Compact folded camera structure

Information

  • Patent Grant
  • 12189274
  • Patent Number
    12,189,274
  • Date Filed
    Wednesday, May 15, 2024
    8 months ago
  • Date Issued
    Tuesday, January 7, 2025
    11 days ago
Abstract
Folded cameras and dual folded-upright cameras that reduce a mobile electronic device and specifically a smartphone bump footprint and height. In some examples, the bump footprint is reduced by reducing the height of a back focal plane section of the folded camera. In some examples, the bump footprint is reduced by reducing the height of a back focal plane section and a lens subsection of the folded camera.
Description
FIELD

Embodiments disclosed herein relate in general to digital cameras and in particular folded cameras and dual folded-upright cameras incorporated in mobile electronic devices such as smartphones.


BACKGROUND

In recent years, mobile electronic devices such as cell-phones (and in particular smartphones), tablets and laptops have become ubiquitous. Many of these devices include one or two compact “upright” cameras including, for example, a main rear-facing camera (i.e. a camera on the back side of the device, facing away from the user and often used for casual photography) and a secondary front-facing camera (i.e. a camera located on the front side of the device and often used for video conferencing). An important figure of merit in mobile phone cameras and in particular cell phone camera is the camera height or vertical distance of the camera or camera lens.


Although relatively compact in nature, the design of most of these cameras is similar to the traditional design of a digital still camera, i.e. it comprises a lens assembly (or a train of several optical elements) placed on top of an image sensor, which explains the term “upright”. The lens assembly (also referred to as “lens module” or simply “lens”) refracts the incoming light rays and bends them to create image data (or an “image”) of a scene on the image sensor. The dimensions of these cameras are largely determined by the size of the sensor and by the height of the optics. These are usually tied together through the focal length (“f”) of the lens and its field of view (FOV). That is, a lens that has to image a certain FOV on a sensor of a certain size has a specific focal length. In such cameras, an increase in the focal length typically results with an increase of the optics height.


Recently a folded camera structure (also referred to simply as “folded camera”) has been suggested to reduce the height of a compact camera (see e.g. co-owned patent applications US 20160044250 and PCT/IB2016/052143, incorporated herein by reference in their entirety). In a folded camera, see FIGS. 1A-IC, an optical path folding element (referred to hereinafter as “OPFE” or “reflecting element”) e.g. a prism or a mirror, is added in order to tilt the light propagation direction from substantially perpendicular to the mobile device back surface to substantially parallel to the mobile device back surface. For simplicity, a reflecting element will henceforth be referred to also as “OPFE”. FIGS. 1A-1C show a known folded camera numbered 100 in various views. An orthogonal X-Y-Z coordinate (“axis”) system is shown for the perspective views, FIGS. 1A and 1B. These coordinates apply to all following perspective views. Two of the coordinates are shown separately for the side view, FIG. 1C. These coordinates apply also to all following side views. The coordinate system shown is exemplary.


For the sake of clarity, the term “substantially” is used herein to imply the possibility of variations in values within an acceptable range. According to one example, the term “substantially” used herein should be interpreted to imply possible variation of up to 10% over or under any specified value. According to another example, the term “substantially” used herein should be interpreted to imply possible variation of up to 5% over or under any specified value. According to a further example, the term “substantially” used herein should be interpreted to imply possible variation of up to 2.5% over or under any specified value.


Camera 100 includes an OPFE section 102 with length LP and height HP, a lens section 104 with length LL and a back focal length (BFL) section 106 with length LBFL. In some embodiments, the partition to several parts is such that each part is fabricated separately, and all parts are glued together. In some embodiments, the partition to several part is only schematic, namely all parts are made as one in the fabrication process. The three sections have a substantially common height HFL (within 10% difference or less) which correspond roughly with a “camera height” of the folded camera. HFL is defined as the distance along axis Y (Y being the direction from the object to the camera, or parallel to first direction 110 introduced below) between external surfaces of the three sections, or, in the case the heights of the three sections are not exactly equal, the distance along axis Y between the external surfaces of the section with the largest height. In some examples, the range of values for HFL is 3-8 mm. In some examples, the range of values for HFL is 5-6 mm. OPFE section 102 includes an OPFE 108 that folds an optical path from a first direction (optical axis) 110 into a second direction (optical axis) 112. Lens section 104 includes a lens assembly 114 with one or more lens elements having a common optical axis parallel to second direction 112. BFL section 106 includes an image sensor (or simply “sensor”) 116. BFL is equal to the distance between the exit surface (toward the sensor) of the lens element facing the sensor and the sensor itself. The folded camera has a length LFL and a width WFL.


A folded camera may be assembled together with a regular “upright” camera into a dual-camera structure (also referred to herein as a “dual folded-upright camera” or simply “dual-camera”) in a number of different ways, see e.g. co-owned international patent application PCT/IB2015/056004, incorporated herein by reference in its entirety. One example of a dual folded-upright camera is shown in FIGS. 2A-2C. These figures show a folded dual-camera numbered 200 in various views. Folded dual-camera 200 includes a folded camera 202 similar to camera 100 and an upright camera 204 with a height Hu and an optical axis 110′ parallel to first direction 110. The distance between optical axis 110′ and first direction 110 is defined a baseline of folded dual camera 200. In the particular example shown, the two cameras lie along axis Z. The dual-camera has a length LDC and a width WDC. The width WDC can be determined by the larger of the widths of the folded and upright cameras. Note that while in the example the folded and upright cameras are shown aligned along the Z axis, other arrangements, as shown for example, in co-owned PCT patent application PCT/IB2015/056004 (incorporated herein by reference in its entirety), are known and possible.


Dual-cameras with two upright cameras (also referred to herein as “dual upright-upright cameras”) are known. Their incorporation in mobile electronic devices such as smartphones is also known, with dual upright-upright camera smartphones being sold commercially. FIG. 3A shows a known dual upright-upright camera numbered 300 included in a smartphone 302 in a back view. A trend in compact cameras is to allow the upright camera lens to protrude the top surface of the camera, such that the lens alone can have a larger height, while other parts of the camera are lower. This is often referred to as a “bump”, numbered in FIG. 3A with numeral 304. Bumps above the surface of a smartphone and other mobile electronic devices are undesirable.


