The following documents are incorporated herein by reference as if fully set forth: U.S. Provisional Application No. 29/581,902, filed Nov. 6, 2017.
This application is generally related to dehumidifiers, and more particularly related to a dehumidifier that is compact and offers enhanced ergonomic features.
Dehumidifiers are a packaged HVAC appliance designed to reduce the relative humidity of a room. Known dehumidifiers include a contained evaporator, condenser, compressor, a fan for motivating air over the heat exchangers, and a vessel for holding the condensate water until it can be removed by the user or pumped to a desired drain location. Many dehumidifiers have a hygrostat or humidistat which allows the user to prescribe a desired relative humidity for the space occupied by the appliance. Consumers use dehumidifiers in environments where the sensible air temperature may be comfortable or suitable to their needs, but where high relative humidity may cause poor comfort conditions, air quality issues, persistent odors, may be detrimental to objects in storage or building materials, or may allow the growth of microbes which present a health hazard. The most common application for a dehumidifier is the conditioning of air in a home basement where moist conditions may not be properly addressed by the HVAC system in the house, or where no HVAC system is present.
For operation of a dehumidifier, air is drawn or blown by a fan over the evaporator, which contains cold, low-pressure saturated refrigerant which absorbs enthalpy from the air passing over the coil. The temperature of this refrigerant is below the dew point of the air in the room, and as the air is drawn over the coil, water vapor from the air condenses on the coil on the evaporator heat exchanger, reducing the water vapor content in the air. This cold air exits the evaporator, and is blown over the condenser of the system, which allows the super-heated vapor expelled by the compressor to the condenser to be condensed by the cold air exiting the evaporator, at least partially reheating the air flow. This air is then blown past the compressor and fan motor(s) for the purpose of cooling these components. The water vapor condensate from the evaporator drains from the evaporator into a holding vessel, where it can be drained or pumped to a desired location.
There are several significant limitations of current dehumidifiers. The known dehumidifiers use gravity to allow the water to drip from the evaporator heat exchanger into a pan or bucket at the bottom of the appliance. While reducing the mechanical complexity of the device, this is problematic for the user. The bucket may not be in a position easily seen, so the user will have difficulty ascertaining how full the bucket is from afar. Second, the user must bend down and remove the bucket from the appliance. This is problematic because it may be difficult for users with poor mobility, and poor ergonomic features mean that the capacity of the bucket must be kept small enough to allow users of wide strength capabilities to remove and empty the bucket by hand. Because the bucket opening must be open on top to facilitate the draining of the water into the bucket, it can cause sloshing of the water when removed by the user, which may allow water to spill out of the bucket onto the floor or the user. Also, the open top is structurally suboptimal, making the bucket difficult to handle from the sides. These attributes mean that the total bucket volume must be kept low to allow the user to extract the water, which increases the frequency with which users must manually empty the bucket.
The currently known dehumidifiers often use a float or scale to switch off the appliance once the vessel is full, but offer no way to alert the user with the exception of a light or other local signal. Some dehumidifiers offer a pump to allow the user to keep from manually needing to empty the bucket, but not all have a pump included in the appliance. However, the majority of users would significantly benefit from owning a pump-based system to reduce the amount of time the system is turned off due to the bucket being full.
A typical dehumidifier contains a rectangular prismatic evaporator, often a fin and tube arrangement, mounted against a rectangular condenser of equal cross-sectional area located parallel to and in-line with the evaporator. Behind that, a fan drives air through the system and out into the room. A grill is placed over the fan outlet to prevent ingress of a user's finger or other articles. This configuration is simple and straightforward to design and manufacture. The grill, while important to user safety, is suboptimal for the visual aesthetics of the system and results in visual intrusiveness of the design.
