The invention is a machine for fully-automatically or semi-automatically filling containers, in less floor space than can be achieved by current means.
Current commercial production filling systems involve large capital investments and require large, permanent, factory installations. Their expansive linear flow incorporates vibratory feeders and other components causing wear, and shortening component life or at least requiring repeated attention. Operating such large-scale equipment can also involve high utility costs. The currently available technologies involve equipment that is normally comprised of several components coupled together, with each component typically being individually supported. High throughput machines are vulnerable to errors and can be shut down and even damaged by issues such as imperfect components and misalignment.
What is needed is an efficient system for filling containers/tubes that occupies less space, reliably feeds tubes and caps from input to output, and does not involve disrupting motion such as vibration.
An embodiment provides a device for feeding and filling containers comprising a primary container orienting mechanism; a final container orienting and loading mechanism; a plurality of container fixtures; a closure primary orienting mechanism; a closure final orienting escapement mechanism; and wherein once emptied of the containers, the container fixtures are indexed onto a return conveyor where they are transported back to a loading and filling end. In embodiments, container feeder components comprise one or more conveyors for transporting the containers; one or more rotating circular receptacles into which the containers are deposited, from which the containers are output axially oriented; and one or more chutes feeding the containers downward to a final orienting and escapement device depositing the containers into the fixtures with bodies of the containers similarly aligned. In other embodiments, closure feeder components comprise a rotating disc with at least one aperture having a variable rotation rate and direction; the at least one aperture comprising a beveled profile configuration, and a diameter proportionally larger than a diameter of the closure; the aperture being located within the disc at a radius determined to provide optimal feed rates at an angle also determined to provide optimal feed rates. In subsequent embodiments the container is a tube. For additional embodiments the closure is a cap. In another embodiment, the height of the container is greater than the base of the container. For a following embodiment, one or more conveyors for transporting the containers comprises a pair of vertical conveyors, and one or more chutes feeding the containers downward comprises a pair of chutes. In subsequent embodiments the one or more rotating circular receptacles comprises a pair of rotating circular receptacles. In additional embodiments, the container final orienting and loading mechanism places the containers into the fixtures sequentially. In ensuing embodiments the container final orienting and loading mechanism places the containers into the fixtures in parallel. Included embodiments comprise sorting and aligning without vibration. In yet further embodiments the feeders are integral with the system and located within the footprint of the system. Related embodiments comprise at least one processing step comprising heating and or cooling. Further embodiments comprise a container bulk hopper; a container conveying means; a container filling mechanism; a bulk product container; a container process conveyor; a closure bulk hopper; a closure conveying means; a labeling device; a movable unitary base; and a controls cabinet.
Another embodiment provides a method for feeding and filling containers comprising, at stages B and C, feeding and conveying and orienting and aligning closures; at stages B and C, conveying and feeding and orienting and aligning containers; and once emptied of the containers, container fixtures are indexed onto a return conveyor where they are transported back to a loading and filling end. For yet further embodiments, stage B feeding and conveying and orienting and aligning the closures comprises rotating a disc having at least one aperture having a variable rotation rate and direction; receiving the closure with at least one aperture with a beveled profile configuration, and a diameter proportionally larger than a diameter of the closure; the aperture being located within the disc at a radius and angle determined to achieve optimal feed rates; and an interval between apertures being selected for optimal feed rates. For more embodiments, stage C conveying and feeding and orienting and aligning the containers comprises transporting the containers along one or more vertical conveyors; depositing the containers into one or more rotating circular receptacles; outputting the containers axially oriented in the same direction; and feeding the containers downward through one or more chutes to an escapement and finally depositing the containers with open end up into the fixture. Continued embodiments comprise testing the orientation of the containers to as to whether the end to be filled is oriented up toward the filler. Additional embodiments further comprise at a stage A, placing closures in a closure hopper; at stage A, placing containers in a container hopper; at a stage D, fixture loading and transporting the containers along a container path one; at stage D, transporting the closures along closure chute path one; at a stage E, filling the containers; at a stage F, transporting the containers along a container process conveyor path two; at a stage G, applying and sealing the closures on the containers; indexing to transfer position; at a stage H, labeling the containers; at a stage I, printing the containers; and at a stage J, post-processing and ejecting finished product.