The use of light flash (e.g. LED flash) elements (or just “flash elements”) in cameras is known. The positioning of flash elements inside the “bump” of an upright dual camera is known. FIG. 3B shows a known dual upright-upright camera numbered 310 included in a smartphone 312 in a back view, having a flash element 318 in the “bump” 314. Having a folded camera with a flash element in the bump is desired. It is desired to provide folded cameras and dual folded-upright cameras that improve upon the deficiencies of the prior art. It is desired to provide folded cameras and dual folded-upright cameras with a reduced bump footprint.


SUMMARY

Embodiments disclosed herein teach folded cameras and dual folded-upright cameras that reduce a mobile electronic device and specifically a smartphone bump footprint and height. In some examples, the bump footprint is reduced by reducing the height of a back focal plane section of the folded camera. In some examples, the bump footprint is reduced by reducing the height of a back focal plane section and a lens subsection of the folded camera.


As mentioned, it is desired to reduce and/or eliminate the surface area of the bump. It is desired for the bump not to extend past the height of the camera.


In some embodiments, there is provided a folded camera comprising an OPFE section including an OPFE for folding an optical path from a first direction to a second direction, the OPFE section having a OPFE height HP in the first direction, a lens section positioned between the OPFE and an image sensor, the lens section having at least one lens section height HL in the first direction, and a BFL section extending between the lens section and the image sensor and having a BFL section height HBFL in the first direction, wherein HBFL<HL.


In some embodiments described above or below, the lens section includes two subsections, wherein a lens subsection closer to the BFL section has a height HL1<HL.


In some embodiments described above or below, HBFL=HL1.


In some embodiments described above or below, HBFL≤HL1 and HBFL<HL.


In some embodiments described above or below, the lens section has a width WL that fulfills the condition WL>HL>HBFL.


In some embodiments described above or below, the BFL section has a top side and a bottom side, wherein the lens section has an optical axis parallel to the second direction and wherein the optical axis in the BFL section is closer to the top side of the BFL section than to the bottom side of the BFL section.


In some embodiments described above or below, the image sensor is positioned asymmetrically relative to a board it is mounted on.


In some embodiments described above or below, the top side has an internal surface structured to prevent stray light from being directed toward the image sensor.


In some embodiments described above or below, wherein the BFL section has a top side and a bottom side, wherein the lens section, BFL section and the image sensor share an optical axis, and wherein the optical axis in the BFL section is closer to the top side than to the bottom side, the positioning of the image sensor is asymmetrically relative to a board it is mounted on.


In some embodiments described above or below, wherein the top side has an internal surface structured to prevent stray light from being directed toward the image sensor.


In some embodiments described above or below, the folded camera further comprises a flash element positioned on the BFL section and having a height HFLASH≤HL.


In some embodiments described above or below, the folded camera further comprises a flash element positioned on the lens subsection closer to the BFL section and having a height HFLASH≤HL.


In some embodiments described above or below, the folded camera further comprises a flash element positioned partially on the BFL section and partially on the lens subsection closer to the BFL section and having a height HFLASH≤HL.


In some embodiments described above or below, there are provided dual-aperture cameras comprising a folded camera as described above and below, together with an upright camera.


In some embodiments described above or below, the dual-aperture camera comprises a folded camera and an upright camera sharing a single axis in the second direction.


In some embodiments, a mobile electronic device comprises a folded camera described above or below.


In some embodiments described above or below, the mobile electronic device comprises a bump on a surface thereof, wherein the bump surrounds an area including the folded camera and wherein at least one bump dimension is defined by a folded camera dimension.


In some embodiments, a mobile electronic device comprises a dual-aperture camera described above or below.


In some embodiments described above or below, there are provided mobile electronic devices comprising a folded camera and/or a dual-camera as described above and below. In some embodiments, the mobile electronic device is a smartphone. The mobile electronic device may include a bump on a surface thereof, wherein the bump surrounds an area including the folded camera and/or an upright camera (for dual-cameras) and wherein at least one bump dimension is defined by a folded camera or dual-camera dimension.


Some embodiments include a method of manufacturing a folded camera, comprising providing an optical path folding element (OPFE) for folding an optical path from a first direction to a second direction, the OPFE section having an OPFE height HP in the first direction, providing a back focal length (BFL) section that includes an image sensor, the BFL section having a BFL section height HBFL in the first direction, providing a lens section having at least one lens, the lens section having a lens section height HL in the first direction, arranging the lens section between the BFL section and the OPFE along the first optical axis, wherein HBFL<HL.


In some embodiments described above or below, the OPFE section has a OPFE section height HP in the first direction, wherein HBFL<HP.


In some embodiments described above or below, the lens section has at least two subsections.


In some embodiments described above or below, a lens subsection closer to the BFL section has a height HL1, wherein HL1<HL.


In some embodiments described above or below, HBFL≤HL1 and HBFL<HL.


In some embodiments described above or below, the BFL section has a top side and a bottom side, wherein the lens section has an optical axis parallel to the second direction and wherein the optical axis in the BFL section is closer to the top side of the BFL section than to the bottom side of the BFL section.


In some embodiments described above or below, the BFL section has a top side and a bottom side, wherein the lens section, BFL section and the image sensor share an optical axis, and wherein the optical axis in the BFL section is closer to the top side than to the bottom side, positioning the image sensor asymmetrically relative to a board it is mounted on.


In some embodiments described above or below, a method includes asymmetrically placing an image sensor relative to the top and bottom of the BFL section.


Some embodiments include a method for reducing the bump footprint of a smartphone, the method comprising: providing a smartphone; attaching the folded camera of any of the above embodiments to an exterior surface of the smartphone, wherein the folded camera reduces the bump footprint of the smartphone.


In some embodiments described above or below, the bump footprint includes a length LB1, a width WB1, and a height HB1, wherein LB1 has a range of 5-50 mm, WB1 has a range of 1-20 mm and HB1 has a range of 0.05-3 mm.


In some embodiments described above or below, the lower height of the BFL section relative to the height of the lens section and/or the OPFE section enables a shorter bump length LB1.


In some embodiments described above or below, a method includes incorporating a flash element into the bump footprint.


As set forth above, each of the embodiments may be used in combination with one another, as it is contemplated that various combinations of embodiments can be merged with one another and are part of the scope of the present disclosure.