Further, the electrical efficiency of a dehumidifier is important not only to users who must pay electrical bills, but also to energy policy regulators who must manage power use of the entire national or local grid. The dimension of the heat exchanger that has the most significant effect on the efficiency of the heat exchanger is the frontal, cross-sectional area measured by the area of the heat exchanger normal to the direction of airflow over the heat exchanger, often referred to as the “face area”. Air pressure, caused by the viscous losses of air as it passes over the heat exchanger, is approximately proportional to the square of the velocity of the air over the heat exchanger face area. Therefore the face area of the heat exchanger has a significant effect on the amount of air a fan may deliver through a heat exchanger. Furthermore, additional face area adds more surface area between the condenser heat exchanger and the air working fluid, which the largest source of thermal resistance in the heat exchanger system. In a larger heat exchanger, each unit volume of air becomes more effective at reducing the condensing temperature of the fluid inside. In the case of dehumidifiers, because a single fan typically draws air over the both the evaporator and condenser in series, the pressure drop of these two heat exchangers is additive and additional face area must be employed to keep fan working pressures low, and fan power and noise to a minimum. This is problematic because the efficiency of the system of the system is directly tied to the visual aspects of the system. Big, flat heat exchangers are visually intrusive, and because the evaporator must be completely over the bucket, add to the height of the system.
The present solution to the prior art needs provides an arrangement of dehumidifier components in a space efficient assembly and a housing that facilitates that space efficient assembly.
The present dehumidifier provides an arrangement in which a vessel for water collection is located on the top of the appliance for easy visual assessment by the user, and leverages the aesthetic beauty of the water to create a design that attracts the user. The water vessel in this invention contains a hole in the center of the appliance which serves several purposes. This hole acts as a chimney to allow the discharge air from the appliance fan to exit, but without the visual intrusiveness of a visible grill. The hole in the center also reduces the total volume of water to a reasonable mass so that even though visually it can be approximately half the height of the appliance, it can be lifted by nearly any user without concern for strength. To improve the ergonomics of the design, the hole also hides a set of two handles inside the chimney. The diameter of the hole can be controlled to ensure that the visible portion of the water on the exterior matches an aesthetically desirable ratio as compared to the base of the unit.
Experimentation has shown that the top handle allows the user to grasp the vessel with a strong grip at the center of the mass. Additionally, the location of the handle high on the vessel allows for easy, precision emptying of the vessel. As an additional improvement, pouring holes are located on the outside of the vessel on each side, parallel to the handle grip. This allows a user to precisely empty the water into a desired drain location, such as a sink or toilet, from either side, while the remaining hole acts as a vent which allows the pour water to be replaced by air without a vapor lock (“glug”) which can cause splashing. The water pours out of the top as a precise, controlled stream. All of these improvements allow the vessel to be larger than the comparable known dehumidifier vessels.
Further, due to its ergonomic features, the total mass of the water tank can be increased to reduce the frequency with which the user must manually empty, and reduce the discomfort of bending over to access the water vessel.
A second handle below the first handle allows the user to pick up the dehumidifier itself, and move the appliance around the home as necessary without detaching the water tank on top. The second handle is integral to the chimney of the appliance, which is structurally fastened to the base of the appliance. The chimney itself conceals the condensate pump tube which runs to a spout near the top of the chimney and near the top of the condensate vessel, allowing the condensate to fill the vessel from the top and allow a well-sealed bottom to the water tank. The chimney further acts to conceal a wired sensor which measures when the water has filled the vessel to the maximum allowable height in the condensate vessel. If the sensor detects that the water height has reached its maximum allowable, it will shut off the dehumidification process. This also signals the controller to send a signal to the user, preferably via smartphone app or other notification scheme that the water tank is ready to be emptied.
The bottom of the chimney contains a single axial or mixed flow fan attached to a fan motor. This fan draws air from the center of the condenser system. Additionally, the compressor is centrally located within the middle of the dehumidifier.
