Compact dual pump

Information

  • Patent Grant
  • 6206644
  • Patent Number
    6,206,644
  • Date Filed
    Friday, August 6, 1999
    25 years ago
  • Date Issued
    Tuesday, March 27, 2001
    23 years ago
Abstract
A dual pump for independently pumping two fluids includes a pump body having a first concave depression on a first side of the body. A first inlet port and a first outlet port are contained within the body, in fluid communication with the first depression. A second concave depression is on a second side of the body opposite the first depression. A second inlet port and a second outlet port are contained within the body in fluid communication with the second depression. A first diaphragm is coupled to the first side of the body and encloses the first depression to form a first inner chamber. A second diaphragm is coupled to the second side of the body and encloses the second depression to form a second inner chamber. A shell encloses the body on its first and second sides. The shell defines a first outer chamber with the first diaphragm in pressure communication with the first inner chamber. The shell also defines a second outer chamber with the second diaphragm in pressure communication with the second inner chamber. A first pressure port in the shell provides a first pressure passage to the first outer chamber. A second pressure port in the shell provides a second pressure passage to the second outer chamber. Advantages include simultaneously and independently providing two fluid pumps within a pump that is substantially the same size as a conventional single pump. Alternatively, the pump is configured to supply a continuous, non-pulse flow of a single liquid.
Description




REFERENCE TO RELATED APPLICATIONS




This application incorporates by reference U.S. Pat. No. 5,700,401.




FIELD




The present invention relates to a compact dual pump for delivering liquid to an integrated circuit fabrication tool. In particular, the invention can be used in a standard integrated circuit manufacturing facility to save space and provide required liquids to the integrated circuit fabrication tools, resulting in a greater production efficiency of integrated circuits.




BACKGROUND




Liquid pumps are used in the semiconductor manufacturing industry to control the flow of chemicals to semiconductor manufacturing tools. Conventional pumps include those that pneumatically activate a bladder to precisely control the quantity of liquid delivered to the tools. Precise control of the liquid is important because each wafer is very valuable and an incorrect flow of the liquid to the tool can spoil the construction of integrated circuits fabricated on the wafer.




Semiconductor manufacturing facilities are expensive. A modern plant can cost in excess of $3 billion. Consequently, space is critical and every square foot of space in the facility must be allocated to productive equipment. Accordingly, techniques of space reduction are greatly desired because space reduction can result in substantial cost savings. Improving space utilization leads to greater production efficiency which allows the facility to produce more integrated circuits.




While conventional liquid pumps have the accurate flow control necessary for the integrated circuit fabrication process, conventional pumps are bulky, a pump is required for each liquid sought to be delivered to the tools, and the pumps can take up a significant amount of space in the chemical delivery cabinets installed in the semiconductor manufacturing facility.




What is needed is a pump that has a small size and that also provides the ability to precisely pump the required liquid to the tool. A goal of the invention is to overcome the identified limitations and to provide a compact dual pump that can simultaneously and independently pump two liquids to the tool.




SUMMARY




The present invention is directed to a device which results in substantial space reduction by combining two pumps into substantially the space of one conventional pump. Accordingly, the dual pump is able to simultaneously pump two different chemicals independent of one another. Alternately, the second pump can serve as a redundant pump to insure that the liquid is constantly supplied to the integrated circuit fabrication tool. In addition, the dual pump can function as a single pump such that a continuous, non-pulsation flow of liquid is provided.




An exemplary embodiment of a compact dual pump includes a pump body having a first concave depression on a first side of the body. A first fluid inlet port and a first fluid outlet port are contained within the body and are in fluid communication with the first depression. A second concave depression is on a second side of the body opposite the first depression. A second inlet fluid port and a second outlet fluid port are contained within the body and in fluid communication with the second depression.