As used herein, the terms “for example”, “exemplarily”, “such as”, “for instance” and variants thereof describe non-limiting embodiments of the presently disclosed subject matter.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. Identical structures, elements or parts that appear in more than one figure may be labeled with the same numeral in the figures in which they appear. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way.



FIG. 1A shows a known folded camera in a perspective view;



FIG. 1B shows the folded camera of FIG. 1A in a longitudinal cross section view;



FIG. 1C shows the folded camera of FIG. 1A in a side view;



FIG. 2A shows a known dual upright-folded camera in a perspective view;



FIG. 2B shows the dual upright-folded camera of FIG. 2A in a longitudinal cross section view;



FIG. 2C shows the dual upright-folded camera of FIG. 2A in a side view;



FIG. 3A shows a known dual upright-upright camera included in a smartphone in a back view;



FIG. 3B shows a known upright-upright camera with flash included in a smartphone in a back view;



FIG. 4A shows a dual folded-upright camera of FIGS. 1A-1C included in a smartphone in a perspective view, according to an exemplary embodiment disclosed herein;



FIG. 4B shows a cross section with enlarged details of the dual-camera and the smartphone of FIG. 4A;



FIG. 5A shows a folded camera in a perspective view according to another exemplary embodiment disclosed herein;



FIG. 5B shows the folded camera of FIG. 5A in a longitudinal cross section view;



FIG. 5C shows the folded camera of FIG. 5A in a side view;



FIG. 6A shows a dual folded-upright camera in a perspective view according to another exemplary embodiment disclosed herein;



FIG. 6B shows the dual folded-upright camera of FIG. 6A in a longitudinal cross section view;



FIG. 6C shows the dual folded-upright camera of FIG. 6A in a side view;



FIG. 7A shows the dual folded-upright camera of FIGS. 6A-6C included in a smartphone in a perspective view, according to an exemplary embodiment disclosed herein;



FIG. 7B shows a cross section with enlarged details of the dual folded-upright camera and the smartphone of FIG. 7A;



FIG. 8A shows a folded camera image sensor mounted on a board of a folded camera as in FIGS. 4A, 4B;



FIG. 8B shows a known folded camera image sensor mounted a board of a folded camera as in FIGS. 6A, 6B;



FIG. 9A shows a folded camera in a perspective view according to another exemplary embodiment disclosed herein;



FIG. 9B shows the folded camera of FIG. 9A in a longitudinal cross section view;



FIG. 9C shows the folded camera of FIG. 9A in a side view;



FIG. 10A shows a dual folded-upright camera in a perspective view according to another exemplary embodiment disclosed herein;



FIG. 10B shows the dual folded-upright camera of FIG. 10A in a longitudinal cross section view;



FIG. 10C shows the dual folded-upright camera of FIG. 10A in a side view;



FIG. 11A shows the dual folded-upright camera of FIGS. 10A-10C included in a smartphone in a perspective view, according to an exemplary embodiment disclosed herein;



FIG. 11B shows a cross section with enlarged details of the dual folded-upright camera and the smartphone of FIG. 11A.



FIG. 12A shows a folded camera with a flash element in a perspective view according to an exemplary embodiment disclosed herein;



FIG. 12B shows the folded camera of FIG. 12A in a longitudinal cross section view;



FIG. 13A shows a dual folded-upright camera with a folded camera as in FIG. 12 in a perspective view according to an exemplary embodiment disclosed herein;



FIG. 13B shows a dual folded-upright camera with a folded camera as in FIG. 12 in a perspective view according to another exemplary embodiment disclosed herein;



FIG. 14A shows a folded camera as in FIG. 9 with a flash element in a perspective view according to an exemplary embodiment disclosed herein;



FIG. 14B shows a folded camera as in FIG. 9 with a flash element in a perspective view according to another exemplary embodiment disclosed herein;



FIG. 14C shows a folded camera as in FIG. 9 with a flash element in a perspective view according to yet another exemplary embodiment disclosed herein;



FIG. 15A shows a dual folded-upright camera with a folded camera as in FIG. 14 in a perspective view according to an exemplary embodiment disclosed herein;



FIG. 15B shows the dual folded-upright camera of FIG. 15A in a side view.





DETAILED DESCRIPTION

Folded cameras described herein comprise an optical path folding element (OPFE), a lens and an image sensor. Folded cameras may further include other parts required for operation, including a focusing mechanism, an optical image stabilization (OIS) mechanism, a zooming mechanism, a mechanical shield, an infra-red (IR) filter, electronics to operate focusing, a gyroscope, a shutter and/or other parts. Folded cameras may further include additional optical elements between the OPFE and the object to be photographed. The lens of folded cameras described herein may have constant focal length, or may have varying focal length (also known as “zoom lens”).


A folded camera height is generally smaller than the height of an upright camera with a similar effective focal length (EFL). The decrease in the folded cameras height results from the fact that the folded camera height is not dependent on the lens height, which is correlated with the lens focal length. In an upright camera, its height is dependent on the lens height. Therefore, the lens focal length may be increased without sacrifice in the camera module height. However, the folded camera height is determined by lens assembly height and the height of other parts of the camera, for example an actuator (e.g. an actuator used to shift the lens for focus and\or optical image stabilization) and a shield height, and cannot be reduced beyond a certain minimum value, without sacrificing optical performance. In general, the height of folded cameras according to presently disclosed subject matter may be in the range of 3-8 mm.


It is desirable that smartphones and other mobile electronic devices having cameras with one (or more) folded camera(s) and/or one (or more) upright camera(s) have a bump footprint (width and length) as small as possible. Independently, it would be desirable in such smartphones and/or mobile electronic devices to have a bump height as small as possible



FIG. 4A shows a smartphone 400 comprising a dual folded-upright camera similar to camera 200 in a perspective view, according to an exemplary embodiment disclosed herein. FIG. 4B shows enlarged details of the dual-camera and the smartphone in a cross-section A-A. A bump 404 generally surrounding the dual-camera section protrudes above a surface of smartphone 402. The bump has a length LB1, a width WB1, and a height HB1. In some examples LB1 has a range of 5-50 mm, WB1 has a range of 1-20 mm and HB1 has a range of 0.05-3 mm. While its edges are shown as sharp, they are preferably rounded as in the bump of FIG. 3. By positioning the folded and upright cameras in a line (along a single axis), one can obtain a smaller bump footprint than, for example, positioning the folded and upright cameras in an arrangement in which the two do not share the same single axis. Note that everywhere except in the region of the bump, the phone has a thickness (height) between external surfaces HPhone. In the region of the bump, the phone thickness is larger and marked HPB.