In the preferred configuration, the condenser is bent or formed into a cylindrical or otherwise primarily wrapped configuration, and is located about the compressor. Outside of that, the evaporator has a similarly formed curved or otherwise primarily wrapped configuration and extends generally concentric to the condenser to form a substantially larger heat exchanger. Because the evaporator is made wet by the condensing water vapor, the pressure drop induced by the wet coil can be minimized due to its increased size in comparison to the condenser. Dehumidification operating at low ambient temperature (below 45 degrees F.) may require the use of a frosting evaporator, whereby the saturation temperature of the refrigerant in the evaporator is below freezing. This allows the coil to ice over, at which point the compressor is stopped and the ice is allowed to thaw and drain. In the case of the present dehumidifier, this larger evaporator also permits fewer cycles of freezing and thawing, and larger volumes of water to be condensed with each freezing cycle. The direction of airflow may be reversed if conditions warrant it, where air ingested through the top, the inner heat exchanger is then the evaporator, and the outer heat exchanger is then the condenser. This may be a more suitable configuration when energy efficiency is a more important consideration than low temperature operation, by allowing the condenser to be larger, and for a given volume of airflow, the condensing saturation pressure of the condenser to be lower, and therefore less compressor power is needed.
The use of a curved or bent condenser and evaporator radially located around the compressor allows a volumetrically compact design for a given set of heat exchanger face areas. It also allows a visually smaller appliance, which is beneficial to the user in cramped spaces where a dehumidifier may be most warranted, without compromising performance or latent capacity. By allowing for a larger set of heat exchangers for a similar volume, the present design also permits the use of lower pressure and power fans, which can also reduce the noise that many users experience based on the previously known designs.
A base pan is located below the evaporator and condenser, which allows a small volume of water to pool until it becomes warranted to run the condensate pump. The condensate pump discharges to two possible locations—the tank at the top of the appliance, or to a discharge port that allows the user to run a hose to a desired drain location, such as a sump pump, french drain, or out of a window. The user can switch the valve to determine where this discharge water goes.
The appliance may be connected via WiFi or some other network connectivity to permit the user to remotely control the hygrostat setting of the appliance, as well as other operation modes.
The appliance may also contain a sensor on the bottom to detect water on the exterior of the device. Because dehumidifiers are often used in basements or other places where water is prevalent, there is also a risk of the user experiencing a flood in the room. The water source which causes the high humidity also increases risk of flooding or water in the space occupied by the appliance. The sensor may be attached to a semi-permanent installation on the bottom surface of the appliance so that if water rises in the room, the sensor is triggered and activates an auditory or other local alarm, and may also send a signal to the user via WiFi or other messaging protocol that there is a potential property damage event occurring in the room occupied by the appliance. Alternatively, the sensor, attached by some length of coiled wire, may be removable and place in a location more desirable to the user, such as the area just around or at the top of a sump or drain area, so that the warning may occur at some level below which property damage occurs. The sensor signals when water is detected, and communicates this information to the power board. The dehumidifier can be turned off at this point for improved safety. A relay inside the air conditioner could be used to trip the GFI or LCDI cable to prevent electricity in the dehumidifier from causing a danger to the user or a fire risk during flooding.
In the case of the present dehumidifier, the use of a WiFi, internet connected device allows the user to be notified by app or text message that their vessel is full, so that they are aware that the dehumidification process is paused.
The following detailed description of the preferred embodiments of the present application will be better understood when read in conjunction with the appended drawings. For the purpose of illustrating the invention, there is shown in the drawings embodiments that are presently preferred. It should be understood, however, that the inventions are not limited to the precise arrangements shown in the drawings.
Certain terminology is used in the following description for convenience only and is not limiting. The words “front,” “back,” “top,” “bottom,” “inner,” “outer,” “upper,” “lower,” “internal,” and “external” designate directions in the drawings to which reference is made. The words “upward,” “downward,” “above,” and “below” refer to directions towards a higher or lower position from the parts referenced in the drawings. The words “inward” and “outward” refer to directions towards an inner or outer portion of the element referenced in the drawings. The words “clockwise” and “counterclockwise” are used to indicate opposite relative directions of rotation, and may be used to specifically refer to directions of rotation about an axis in accordance with the well-known right hand rule. Additionally, the terms “a” and “one” are defined as including one or more of the referenced item unless specifically noted otherwise. A reference to a list of items that are cited as “at least one of a, b, or c” (where a, b, and c represent the items being listed) means any single one of the items a, b, or c, or combinations thereof. The terminology includes the words specifically noted above, derivatives thereof, and words of similar import.