A first diaphragm is coupled to the first side of the body and encloses the first depression to form a first inner chamber. A second diaphragm is coupled to the second side of the body and encloses the second depression to form a second inner chamber. A shell encloses the body on the first and second sides thereof. The shell defines a first outer chamber with the first diaphragm that is pressure communication with the first inner chamber. The shell also defines a second outer chamber with the second diaphragm that is in pressure communication with the second inner chamber. A first pressure port in the shell provides a first pressure passage to the first outer chamber. A second pressure port in the shell provides a second pressure passage to the second outer chamber.




In another embodiment, the dual pump includes two pairs of bores aligned with the four fluid ports. A pair of check valves are disposed within the first pair of bores and define a first fluid path between the first fluid port and the first inner chamber. A second pair of check valves are disposed with the other pair of bores and define a second fluid path between the second fluid port and the second inner chamber. A pump regulator is connected to the first and second pressure ports and independently provides either pressure or vacuum to the first and second outer chambers to affect fluid movement in the dual pump chambers.




Advantages of the present invention include the ability to simultaneously and independently provide two fluid chambers within a pump that is substantially the same size as conventional single pump.











BRIEF DESCRIPTION OF THE FIGURES




Additional advantages of the invention will become apparent upon reading the following detailed description and upon reference to the drawings, in which:





FIG. 1

depicts a top view of the pump body according to an exemplary embodiment of the invention;





FIG. 2

depicts a bottom view of the pump body according to an exemplary embodiment of the invention;





FIG. 3

depicts a cross-sectional view of the dual pump according to an exemplary embodiment of the invention;





FIG. 4

depicts a cross-sectional view of the pump body according to an exemplary embodiment of the invention;





FIG. 5

depicts a top, cross-sectional view of the pump body according an exemplary embodiment of the invention;





FIG. 6A

depicts a front view of the pump body according to an exemplary embodiment of the invention;





FIG. 6B

depicts a rear view of the pump body according to an exemplary embodiment of the invention;





FIG. 7

depicts a top, cross-sectional of the pump body according to an exemplary embodiment of the invention;





FIG. 8

depicts a module card according to a further embodiment of the invention;





FIG. 9

depicts a top view of dual pump according to a further embodiment of the invention;





FIG. 10

depicts a bottom view of the dual pump according to a further embodiment of the invention;





FIG. 11

depicts a cross-sectional view of the dual pump according to a further embodiment of the invention;





FIG. 12

depicts a cross-sectional view of the pump body according to a further embodiment of the invention;





FIG. 13

depicts the pump body according to a further embodiment of the invention;





FIG. 14

depicts the dual pump according to a further embodiment of the invention;





FIG. 15

depicts the dual pump according to a further embodiment of the invention for providing a continuous, non-pulsated supply of a single liquid;





FIGS. 16A

to


16


J depict alternative configurations of the dual pump according to a further embodiment of the invention;





FIG. 17

is a flow chart depicting procedural steps for independently pumping two distinct fluids with the dual pump of the present invention; and





FIG. 18

is a flow chart depicting procedural steps for providing a continuous non-pulse flow of a single with the dual pump of the present invention.











DETAILED DESCRIPTION




The present invention relates to a compact dual pump structure


10


. In particular, the invention can be used in a standard cleaning room which can utilize the two separate fluid paths in a single body for independent transfer of two chemistries resulting in greater production of integrated circuits. Although the present invention is described with reference to specific configurations, it will be appreciated by one of ordinary skill in the art that such details are disclosed simply to provide a more thorough understanding of the present invention and the present invention may be practiced without these specific details.




An exemplary embodiment of a compact dual pump


10


is described with reference to

FIGS. 1

to


4


. A dual pump


10


for pumping a first fluid and a second fluid simultaneously and independently is depicted. The dual pump


10


is comprised of a pump body


12


. The pump body


12


includes a first concave depression


14


on a first side


16


of the pump body


12


. A first inlet fluid port


18


and a first outlet fluid port


20


are contained within the pump body


12


and are in fluid communication with the first depression


14


. A second concave depression


22


is on a second side


24


of the pump body


12


opposite the first depression


14


. A second inlet fluid port


26


and a second outlet fluid port


28


are also contained within the pump body


12


and in fluid communication with the second depression


22


.