The present inventors have found that the dimensions of a bump that accommodates a dual folded-upright camera may further be reduced by judicious design of the folded camera.



FIGS. 5A-5C show, in various views, a folded camera structure numbered 500 according to an exemplary embodiment disclosed herein. Like camera 100, camera 500 includes an OPFE section 502 with length LP and width WP, a lens section 504 with length LL and width WL and a back focal length (BFL) section 506 with length LBFL and width WBFL. Camera 500 may have a height HFL, a length LFL and a width WFL similar to that of camera 100. LFL is defined by the sum of LP+LL+LBFL. LP could basically be defined by the reflecting element height (for example a prism). In some examples according to presently disclosed subject matter, HFL is in the range of 3-8 mm, LFL is in the range of 10-30 mm and WFL is in the range of 3-15 mm. Note that the width of different folded camera sections may be different from each other and from WFL. These camera height, length and width dimensions apply in following disclosed embodiments even if not shown in figures.


Camera 500 may include other components with respective functionalities similar to or identical with the components of camera 100. Therefore, these components and their respective functionalities are not described in detail. Further, camera 500 may include two BFL sections or a split BFL section. Unlike in camera 100, BFL section 506 in camera 500 has a height HBFL that is smaller than the height of the lens section HL and a height of the OPFE (for example a prism) section HP. For example, HBFL may be smaller than HL by 0.05-3 mm. The reduction in height is expressed at a “shoulder” 508. In some examples, HL, and HP may be substantially equal (up to 5% difference). In other examples, HL may be smaller than HP. In some embodiments, camera 500 may have a lens section width WL which is larger than the lens section height HL. In some embodiments, WL may be equal to HL. In some embodiments, a lens accommodated in the lens section may have a shape with radial symmetry (for example a cylindrical shape). In some embodiments, a lens accommodated in the lens section may have shape which does not have radial symmetry (for example a rectangular shape, a cylinder with chamfers, etc.).


Camera 500 can be included together with an upright camera 204 in a dual-camera 600 as shown in FIGS. 6A-6C. In the case of dual-camera, each of the two cameras may be called a “sub camera”. In some examples, upright camera may have an optical axis 110′ which is parallel to the first direction 110. The distance between optical axis 110′ and first direction 110 is defined a baseline of folded dual-camera 600. In some examples, the length LDC and width WDC of dual-camera 600 remain similar to those of dual-camera 200. However, dual-camera 600 has a lower height HBFL in the BFL section 506 of the folded camera. Therefore, when dual-camera 600 is incorporated in a mobile device such as a smartphone 700, the lower height of the BFL section enables a shorter bump length.



FIG. 7A shows the dual folded-upright camera of FIGS. 6A-6C included in a smartphone 700 in a perspective view. FIG. 7B shows a cross section with enlarged details of the dual folded-upright camera and the smartphone. Smartphone 700 has a bump 604 protruding over a surface 602. Bump 604 has a length LB2 and a height HB2. LB2 is smaller than LDC by about the length of BFL section 506. In this example, the dual-camera components that protrude and are visible include only the top of the lens of the upright camera and top parts of the OPFE. In some examples, lens sections of the folded camera may also be visible. In general, a bump may be needed only in areas of the camera where a height of the upright camera and a height of a section of the folded camera is larger than HPhone.


Returning now to FIGS. 5A-5C, the reduction of height in the BFL section causes second direction 112 of the folded camera to be closer to a top surface 510 than to a bottom surface 512 of BFL section 506, creating asymmetry in the propagation of light rays exiting the lens into the BFL section. One result of the asymmetry is that an image sensor 514, which is normally mounted on a board 516 is asymmetrically positioned in the Y direction relative to the top and bottom sides of the BFL section and of the board itself.



FIG. 8A shows a known art image sensor 514 and board 516 as viewed in a +Z direction (along second direction 112). Sensor 514 is, for example, a silicon die that has an optically active part 802 (referred hereafter as active part 802) surrounded by a part (auxiliary silicon logic) 804 considered “non-active” in terms of image\light sensing and referred to therefore as non-active part 804. Active part 802 may be located in non-active part 804 in any position symmetrically or asymmetrically, as known in the art. Active part 802 is distanced from the top and bottom of board 516 (i.e. in the Y direction shown) by distances marked as DTOP and DBOT respectively. In FIG. 8A, DTOP=DBOT±Δ, where Δ is typically 0 to 200 μm. This is a sensor-board arrangement in a known folded camera such as camera 100, where active part 802 is typically positioned symmetrically or slightly asymmetrically relative to board 516 (“slightly” referring to up to 200 μm out of the height (4-6 mm) or about 0-5% of the PCB height).



FIG. 8B shows an image sensor 514 and board 516 configuration 800 according to an embodiment disclosed herein. In configuration 800, active part 802 is positioned asymmetrically relative to board 516 in the Y direction, and A may be on the order of 100-1500 μm. In this case, the asymmetry of active part 802 relative to board 516 may be on the order of 100 μm and up to 1-1.5 mm, or about 5%-30% of the PCB height.


The asymmetry results in a surface closer to the sensor's effective ray envelope and may cause stray light effects on the sensor. For example, in camera 500, top surface 510 is lower and closer to the sensor than a top surface of lens section 504, allowing for light that is entering to bounce off of top surface 510 and be redirected back to the sensor. To mitigate such effects, an internal surface 518 of top surface 510 of BFL section 506 is structured to prevent stray light. This may be provided, for example, by a yoke with a special structure and/or with an anti-reflective coating. Alternatively, an internal surface 520 of bottom 512 of BFL section 506 or both top and bottom internal surfaces 518 and 520 are structured to prevent stray light. In certain embodiments, internal surface 518 is uneven and/or has various ridges, so that it is not flat. Alternatively, FIG. 9B illustrates a method for absorbing or redistributing the light in other directions.



