horizontal conductor of the set of cellular radiators are arranged such that a rotation from the first end towards the second end about the center axis occurs in a counterclockwise direction with respect to the first side of the combined cellular/GNSS antenna.
In one embodiment, the set of cellular radiators comprises four identical cellular radiators equidistantly disposed around the circumference with 90 degree rotational symmetry relative to a center axis of the circle.
In one embodiment, the cellular feeding network comprises a first microstrip line, a second microstrip line, a third microstrip line, and a fourth microstrip line, each of a substantially same length and a Wilkinson divider. A first end of the first microstrip line is connected to a first cellular radiator, a first end of the second microstrip line is connected to a second cellular radiator, a first end of the third microstrip line is connected to a third cellular radiator, and a first end of the fourth microstrip line is connected to a fourth cellular radiator. A second end of the first microstrip line and a second end of the third microstrip line are connected to each other at a first junction point and a second end of the second microstrip line and a second end of the fourth microstrip line are connected to each other at a second junction point. A first input of the Wilkinson divider is connected to the first junction point and a second input of the Wilkinson divider is connected to the second junction point. An output of the Wilkinson divider is an output port of the cellular feeding network.
These and other advantages of the invention will be apparent to those of ordinary skill in the art by reference to the following detailed description and the accompanying drawings.
Embodiments disclosed herein provide for a compact combined cellular/GNSS (global navigation satellite system) antenna comprising a cellular antenna and a GNSS antenna with low mutual coupling. The cellular antenna comprises a circular antenna array of radiating elements symmetrically disposed around the GNSS antenna and excited in-phase. This ensures a symmetrical radiation pattern of the cellular antenna, as well as a symmetrical radiation pattern and a stable phase center of the GNSS antenna. The cellular antenna excites a linearly-polarized wave having a phase that does not depend on the azimuth angle. The GNSS antenna excites a right-hand circularly polarized wave whose phase is linearly dependent on the azimuth angle. Thus, the cellular antenna and the GNSS antenna excite orthogonal spherical harmonics, thereby providing a large isolation event at a close mutual location of both antennas. Embodiments disclosed herein will be further described with reference to the drawings, in which like reference numerals represent the same or similar elements.
Combined cellular/GNSS antenna 100 comprises an external area 114 and an internal area 113 delineated or separated by a boundary defined by the circumference of a circle 104. Accordingly, internal area 113 is the area bounded within the circumference of circle 104 and external area 114 is the area bounded between the circumference of circle 104 and an external perimeter of combined cellular/GNSS antenna 100 (i.e., an external perimeter of PCB (printed circuit board) 107). Circle 104 has a radius R and a center at center axis 105.
Cellular antenna 10 comprises a circular antenna array of a set of identical cellular radiators 101a, 101b, 101c, and 101d, and a cellular feeding network 102. Cellular radiators 101a, 101b, 101c, and 101d are equidistantly disposed around the circumference of circle 104 in external area 114. Accordingly, cellular radiators 101a, 101b, 101c, and 101d have 90 degree rotational symmetry relative to the center axis 105. Center axis 105 is directed towards the maximal level of the signal received by GNSS antenna 11.
Each cellular radiator 101a, 101b, 101c, and 101d comprises a set of conducting elements made such that they ensure the operation of cellular antenna 10 in the suitable cellular network frequency band. For example, an LTE (long-term evolution) cellular antenna operates at frequency bands from 698 MHz (megahertz) to 960 MHz and from 1427.9 MHz to 2700 MHz. In one embodiment, each set of conducting elements of cellular radiators 101a, 101b, 101c, and 101d comprise one or more vertical conductor pins and one or more horizontal conductors. The vertical conductor pins are substantially parallel to center axis 105 and the horizontal conductors are substantially perpendicular to center axis 105. For example, as shown in
Cellular feeding network 102 comprises input ports 109a, 109b, 109c, and 109d and an output port. Each cellular radiator 101a, 101b, 101c, and 101d is connected to a respective input port 109a, 109b, 109c, and 109d of cellular feeding network 102. The output port of cellular feeding network 102 is connected to connector 103, which is at the same time the output of cellular antenna 10. Cellular feeding network 102 provides in-phase excitation of cellular radiators 101a, 101b, 101c, and 101d.