The present application includes a description of a dehumidifier 10 which more efficiently utilizes a given space and provides for more ergonomic handling.
In order to improve functionality, the dehumidifier 10 utilizes a collection pan 32 at a base 30 of the housing 20 that is located at least under the evaporator 16, and a pump 28 that directs the collected water from the collection pan 32 to the water tank 40 or out through a drain line.
The compressor 12 is located within a central area 22 defined by the evaporator 16 and the condenser 14, as shown in
The condenser 14 and the evaporator 16 are arranged inside of the housing 20. The condenser 14 and the evaporator 16 are each formed with a continuous bend or a series of bends into a generally circumferentially extending shape that extends preferably at least about 225°. The term generally circumferential refers to a shape that extends in the circumferential direction about a central axis, and can be formed as a continuous curve that forms a “C” shape, or a plurality of serially arranged straight segments that are joined at an angle to each other to approximate a curved shape, with preferably 5 or more segments set at angles of 60° or less relative to one another to form a polygonal shape with an open section at least between the first and last segments to also generally form a “C” shape. The evaporator 16 and the condenser 14 are generally coaxial and aligned with one another.
The evaporator 16 preferably includes evaporator piping or tubing that coils through the body, preferably in a serpentine path so as to maximize the path of the refrigerant that flows through the tubing and the evaporator. The body of the evaporator 16 is a heat exchanger, which includes a plurality of fins that may be formed out of a material having good heat transfer properties, such as a highly thermally conductive metal such as aluminum or copper. One of ordinary skill in the art would appreciate that there are a variety of shapes, such as pins, straight fins, or flared fins suitable for heat sink fins. The body of the evaporator 16 may be further configured to include what is commonly known as “offset interrupted fins” or “louvered fins.” In the offset interrupted fins configuration, each “fin” or “plate” of the evaporator body includes a plurality of slits (the “interruptions”) that are generally placed close together at regular intervals. As airflows along the radial direction between two fins of the evaporator body, the air enters and exits the plurality of slits/interruptions formed in the fins, which increases heat transfer and causes the airflow to become turbulent, thus ensuring that the cooled air immediately mixes with the surrounding air. To further optimize performance of the evaporator 16 and increase heat transfer, the material between adjacent slits/interruptions in the fins may be stamped to create an “offset,” adjacent offsets being stamped in opposite directions. The offsets interrupt the boundary condition of the airflow and further increase air turbulence, which improves the heat transfer capabilities of the evaporator. In the louvered fins configuration, the offsets are at an angle, and adjacent offsets are formed with opposing angles, so that air flowing through one offset out through a slot is forced to change angles before entering an adjacent slot to flow through the next offset, once again increasing turbulence and improving heat transfer.
The fins of the evaporator 16 and condenser 14 heat exchangers are preferably formed from a material having good heat transfer properties, and may be arranged vertically such that air may flow between adjacent fins. The fins are very thin and are arranged vertically along the body of the condenser 14 to maximize the surface area of the fins as external air is blown through the body of the condenser 14 to cool down the refrigerant or other coolant circulating through the condenser tubing.
The refrigerant that exits the compressor 12 is in a high-pressure hot gaseous state, and flows through the condenser 14 within the condenser tubing. The body of the condenser 14 is a heat sink having a plurality of fins, which may be arranged like the fins in the evaporator 16 and configured as “offset interrupted fins” or “louvered fins.”
The connection tubing 24B shown schematically in
The fan 26 is shown in detail in
The housing is shown in detail in
As shown in detail in
Referring again to
Preferably the water tank is made of molded polymeric material. However, it could be made from other materials, if desired.