A first diaphragm


30


coupled to the first side


16


of the pump body


12


, is suspended over the first depression


14


to enclose the first depression


14


and forms a first inner chamber


32


. A second diaphragm


34


is coupled to the second side


24


of the pump body


12


, suspended over the second depression


22


, to enclose the second depression


22


and form a second inner chamber


36


. A shell


40


encloses the pump body


12


on the first


16


and second


24


sides of the pump body


12


. The shell


40


defines a first outer chamber


60


with the first diaphragm


30


that is in pressure communication with the first inner chamber


32


. The shell


40


also defines a second outer chamber


62


with the second diaphragm


34


that is in pressure communication with the second inner chamber


36


. A first pressure port


52


in the shell


40


provides a first pressure passage


54


to the first outer chamber


60


. A second pressure port


56


in the shell


40


provides a second pressure passage


58


to the second outer chamber


62


.




As depicted in

FIGS. 5

to


7


, the pump body


12


further includes a pair of first bores


70


in alignment with the first inlet


18


and outlet


20


fluid ports. A first inlet check valve


72


is contained within one of the first bores


70


and defines a first inlet fluid path


74


. The first inlet fluid path


74


connects the first inlet fluid port


18


to the first inner chamber


32


and allows a first fluid to flow into the first inner chamber


32


from the first inlet port


18


. A first outlet check


76


valve is contained within another of the first bores


70


and defines a first outlet fluid path


78


. The first outlet fluid path


78


joins the first inlet fluid path


74


at a center portion


80


of the body


12


and forms a first fluid path


82


to the first inner chamber


32


. The first fluid path


82


allows the first fluid to flow out of the first inner chamber


32


through the first outlet port


20


.




The pump body


12


also contains a pair of second bores


84


in alignment with the second inlet


26


and outlet


28


fluid ports. A second inlet check valve


86


is contained within one of the second bores


84


and defines a second inlet fluid path


88


. The second inlet fluid path


88


connects the second inlet fluid port


26


to the second inner chamber


36


and allows a second fluid to flow into the second inner chamber


36


from the second inlet port


26


. A second outlet check valve


90


is contained within another of the second bores


84


and defines a second outlet fluid path


92


. The second outlet fluid path


92


joins the second inlet fluid path


88


at the center portion


80


of the body


12


to form a second fluid path


94


to the second inner chamber


36


. The second fluid path


94


allows the second fluid to flow out of the second inner chamber


36


through the second outlet port


28


and out of the dual pump


10


independent of the first liquid


13


.




To operate the dual pump


10


, a module card


100


is depicted in

FIG. 8

, containing a first control valve


102


that is in fluid communication with the first pressure port


52


through a first gas line


106


and a second control valve


104


that is in fluid communication with the second pressure port


56


through a second gas line


108


. The control valves independently provide either vacuum or pressure to the first


30


and second


34


diaphragms to affect fluid movement. A pump regulator


110


is in fluid communication with the module card


100


and is configured to provide driving pressure for the first diaphragm


30


and the second diaphragm


34


. The regulator


110


also includes a connector


112


for coupling to a gas source such as a clean dry air supply (CDA) or a nitrogen (N2) source.




In an exemplary embodiment, a first pneumatic gas line


106


connects the first pneumatic control valve


102


to the first pressure port


52


. A second pneumatic gas line


108


connects the second pneumatic control valve


104


to the second pressure port


56


. In addition, a vacuum switch


109


is coupled to each of the first


102


and second


104


pneumatic control valves. The vacuum switch


109


is configured to detect inadequate vacuum from the pump


10


and leak detection from the first


106


and second


108


pneumatic lines.