A yet further embodiment provides a system for feeding and filling tubes comprising, in a primary and a final tube orienting and loading mechanism, removing and unscrambling and orienting the tubes from a bulk tube storage device, wherein the bulk tube storage device is integral with the system and within the footprint of the system; in a cap primary and a cap final orienting escapement mechanism, removing and unscrambling and orienting tube caps from a bulk cap storage device, wherein the bulk cap storage device is integral with the system and within footprint of the system; filling a product into the tubes in a tube filling mechanism; applying and tightening the caps to the tubes in a sealing mechanism; labeling the tubes in a labeling device; printing the tubes in a printing device; and ejecting the tubes from the system; wherein, once emptied of the containers, the fixtures are indexed onto a return conveyor where they are transported back to the loading and filling end.
The features and advantages described herein are not all-inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been selected principally for readability and instructional purposes, and not to limit in any way the scope of the inventive subject matter. The invention is susceptible of many embodiments. What follows is illustrative, but not exhaustive, of the scope of the invention.
The invention is an implementation of components designed extraordinarily compactly, and mounted on a single base which has the benefit of being much smaller than the existing technologies. The single base design may or may not be portable.
Embodiments of the invention comprise elements to execute one or more of the following filling activities: 1 Removing and orienting (unscrambling) the product containers from a bulk storage device; 2 Removing and orienting (unscrambling) the container closure (caps) from a bulk storage device; 3 Filling the product into the containers; 4 Applying and tightening the caps to the containers; 5 Labeling the containers; 6 Printing the containers; and 7 Ejecting the containers from the machine.
Summarizing, a compact system, device, and method for filling tubes is disclosed. Containers are circulated in fixtures holding containers vertically. A loading mechanism places the containers into the fixtures sequentially or in parallel. Orientation of the containers is tested to make sure that the end to be filled is oriented up. Containers are fed from a bulk hopper by a conveying means into a primary orienting mechanism and then into the loading mechanism which also serves as the final orienting mechanism. Once a fixture is filled with containers, it is indexed into the filling position where each container is filled with product by a filling mechanism sequentially or in parallel. Product is supplied by a bulk container. After all containers in a fixture are filled, the fixture is moved onto a process conveyor where the product can settle, cool, gel, etc. This process conveyor may have cooling, heating, or other processes affecting the product as it moves along the conveyor. The process conveyor ultimately moves the fixtures to the opposite end of the conveyor where a transfer mechanism indexes the fixture through a cap applicator and cap sealer. Caps are fed from a bulk hopper by a conveying means into a primary orienting mechanism and then through a final orienting/escapement mechanism into an applicator chute. Once the caps are applied, the fixture is indexed into a transfer position where a mechanism removes the containers from the fixture and places them either onto a labeling device or another post-processing device, or simply removes them for downstream processing. Once emptied, the fixtures are indexed onto a return conveyor where they are transported back to the loading and filling end.
Benefits of the invention comprise a compact integrated design that allows the machine to be fully assembled and tested at the manufacturer's site, with little or no installation required at the point of use. Other machines are typically built in multiple modules which need to be installed, aligned, and tested at the point of use. The invention's small footprint allows more manufacturing capacity per square foot of floor space. Other machines' large footprint requires more floor space. The invention's proprietary container and cap feeders do not use vibration, and consume no space outside the machine. Conventional machine vibratory feeders need to be isolated from the machine and mounted on separate, large, pedestals. Conventional centrifugal feeders consume large amounts of floor space.
The foregoing description of the embodiments of the invention has been presented for the purposes of illustration and description. Each and every page of this submission, and all contents thereon, however characterized, identified, or numbered, is considered a substantive part of this application for all purposes, irrespective of form or placement within the application. This specification is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of this disclosure. Other and various embodiments will be readily apparent to those skilled in the art, from this description, figures, and the claims that follow. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.
This application claims the benefit of U.S. Provisional Application No. 62/074,245 filed 3 Nov. 2014. This application is herein incorporated in its entirety by reference.
Number | Name | Date | Kind |
---|---|---|---|
5209044 | D'Addario et al. | May 1993 | A |
6082077 | Christ | Jul 2000 | A |
6679303 | Christ | Jan 2004 | B2 |
6733224 | Linner | May 2004 | B1 |
6739111 | Banks et al. | May 2004 | B2 |
Number | Date | Country | |
---|---|---|---|
20160122056 A1 | May 2016 | US |
Number | Date | Country | |
---|---|---|---|
62074245 | Nov 2014 | US |