Referring now to
In order to move water that is collected by the evaporator 16 and drips into the collection pan 32 to the water tank 40, a pump 28 is provided as shown in detail in
In a preferred arrangement, a selectable discharge valve 60 is connected to the pump 28 via one of the tubes 34 and allows a user to select whether the collected water from the collection pan 32 is pumped into the water tank 40 or pumped out through an auxiliary drain line connected at 62.
A pan sensor 74, shown in
Referring to
As shown in
In the preferred arrangement, the evaporator 16 is located radially outside of the condenser 14, and the fan 26 draws the intake airflow Ain through the perforated sidewall 80, the evaporator 16, and the condenser 14, and then directs the dehumidified air out through the central chimney 78. However, those skilled in the art will recognize that other arrangements could be utilized where the position of the evaporator and the condenser are reversed and the airflow is also reversed.
The preferred arrangement provides the housing 20 and the water tank 40 in the form of a generally cylindrical shape. However, this could be varied and a polygonal shape could be provided depending upon the particular aesthetics desired. Additionally, the water tank 40 is preferably in a range of about 40% to 60% of the overall height of the dehumidifier 10.
Based on the ergonomic design of the dehumidifier 10, the total mass of the water tank 40 when full can be increased in order to reduce the frequency with which the user must manually empty the water tank 40. This is because the water tank is located at the top of the dehumidifier 10 rather than in the previously known position which provided a removable collection and drainage pan or bucket beneath the evaporator that had to be slid out from under the evaporator in order to be drained. By allowing a user to grip the water tank 40 via the handle 48 located at the top 50, this also reduces the discomfort to the user who is previously required to bend over in order to access the water vessel.
While the fan 26 is preferably a single centrifugal fan in the preferred arrangement, those skilled in the art will recognize that multiple fans could be used.
In use, air Ain is drawn in and is cooled by the relatively colder surfaces of the fins of the evaporator 16 due to the cold boiling liquid refrigerant flowing through the evaporator tubing, causing water to condense on the evaporator 16. The thermal energy (i.e. heat) from the air Ain is transferred into the refrigerant that flows through the evaporator tubing of the evaporator 16, which is in turn warmed from a low-pressure cold boiling liquid into a low-pressure cold gas as the refrigerant flows from the evaporator 16 back to the compressor 12 to be pressurized and heated. Preferably, an accumulator is provided to ensure that any liquid left in the refrigerant is removed before the refrigerant enters the compressor 12, so as not to damage the compressor 12 when the gaseous refrigerant is pressurized and heated. The compressed and heated refrigerant is then sent through the condenser 14 where the cooled and dehumidified radially inward airflow Ain that has passed through the evaporator 16 is at least partially reheated, removing heat from the refrigerant in the condenser 14. The fan 26 then discharges the air upwardly and out of the housing 20 as indicated at Aout.
One of ordinary skill in the art would appreciate that various aesthetic changes may be made to the present dehumidifier 10 without departing from the inventive features and components discussed herein.
Accordingly, even though the figures in the present application show embodiments utilizing a certain combination of motors and fans, and specific arrangement of the horizontally mounted compressor with respect to the fans, such configurations should not be interpreted as being a limitation on the present invention.
Number | Name | Date | Kind |
---|---|---|---|
2369511 | Winkler | Feb 1945 | A |
2630691 | Harris | Mar 1953 | A |
5117651 | Suh | Jun 1992 | A |
20060255164 | Oppermann et al. | Nov 2006 | A1 |
20150184875 | Lee | Jul 2015 | A1 |
Number | Date | Country |
---|---|---|
103398425 | Nov 2013 | CN |
205372829 | Jul 2016 | CN |
2017048012 | Mar 2017 | WO |
2017057928 | Apr 2017 | WO |
Number | Date | Country | |
---|---|---|---|
20190137121 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
62581902 | Nov 2017 | US |