Another embodiment of the dual pump


10


, is depicted in

FIGS. 9

to


14


, wherein the first outer chamber


60


is a first pneumatic chamber


64


and the first inner chamber


32


is a first fluid chamber


66


in pressure communication with the first pneumatic chamber


64


. The second outer chamber


62


is a second pneumatic chamber


68


and the second inner chamber


36


is a second fluid chamber


69


in pressure communication with the second pneumatic chamber


68


. In addition, the shell


40


her comprises a first end cap


42


that is coupled to the first side


16


of the pump body


12


and carries the first diaphragm


30


therebetween. The first end cap defines the first pneumatic chamber


64


between the first diaphragm


30


and the first end cap


42


. A first O-ring


44


is contained within the first pneumatic chamber


64


and is coupled between the first diaphragm


30


and the first end cap


42


. A second end cap


46


is coupled to the pump body


12


and carries the second diaphragm


34


therebetween. The second end cap


46


defines the second pneumatic chamber


68


between the second diaphragm


34


and the second end cap


46


. A second O-ring


48


is contained within the second pneumatic chamber


68


and is coupled between the second diaphragm


34


and the second end cap


46


. A cinch plate


50


is coupled to the pump body


12


and connects the first inlet


18


and outlet ports


20


and the second inlet


26


and outlet ports


28


to the pump body


12


.




A further embodiment of the dual pump


10


, is depicted with reference to FIG.


15


.

FIG. 15

depicts the dual pump


10


, configured to provide a continuous, non-pulsated flow of a single liquid. The dual pump


10


, further includes an outlet attachment port


120


coupled to the first outlet port


20


and the second outlet port


28


, such that the first outlet fluid path


78


and said second outlet fluid path


92


(see

FIG. 5

) are joined thereby combining the first fluid and the second fluid at an output


130


of the outlet attachment port


120


. In addition, the pump regulator


110


(see

FIG. 8

) is further configured to provide driving pressure to the first


30


and second


34


pump diaphragms (see

FIGS. 9 and 10

) such that the single liquid continuously flows out of the output


130


of the outlet attachment port


120


. The continuous, non-pulsed flow of the single liquid from the dual pump is accomplished by timing the movement of the diaphragms, such that while one of the pump chambers is filling with the single liquid, the opposed chamber is emptying and expelling the liquid from the output


130


of the outlet attachment port


120


and out of the dual pump


10


.




It is emphasized that various configurations and arrangements may be used without departing from the scope of the invention. Specifically,

FIGS. 16A

to


16


J depict alternative configurations of the dual pump


10


inlet (


18


&


26


) and outlet (


20


&


28


) ports.

FIGS. 16A

to


16


J depict a top view


135


and side view


140


of the dual pump


10


, illustrating the various inlet (


18


&


26


) and outlet (


20


&


28


) port configurations within the contemplation of the present invention.




Operation of the invention is shown in

FIG. 17

as a method


200


of independently pumping two fluids using a dual pump


10


, for example as depicted in

FIGS. 8 and 14

. At step


210


, vacuum is supplied to the first pressure port


52


to create a negative pressure in the first outer chamber


60


. At step


212


, the first diaphragm


30


is moved toward the first outer chamber


60


to create a negative pressure in the first inner chamber


32


. At step


214


, a first fluid


11


is drawn into the first inner chamber


32


past the first inlet check valve


72


while the first outlet check valve


76


is closed with the negative pressure. At step


216


, pressure is applied to the first pressure port


52


to create a positive pressure in the first outer chamber


60


. At step


218


, the first diaphragm


30


is forced towards a center


80


of the housing


12


to create a positive pressure in the first lower chamber


32


. At step


220


, the first inlet check valve


72


is closed with the positive pressure. At step


222


, the first outlet check valve


76


is opened with the positive pressure. At step


224


, the first fluid


11


is expelled from the first inner chamber


32


and out of the pump


10


.