FIGS. 9A-9C show, in various views, a folded camera structure numbered 900 according to another exemplary embodiment disclosed herein. Like camera 500, camera 900 includes an OPFE section 902, a lens section 904 and a back focal length (BFL) section 906. The dimensions of the folded camera and the different sections may be in the same range as in cameras 100 and 500. Camera 900 may include other components with respective functionalities similar to or identical with the components of camera 500. Therefore, these components and their respective functionalities are not described in detail. Further, camera 900 may include two BFL sections or a split BFL section. Unlike in camera 500, lens section 904 in camera 900 has two different sub-sections 904a and 904b with two different heights marked HL and HL1. Height HL of lens sub-section 904a is larger than height HL1 of sub-section 904b, to accommodate at least one lens element 920 with a larger diameter D than the diameters of following (in the direction of the image sensor) lens elements (which, for example, have a smaller diameter D1) For example, HL1 may be smaller than HL by 0-3 mm.


While the exemplary embodiment in FIGS. 9A-9C shows a lens section with two different heights associated with two different subsections, a lens section may have more than two subsections with different heights. For example, if a lens includes N lens elements (typically N being between 1 and 6), then the lens section may include between 1 and N sub-sections. The N subsections may have the same height or different heights HLN. In some embodiments with different lens subsection heights HLN, the height may decrease in a step-wise manner from a subsection close to the OPFE (prism) section to a subsection close to the BFL section.


Camera 900 can be included together with an upright camera 204 in a dual-camera 1000 as shown in FIGS. 10A-10C. In some examples, the length LDC and width WDC of dual-camera 1000 remains similar to those of dual-camera 600. However, dual-camera 1000 has a lower height not only in the BFL section 906 of the folded camera, but also in sub-section 904b of the lens section. Therefore, when dual-camera 1000 is incorporated in a mobile device such as a smartphone, the lower height of the BFL section HBFL and of sub-section 904b HL2 enables an even shorter bump length LB3.



FIG. 11A shows the dual folded-upright camera of FIGS. 10A-10C included in a smartphone 1002 in a perspective view. FIG. 11B shows a cross section with enlarged details of the dual folded-upright camera and the smartphone. Smartphone 1100 has a bump 1104 protruding over a surface 1102. Bump 1104 has a length LB3 and a height HB2. To clarify, in smartphone 1100, LB3 is smaller than LB2 in FIG. 7 by about the length of lens sub-section 904b and is smaller than LFL by about the length of BFL section 906 plus the length of lens sub-section 904b. The marking of the bump height with “HB2” here and in FIG. 7B does not necessarily mean that bumps 604 and 1104 have the same height. In this example, the dual-camera components that protrude and are visible include only the top of the lens of the upright camera and top parts of the OPFE and lens sub-section 904a of the folded camera. In general, a bump may be needed only in areas of the camera where a height of the upright camera and a height of a section of the folded camera is larger than HPhone.


Camera 500 can be provided with a flash (e.g. LED) element to obtain a folded camera with flash (or “flash folded camera”). FIG. 12A shows a perspective view, and FIG. 12B shows a side view of a flash folded camera 1200. A flash element 1204 may provide an external illumination source as needed by the photographed scene, as known in the art. The reduction of height in camera 500 BFL (HBFL) may be used to house flash element 1204, i.e. flash element 1204 may be placed on top of top surface 510. The combined height from the bottom of camera 500 to the top of flash element 1204 is marked by HFLASH, as seen in FIG. 12B. In some cases, HFLASH may be smaller than, or equal to camera 500 height (HFL), as seen in FIG. 12B.


Folded camera 1200 may be included with an upright camera 204 to form a dual camera. FIGS. 13A-13B show two embodiments of such a dual-camera. In FIG. 13A, a dual-camera 1302 includes an upright camera 204 positioned next to flash folded camera 1200 on the optical axis (+Z direction) toward the side of OPFE section 502. In FIG. 13B, a dual-camera 1304 includes an upright camera 204 positioned along camera 1200 on the optical axis closer to BFL section 506 side. In dual camera 1304, flash element 1204 is positioned between the optical aperture of camera 204 and the optical aperture of camera 500.


In other dual-camera embodiments, shown in FIGS. 14A-14C, a camera such as camera 900 may also be provided with a flash element such as flash element 1204, which may be positioned on top of BFL section 906 (FIG. 14A), on top of lens sub-section 904 (FIG. 14B), or on top of both of these sections (FIG. 14C) (partially on top of each section in some embodiments). In all these cases, HFLASH will mark the combined height of from bottom of camera 900 to top of flash element 1204. HFLASH may be smaller than or equal to camera height HFL. That is, the addition of a flash element does not lead to any protrusion above the largest height of the folded camera. Cameras 1400, 1402 or 1404 may be combined with an upright camera to form a dual camera (not shown).


In yet another dual-camera embodiment numbered 1500 and shown in FIGS. 15A and 15B, camera 900 may be combined with an upright camera 204 and flash element 1204, such that the flash element is positioned partially above camera 900 and partially above camera 204.


While this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of the embodiments and methods will be apparent to those skilled in the art. The disclosure is to be understood as not limited by the specific embodiments described herein, but only by the scope of the appended claims.