GNSS antenna 11 is adjusted to receive RHCP (right-hand circular polarized) waves in the GNSS frequency band. For example, GNSS antenna 11 may operate at frequency bands from 1165 MHz to 1300 MHz and from 1530 MHz to 1605 MHz. GNSS antenna 11 comprises ground plane 106 and radiation elements 112. A radiation path can be also a radiation element of the GNSS antenna. Radiation elements 112 are disposed in internal area 113. Accordingly, cellular radiators 101a, 101b, 101c, and 101d are symmetrically disposed around GNSS antenna 11.
In one embodiment, ground plane 106 may be a metallization layer of PCB 107. In this embodiment, cellular feeding network 102 can be placed within another metallization layer of PCB 107. For example,
GNSS antenna 11 comprises output connector 108, which may be disposed on PCB 107. The center of GNSS antenna 11 is located at center axis 105, which is the center of circle 104. Cellular radiators 101a, 101b, 101c, and 101d of cellular antenna 10 are thus located symmetrically around GNSS antenna 11.
Since ports 109a and 109c are arranged as being rotated 180 degrees from each other relative to center axis 105 (shown as going into and coming out of the page in
To match cellular antenna 10, matching elements 305a, 305b, 305c, and 305d with reactive impedance can be respectively connected in line with microstrip lines 308a, 308b, 308c, and 308d. For example, matching elements 305a, 305b, 305c, and 305d may be inductors. Matching elements 306 and 307 with reactive impedance can also be respectively connected in line with microstrip lines 311 and 309. For example, matching elements 306 and 307 may be capacitors.
In the embodiment of combined cellular/GNSS antenna 100 shown in
Cellular radiators 101a, 101b, 101c, and 101d of cellular antenna 10 are configured to reduce the level of back lobe of GNSS antenna 11. The length L of horizontal conductors 111a, 111b, 111c, 111d (illustratively shown in
Each of horizontal conductor 111a, 111b, 111c, and 111d of respective cellular radiator 101a, 101b, 101c, and 101d comprises a first end and a second end.
The foregoing Detailed Description is to be understood as being in every respect illustrative and exemplary, but not restrictive, and the scope of the invention disclosed herein is not to be determined from the Detailed Description, but rather from the claims as interpreted according to the full breadth permitted by the patent laws. It is to be understood that the embodiments shown and described herein are only illustrative of the principles of the present invention and that various modifications may be implemented by those skilled in the art without departing from the scope and spirit of the invention. Those skilled in the art could implement various other feature combinations without departing from the scope and spirit of the invention.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/RU2021/000170 | 4/23/2021 | WO |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2022/225412 | 10/27/2022 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
10381734 | Astakhov et al. | Aug 2019 | B2 |
10483633 | Wu et al. | Nov 2019 | B2 |
20190140354 | Astakhov et al. | May 2019 | A1 |
20190173165 | Wu et al. | Jun 2019 | A1 |
20210119316 | Borchani | Apr 2021 | A1 |
Number | Date | Country |
---|---|---|
111641041 | Sep 2020 | CN |
212571359 | Feb 2021 | CN |
212991308 | Apr 2021 | CN |
Entry |
---|
Goncharova et al., “A high efficient automotive roof-antenna concept for LTE, DAB-L, GNSS and SDARS with low mutual coupling,” 2015, 2015 9th European Conference on Antennas and Propagation (EuCAP), pp. 1-5. |
Cui et al., “An Omnidirectional Multiband Antenna for Railway Application,” 2020, in IEEE Antennas and Wireless Propagation Letters, vol. 19, No. 1, pp. 54-58. |
International Search Report and Written Opinion dated Dec. 23, 2021, in connection with International Patent Application No. PCT/RU2021/000170, filed Apr. 23, 2021, 8 pgs. |
Kalpanadevi et al., “Design and Analysis of Wilkinson Power Divider Using Microstrip Line and Coupled Line Techniques,” IOSR Journal of Electronics and Communication Engineering (IOSR-JECE), International Conference on Electrical, Information and Communication Technologies (ICEICT-2017), pp. 34-35. |
Number | Date | Country | |
---|---|---|---|
20220344805 A1 | Oct 2022 | US |