Pumping a second fluid


13


in the dual pump


10


independent of the first fluid


11


comprises the following steps performed simultaneously with the aforementioned steps for pumping the first fluid


11


. At step


236


, vacuum is supplied to the second pressure port


56


to create a negative pressure in the second outer chamber


62


. At step


228


, the second diaphragm


34


is moved toward the second outer chamber


62


to create a negative pressure in the second inner chamber


36


. At step


230


, a second fluid


13


is drawn into the second chamber


36


past the second inlet check valve


86


while the second outlet check valve


90


is closed with the negative pressure. At step


232


, pressure is applied to the second pressure port


56


to create a positive pressure in the second outer chamber


62


. At step


232


, the second diaphragm


34


is forced toward a center


80


of the housing


12


create a positive pressure in the second lower chamber


36


. At step


236


, the second inlet check valve


86


is closed with the positive pressure. At step


238


, the second outlet check valve


90


is opened with the positive pressure. At step


240


, the second fluid


13


is expelled from the second inner chamber


36


and out of the pump


10


, independent of the first fluid


11


.




Operation of the invention according to a further embodiment of the invention is shown in

FIG. 18

as a method


300


of providing a continuous, non-pulsed flow of a single liquid from the dual pump


10


, for example as depicted in FIG.


15


. At step


302


, the first outlet port


20


and the second outlet port


28


are combined to form a single pump outlet port


120


. At step


304


, a driving pressure is provided to the first


30


and second


34


diaphragms, such that while one of the chambers is filled with the single liquid, the single liquid is expelled from the opposed chamber. At step


304


, a continuous, non-pulsed flow of the single liquid is provided through the single pump outlet port


120


and out of the dual pump


10


. This is accomplished, for example, by simultaneously applying vacuum to one of the chambers to create a negative pressure in the outer chamber thereby causing the single liquid to enter the chamber and applying driving pressure to the opposed chamber to create a positive pressure in the opposed outer chamber thereby causing the single liquid to exit the opposed chamber and continuously flow out of the dual pump


10


in a non-pulsed manner.




Exemplary embodiments are described with reference to specific configurations. Those skilled in the art will appreciate that various changes and modifications can be made while remaining within the scope of the claims. For example, the dual pump can use virtually any means to create vacuum or pressure within the chambers to draw fluid into the pump. In addition, the check valves may be replaced with other known systems for controlling the flow of liquid into or out of the system. Moreover, various inlet and outlet port configurations are possible while remaining within the scope of the claims. The invention provides many advantages over known techniques. The invention discloses a compact dual pump with the ability to precisely pump the required liquid to a tool. In addition, the dual pump can simultaneously and independently provide two fluid chemistries in substantially the same space used by a conventional pump.




Having disclosed exemplary embodiments and the best mode, modifications and variations may be made to the disclosed embodiments while remaining within the scope of the invention as defined by the following claims.