Claims
  • 1. A folded camera, comprising: an optical path folding element (OPFE) section including an OPFE for folding an optical path from a first direction to a second direction, the OPFE section having an external OPFE height Hp in the first direction;a lens section positioned between the OPFE and an image sensor, the lens section having at least one external lens section height HL in the first direction; anda back focal length (BFL) section extending between the lens section and the image sensor and having an external BFL section height HBFL in the first direction, wherein HBFL<HL,wherein a bottom external surface of the OPFE section and bottom external surfaces of the lens section and the BFL section are coplanar and wherein a top external surface of the lens section and a top external surface of the BFL section are not coplanar.
  • 2. The folded camera of claim 1, wherein HBFL<HP such that a top external surface of the OPFE section and the top external surface of BFL section are not coplanar.
  • 3. The folded camera of claim 1, wherein HL<HP such that a top external surface of the OPFE section and the top external surface of the lens section are not coplanar.
  • 4. The folded camera of claim 1, wherein the lens section includes two subsections, wherein a lens subsection closer to the BFL section has a height HL2, wherein HL2<HL.
  • 5. The folded camera of claim 4, wherein HBFL≤HL2 and HBFL<HL.
  • 6. The folded camera of claim 5, wherein the BFL section has a top side and a bottom side, wherein the lens section, the BFL section and the image sensor share an optical axis, and wherein the optical axis in the BFL section is closer to the top side than to the bottom side, positioning the image sensor asymmetrically relative to a board it is mounted on.
  • 7. The folded camera of claim 6, wherein the top side has an internal surface structured to prevent stray light from being directed toward the image sensor.
  • 8. The folded camera of claim 4, further comprising a flash element positioned on the lens subsection closer to the BFL section and having a height HFLASH≤HP.
  • 9. The folded camera of claim 4, further comprising a flash element positioned partially on the BFL section and partially on the lens subsection closer to the BFL section and having a height HFLASH≤HP.
  • 10. The folded camera of claim 1, wherein the BFL section has a top side and a bottom side, wherein the lens section has an optical axis parallel to the second direction and wherein the optical axis in the BFL section is closer to the top side of the BFL section than to the bottom side of the BFL section.
  • 11. The folded camera of claim 1, further comprising a flash element positioned on the BFL section and having a height HFLASH≤HP.
  • 12. The folded camera of claim 1, wherein the lens section has a width WL and wherein WL>HL>HBFL.
  • 13. The folded camera of claim 1, wherein the BFL section has a top side and a bottom side, wherein the lens section, the BFL section and the image sensor share an optical axis, and wherein the optical axis in the BFL section is closer to the top side than to the bottom side, positioning the image sensor asymmetrically relative to a board it is mounted on.
  • 14. The folded camera of claim 13, wherein the top side has an internal surface structured to prevent stray light from being directed toward the image sensor.
  • 15. A dual-aperture camera comprising a folded camera according to claim 1 together with an upright camera.
  • 16. The dual-aperture camera of claim 15, wherein the upright camera has an upright camera optical axis parallel to the first direction.
  • 17. A mobile electronic device comprising a dual-aperture camera according to claim 16.
  • 18. The mobile electronic device of claim 17, comprising a bump on a surface thereof, wherein the bump surrounds an area including the dual-aperture camera and wherein at least a bump length is defined by a combined length of the lens section and the OPFE section where HBFL<HP and HBFL<HL.
  • 19. A mobile electronic device comprising a folded camera according to claim 1.
  • 20. The mobile electronic device of claim 19, comprising a bump on a surface thereof, wherein the bump surrounds an area including the folded camera and wherein at least a bump length is defined by a combined length of the lens section and the OPFE section where HBFL<HP and HBFL<HL.
CROSS REFERENCE TO RELATED APPLICATIONS

This is a continuation of U.S. patent application Ser. No. 18/479,081 filed Oct. 1, 2023 (now allowed), which was a continuation of U.S. patent application Ser. No. 18/178,582 filed Mar. 6, 2023 (now U.S. Pat. No. 11,809,066), which was a continuation of U.S. patent application Ser. No. 17/715,093 filed Apr. 7, 2022 (now U.S. Pat. No. 11,619,864), which was a continuation of U.S. patent application Ser. No. 16/338,483 filed Mar. 31, 2019 (now U.S. Pat. No. 11,333,955), which was a 371 application for international patent application PCT/IB2018/058974 filed Nov. 14, 2018, and claims priority to U.S. provisional patent applications No. 62/590,324 filed Nov. 23, 2017, and No. 62/618,304 filed Jan. 17, 2018, both of which are incorporated herein by reference in their entirety.