Claims
  • 1. A dual pump for pumping a first fluid and a second fluid independently, comprising:a pump body, including: (a) a first concave depression on a first side of said pump body; (b) a first inlet fluid port and a first outlet fluid port in fluid communication with said first depression; (c) a second concave depression on a second side of said pump body opposite said first depression; and (d) a second inlet fluid port and a second outlet fluid port in fluid communication with said second depression; a first diaphragm coupled to said first side of said pump body and enclosing said first depression to form a first inner chamber; a second diaphragm coupled to said second side of said pump body and enclosing said second depression to form a second inner chamber; a shell enclosing said pump body on said first and second sides of said pump body, said shell defining a first outer chamber with said first diaphragm in pressure communication with said first inner chamber and defining a second outer chamber with said second diaphragm in pressure communication with said second inner chamber; a first pressure port in said shell providing a first pressure passage to said first outer chamber; and a second pressure port in said shell providing a second pressure passage to said second outer chamber.
  • 2. The dual pump of claim 1, wherein said pump body further includes:a pair of first bores in alignment with said first fluid ports; a first inlet check valve contained within one of said first bores and defining a first inlet fluid path connecting said first inlet fluid port to said first inner chamber and allowing said first fluid to flow into said first inner chamber from said first inlet port; a first outlet check valve contained within another of said first bores and defining a first outlet fluid path joining said first inlet fluid path at a center portion of said body to form a first fluid path to said first inner chamber, thereby allowing said first fluid to flow out of said first inner chamber through said first outlet port; a pair of second bores in alignment with said second fluid ports; a second inlet check valve contained within one of said second bores and defining a second inlet fluid path connecting said second inlet fluid port to said second inner chamber and allowing said second fluid to flow into said second inner chamber from said second inlet port; and a second outlet check valve contained within another of said second bores and defining a second outlet fluid path joining said second inlet fluid path at said center portion of said body to form a second fluid path to said second inner chamber, thereby allowing said second fluid to flow out of said second inner chamber through said second outlet port.
  • 3. The dual pump of claim 2, further comprising:a module card containing a first control valve in fluid communication with said first pressure port, and a second control valve in fluid communication with said second pressure port, said control valves independently providing either vacuum or pressure to said first and second diaphragms to affect fluid movement; and a pump regulator in fluid communication with said module card and configured to provide driving pressure for said first and second diaphragms.
  • 4. The dual pump of claim 1, wherein:said first outer chamber is a first pneumatic chamber and said first inner chamber is a first fluid chamber in pressure communication with said first pneumatic chamber; said second outer chamber is a second pneumatic chamber and said second inner chamber is a second fluid chamber in pressure communication with said second pneumatic chamber; and said shell further comprises: (a) a first end cap coupled to said first side of said pump body, for carrying said first diaphragm therebetween, and defining said first pneumatic chamber between said first end cap and said first diaphragm; (b) a first o-ring contained within said first pneumatic chamber and coupled between said first diaphragm and said first end cap; (c) a second end cap coupled to said pump body for carrying said second diaphragm therebetween and defining said second pneumatic chamber between said second diaphragm and said second end cap; (d) a second o-ring contained within said second pneumatic chamber and coupled between said second diaphragm and second end cap; and (e) a cinch plate coupled to said pump body and connecting said first inlet and outlet ports and said second inlet and outlet ports to said pump body.
  • 5. The dual pump of claim 4, wherein said pump body further includes:a pair of first bores coupled to said first fluid ports; a first inlet check valve contained within one of said first bores and defining a first inlet fluid path connecting said first inlet fluid port to said first fluid chamber and allowing said first fluid to flow into said first fluid chamber from said first inlet port; a first outlet check valve contained within another of said first bores and defining a first outlet fluid path joining said first inlet fluid path at said center portion of said body to form a first fluid path to said first fluid chamber, thereby allowing said first fluid to flow out of said first fluid chamber through said first outlet port; a pair of second bores coupled to said second fluid ports; a second inlet check valve contained within one of said second bores and defining a second inlet fluid connecting said second inlet fluid port to said second fluid chamber and allowing said second fluid to flow into said second fluid chamber from said second inlet port; and a second outlet check valve contained within another of said second bores and defining a second outlet fluid path joining said second inlet fluid path at said center portion of said body to form a second fluid path to said second fluid chamber, thereby allowing said second fluid to flow out of said second fluid chamber through said second outlet port.