US Referenced Citations (413)
Number Name Date Kind
3085354 Rasmussen et al. Apr 1963 A
3584513 Gates Jun 1971 A
3941001 LaSarge Mar 1976 A
4199785 McCullough et al. Apr 1980 A
4792822 Akiyama et al. Dec 1988 A
5005083 Grage et al. Apr 1991 A
5032917 Aschwanden Jul 1991 A
5041852 Misawa et al. Aug 1991 A
5051830 von Hoessle Sep 1991 A
5099263 Matsumoto et al. Mar 1992 A
5248971 Mandl Sep 1993 A
5287093 Amano et al. Feb 1994 A
5331465 Miyano Jul 1994 A
5394520 Hall Feb 1995 A
5436660 Sakamoto Jul 1995 A
5444478 Lelong et al. Aug 1995 A
5459520 Sasaki Oct 1995 A
5502537 Utagawa Mar 1996 A
5657402 Bender et al. Aug 1997 A
5682198 Katayama et al. Oct 1997 A
5768443 Michael et al. Jun 1998 A
5892855 Kakinami et al. Apr 1999 A
5926190 Turkowski et al. Jul 1999 A
5940641 McIntyre et al. Aug 1999 A
5982951 Katayama et al. Nov 1999 A
6101334 Fantone Aug 2000 A
6128416 Oura Oct 2000 A
6148120 Sussman Nov 2000 A
6201533 Rosenberg et al. Mar 2001 B1
6208765 Bergen Mar 2001 B1
6211668 Duesler et al. Apr 2001 B1
6215299 Reynolds et al. Apr 2001 B1
6222359 Duesler et al. Apr 2001 B1
6268611 Pettersson et al. Jul 2001 B1
6341901 Iwasa et al. Jan 2002 B1
6520643 Holman et al. Feb 2003 B1
6549215 Jouppi Apr 2003 B2
6611289 Yu et al. Aug 2003 B1
6643416 Daniels et al. Nov 2003 B1
6650368 Doron Nov 2003 B1
6680748 Monti Jan 2004 B1
6714665 Hanna et al. Mar 2004 B1
6724421 Glatt Apr 2004 B1
6738073 Park et al. May 2004 B2
6741250 Furlan et al. May 2004 B1
6750903 Miyatake et al. Jun 2004 B1
6778207 Lee et al. Aug 2004 B1
7002583 Rabb, III Feb 2006 B2
7015954 Foote et al. Mar 2006 B1
7038716 Klein et al. May 2006 B2
7199348 Olsen et al. Apr 2007 B2
7206136 Labaziewicz et al. Apr 2007 B2
7248294 Slatter Jul 2007 B2
7256944 Labaziewicz et al. Aug 2007 B2
7305180 Labaziewicz et al. Dec 2007 B2
7339621 Fortier Mar 2008 B2
7346217 Gold, Jr. Mar 2008 B1
7365793 Cheatle et al. Apr 2008 B2
7411610 Doyle Aug 2008 B2
7424218 Baudisch et al. Sep 2008 B2
7509041 Hosono Mar 2009 B2
7533819 Barkan et al. May 2009 B2
7619683 Davis Nov 2009 B2
7738016 Toyofuku Jun 2010 B2
7773121 Huntsberger et al. Aug 2010 B1
7809256 Kuroda et al. Oct 2010 B2
7880776 LeGall et al. Feb 2011 B2
7918398 Li et al. Apr 2011 B2
7964835 Olsen et al. Jun 2011 B2
7978239 Deever et al. Jul 2011 B2
8115825 Culbert et al. Feb 2012 B2
8149327 Lin et al. Apr 2012 B2
8154610 Jo et al. Apr 2012 B2
8238695 Davey et al. Aug 2012 B1
8274552 Dahi et al. Sep 2012 B2
8390729 Long et al. Mar 2013 B2
8391697 Cho et al. Mar 2013 B2
8400555 Georgiev et al. Mar 2013 B1
8439265 Ferren et al. May 2013 B2
8446484 Muukki et al. May 2013 B2
8483452 Ueda et al. Jul 2013 B2
8514491 Duparre Aug 2013 B2
8547389 Hoppe et al. Oct 2013 B2
8553106 Scarff Oct 2013 B2
8587691 Takane Nov 2013 B2
8619148 Watts et al. Dec 2013 B1
8752969 Kane et al. Jun 2014 B1
8803990 Smith Aug 2014 B2
8896655 Mauchly et al. Nov 2014 B2
8976255 Matsuoto et al. Mar 2015 B2
9019387 Nakano Apr 2015 B2
9025073 Attar et al. May 2015 B2
9025077 Attar et al. May 2015 B2
9041835 Honda May 2015 B2
9137447 Shibuno Sep 2015 B2
9185291 Shabtay et al. Nov 2015 B1
9215377 Sokeila et al. Dec 2015 B2
9215385 Luo Dec 2015 B2
9270875 Brisedoux et al. Feb 2016 B2
9286680 Jiang et al. Mar 2016 B1
9344626 Silverstein et al. May 2016 B2
9360671 Zhou Jun 2016 B1
9369621 Malone et al. Jun 2016 B2
9413930 Geerds Aug 2016 B2
9413984 Attar et al. Aug 2016 B2
9420180 Jin Aug 2016 B2
9438792 Nakada et al. Sep 2016 B2
9485432 Medasani et al. Nov 2016 B1
9578257 Attar et al. Feb 2017 B2
9618748 Munger et al. Apr 2017 B2
9681057 Attar et al. Jun 2017 B2
9723220 Sugie Aug 2017 B2
9736365 Laroia Aug 2017 B2
9736391 Du et al. Aug 2017 B2
9768310 Ahn et al. Sep 2017 B2
9800798 Ravirala et al. Oct 2017 B2
9851803 Fisher et al. Dec 2017 B2
9894287 Qian et al. Feb 2018 B2
9900522 Lu Feb 2018 B2
9927600 Goldenberg et al. Mar 2018 B2
10571665 Shabtay Feb 2020 B2
11333955 Shabtay May 2022 B2
11619864 Shabtay Apr 2023 B2
11809066 Shabtay Nov 2023 B2
12007672 Shabtay Jun 2024 B2
20020005902 Yuen Jan 2002 A1
20020030163 Zhang Mar 2002 A1
20020054214 Yoshikawa May 2002 A1
20020063711 Park et al. May 2002 A1
20020075258 Park et al. Jun 2002 A1
20020122113 Foote Sep 2002 A1
20020136554 Nomura et al. Sep 2002 A1
20020167741 Koiwai et al. Nov 2002 A1
20030030729 Prentice et al. Feb 2003 A1
20030093805 Gin May 2003 A1
20030156751 Lee et al. Aug 2003 A1
20030160886 Misawa et al. Aug 2003 A1
20030162564 Kimura et al. Aug 2003 A1
20030202113 Yoshikawa Oct 2003 A1
20040008773 Itokawa Jan 2004 A1
20040012683 Yamasaki et al. Jan 2004 A1
20040017386 Liu et al. Jan 2004 A1
20040027367 Pilu Feb 2004 A1
20040061788 Bateman Apr 2004 A1
20040141065 Hara et al. Jul 2004 A1
20040141086 Mihara Jul 2004 A1
20040189849 Hofer et al. Sep 2004 A1
20040227838 Atarashi et al. Nov 2004 A1
20040239313 Godkin Dec 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20050013509 Samadani Jan 2005 A1
20050046740 Davis Mar 2005 A1
20050134697 Mikkonen et al. Jun 2005 A1
20050141390 Lee et al. Jun 2005 A1
20050157184 Nakanishi et al. Jul 2005 A1
20050168834 Matsumoto et al. Aug 2005 A1
20050185049 Iwai et al. Aug 2005 A1
20050200718 Lee Sep 2005 A1
20050248667 Schweng et al. Nov 2005 A1
20060054782 Olsen et al. Mar 2006 A1
20060056056 Ahiska et al. Mar 2006 A1
20060067672 Washisu et al. Mar 2006 A1
20060102907 Lee et al. May 2006 A1
20060125937 LeGall et al. Jun 2006 A1
20060126737 Boice et al. Jun 2006 A1
20060170793 Pasquarette et al. Aug 2006 A1
20060175549 Miller et al. Aug 2006 A1