  • 6. The dual pump of claim 5, further comprising:a module card containing a first pneumatic control valve in gas communication with said first pressure port, and a second pneumatic control valve in gas communication with said second pressure port, said pneumatic control valves independently providing either vacuum or pressure to said first and second diaphragms to affect fluid movement; and a pump regulator in gas communication with said module card, configured to provide driving pressure for said first and second pump diaphragms and including a connector for coupling to a CDA/N2 source.
  • 7. The dual pump of claim 6, further comprising:a first pneumatic gas line connecting said first pneumatic control valve to said first pressure port; a second pneumatic gas line connecting said second pneumatic control valve to said second pressure port; and a vacuum switch coupled to each of said pneumatic control valves and configured to detect inadequate vacuum from said pump or leak detection from said pneumatic lines.
  • 8. The dual pump of claim 7, further comprising:an outlet attachment port coupled to said first outlet port and said second outlet port, such that said first outlet fluid path and said second outlet fluid path are joined thereby combining said first fluid and said second fluid at an output of said outlet attachment port; and wherein said pump regulator is configured to provide driving pressure for said first and second pump diaphragms such that the single liquid continuously flows out of said output of said outlet attachment port.
  • 9. A method of independently pumping two fluids using a dual pump having a single housing containing opposed first and second chambers, first inlet and outlet check valves in fluid communication with the first chamber, second inlet and outlet check valves in fluid communication with the second chamber, a first diaphragm enclosing the first chamber to define a first inner chamber and coupled to the housing by a first end cap having a first pressure port and defining a first outer chamber therebetween and a second diaphragm enclosing the second chamber to define a second inner chamber and coupled to the housing by a second end cap having a second pressure port and defining a second outer chamber therebetween, said method comprising the steps of:pumping a first fluid in the dual pump by: (a) supplying vacuum to the first pressure port to create a negative pressure in the first outer chamber, (b) moving the first diaphragm toward the first outer chamber to create a negative pressure in the first inner chamber; (c) drawing a first fluid into the first inner chamber past the first inlet check valve while the first outlet check valve is closed with the negative pressure; (d) applying pressure to the first pressure port to create a positive pressure in the first outer chamber; (e) moving the first diaphragm towards a center of the housing create a positive pressure in the first lower chamber; (f) closing the first inlet check valve with said positive pressure; (g) opening the first outlet check valve with said positive pressure; and (h) expelling the first fluid from the first inner chamber and out of the pump; independently pumping a second fluid in the pump by: (a) supplying vacuum to the second pressure port to create a negative pressure in the second outer chamber; (b) moving the second diaphragm toward the second outer chamber to create a negative pressure in the second inner chamber, (c) drawing a second fluid into the second chamber past the second inlet check valve while the second outlet check valve is closed with the negative pressure; (d) applying pressure to the second pressure port to create a positive pressure in the second outer chamber; (e) moving the second diaphragm towards a center of the housing create a positive pressure in the second lower chamber; (f) closing the second inlet check valve with said positive pressure; (g) opening the second outlet check valve with said positive pressure; and (h) expelling the second fluid from the second inner chamber and out of the pump.
  • 10. A method of continuously pumping a single liquid using a dual pump having a single housing containing opposed first and second chambers, first inlet and outlet ports in fluid communication with the first chamber, second inlet and outlet ports in fluid communication with the second chamber, a first diaphragm enclosing the first chamber to define a first inner chamber and coupled to the housing by a first end cap having a first pressure port and defining a first outer chamber therebetween and a second diaphragm enclosing the second chamber to define a second inner chamber coupled to the housing by a second end cap having a second pressure port and defining a second outer chamber therebetween, said method comprising the steps of:(a) combining the first outlet port and the second outlet port to form a single pump outlet port; (b) providing a driving pressure to the first and second diaphragms such that while one of the chambers is filled with the single liquid, the single liquid is expelled from the opposed chamber; and (c) providing a continuous, non-pulsed flow of the single liquid through the single pump outlet port and out of the dual pump.
US Referenced Citations (5)
Number Name Date Kind
5240390 Kvinge et al. Aug 1993
5429681 Mesenbring Jul 1995
5458468 Ye Oct 1995
6071090 Miki Jun 2000
6106246 Steck et al. Aug 2000
Non-Patent Literature Citations (4)
Entry
Parker Instrumentation Data Sheet, Parker Hannifin Corporation, “Disk Check Valve: CV-1 Series”, p. 25.
Millipore Corporation Data Sheet, “Wafergard Chemical Dispense Pumps” by Dispense Systems, p. 232.
Millipore Corporation Data Sheet, “Wafergard Chemical Dispense System Controllers” by Dispense Systems, p. 233.
Millipore Corporation Data Sheet, “WCDP Pump; Appendix 3: Parts List of Non-Filter Pump” by Dispense Systems, p. 104.