20060181619 Liow et al. Aug 2006 A1
20060187310 Janson et al. Aug 2006 A1
20060187322 Janson et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060227236 Pak Oct 2006 A1
20070024737 Nakamura et al. Feb 2007 A1
20070035631 Ueda Feb 2007 A1
20070114990 Godkin May 2007 A1
20070126911 Nanjo Jun 2007 A1
20070127040 Davidovici Jun 2007 A1
20070159344 Kisacanin Jul 2007 A1
20070177025 Kopet et al. Aug 2007 A1
20070188653 Pollock et al. Aug 2007 A1
20070189386 Imagawa et al. Aug 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070285550 Son Dec 2007 A1
20080017557 Witdouck Jan 2008 A1
20080024614 Li et al. Jan 2008 A1
20080025634 Border et al. Jan 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030611 Jenkins Feb 2008 A1
20080084484 Ochi et al. Apr 2008 A1
20080088942 Seo Apr 2008 A1
20080106629 Kurtz et al. May 2008 A1
20080117316 Orimoto May 2008 A1
20080129831 Cho et al. Jun 2008 A1
20080218611 Parulski et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080218613 Janson et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20090086074 Li et al. Apr 2009 A1
20090102948 Scherling Apr 2009 A1
20090109556 Shimizu et al. Apr 2009 A1
20090122195 Van Baar et al. May 2009 A1
20090122406 Rouvinen et al. May 2009 A1
20090128644 Camp et al. May 2009 A1
20090168135 Yu et al. Jul 2009 A1
20090190909 Mise et al. Jul 2009 A1
20090200451 Conners Aug 2009 A1
20090219547 Kauhanen et al. Sep 2009 A1
20090234542 Orlewski Sep 2009 A1
20090252484 Hasuda et al. Oct 2009 A1
20090295949 Ojala Dec 2009 A1
20090295986 Topliss et al. Dec 2009 A1
20090324135 Kondo et al. Dec 2009 A1
20100013906 Border et al. Jan 2010 A1
20100020221 Tupman et al. Jan 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100097444 Lablans Apr 2010 A1
20100103194 Chen et al. Apr 2010 A1
20100134621 Namkoong et al. Jun 2010 A1
20100165131 Makimoto et al. Jul 2010 A1
20100196001 Ryynänen et al. Aug 2010 A1
20100202068 Ito Aug 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100246024 Aoki et al. Sep 2010 A1
20100259836 Kang et al. Oct 2010 A1
20100265331 Tanaka Oct 2010 A1
20100283842 Guissin et al. Nov 2010 A1
20100321494 Peterson et al. Dec 2010 A1
20110058320 Kim et al. Mar 2011 A1
20110063417 Peters et al. Mar 2011 A1
20110063446 McMordie et al. Mar 2011 A1
20110064327 Dagher et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110121666 Park et al. May 2011 A1
20110128288 Petrou et al. Jun 2011 A1
20110164172 Shintani et al. Jul 2011 A1
20110221599 Högasten Sep 2011 A1
20110229054 Weston et al. Sep 2011 A1
20110234798 Chou Sep 2011 A1
20110234853 Hayashi et al. Sep 2011 A1
20110234881 Wakabayashi et al. Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110285714 Swic et al. Nov 2011 A1
20110298966 Kirschstein et al. Dec 2011 A1
20110310219 Kim et al. Dec 2011 A1
20120014682 David et al. Jan 2012 A1
20120026366 Golan et al. Feb 2012 A1
20120044372 Cote et al. Feb 2012 A1
20120062780 Morihisa Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120075489 Nishihara Mar 2012 A1
20120098927 Sablak et al. Apr 2012 A1
20120105579 Jeon et al. May 2012 A1
20120124525 Kang May 2012 A1
20120154547 Aizawa Jun 2012 A1
20120154614 Moriya et al. Jun 2012 A1
20120196648 Havens et al. Aug 2012 A1
20120229663 Nelson et al. Sep 2012 A1
20120249815 Bohn et al. Oct 2012 A1
20120287315 Huang et al. Nov 2012 A1
20120320467 Baik et al. Dec 2012 A1
20130002928 Imai Jan 2013 A1
20130016427 Sugawara Jan 2013 A1
20130063629 Webster et al. Mar 2013 A1
20130076922 Shihoh et al. Mar 2013 A1
20130093842 Yahata Apr 2013 A1
20130094126 Rappoport et al. Apr 2013 A1
20130113894 Mirlay May 2013 A1
20130135445 Dahi et al. May 2013 A1
20130148215 Mori et al. Jun 2013 A1
20130148854 Wang et al. Jun 2013 A1
20130155176 Paripally et al. Jun 2013 A1
20130163085 Lim et al. Jun 2013 A1
20130182150 Asakura Jul 2013 A1
20130201360 Song Aug 2013 A1
20130202273 Ouedraogo et al. Aug 2013 A1
20130229544 Bando Sep 2013 A1
20130235224 Park et al. Sep 2013 A1
20130250150 Malone et al. Sep 2013 A1
20130258044 Betts-LaCroix Oct 2013 A1
20130258048 Wang et al. Oct 2013 A1
20130270419 Singh Oct 2013 A1
20130278785 Nomura et al. Oct 2013 A1
20130286221 Shechtman et al. Oct 2013 A1
20130321668 Kamath Dec 2013 A1
20140009631 Topliss Jan 2014 A1
20140049615 Uwagawa Feb 2014 A1
20140118584 Lee et al. May 2014 A1
20140160311 Hwang et al. Jun 2014 A1
20140192224 Laroia Jul 2014 A1
20140192238 Attar et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140218587 Shah Aug 2014 A1
20140313316 Olsson et al. Oct 2014 A1
20140362242 Takizawa Dec 2014 A1
20140376090 Terajima Dec 2014 A1
20140379103 Ishikawa et al. Dec 2014 A1
20150002683 Hu et al. Jan 2015 A1
20150002684 Kuchiki Jan 2015 A1
20150042870 Chan et al. Feb 2015 A1
20150070781 Cheng et al. Mar 2015 A1
20150086127 Camilus et al. Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150103147 Ho et al. Apr 2015 A1
20150110345 Weichselbaum Apr 2015 A1
20150124059 Georgiev et al. May 2015 A1
20150138381 Ahn May 2015 A1
20150145965 Livyatan et al. May 2015 A1
20150154776 Zhang et al. Jun 2015 A1
20150162048 Hirata et al. Jun 2015 A1
20150181115 Mashiah Jun 2015 A1
20150195458 Nakayama et al. Jul 2015 A1
20150198464 El Alami Jul 2015 A1
20150215516 Dolgin Jul 2015 A1
20150237280 Choi et al. Aug 2015 A1
20150242994 Shen Aug 2015 A1
20150244906 Wu et al. Aug 2015 A1
20150253543 Mercado Sep 2015 A1
20150253647 Mercado Sep 2015 A1
20150261299 Wajs Sep 2015 A1
20150271471 Hsieh et al. Sep 2015 A1
20150281678 Park et al. Oct 2015 A1
20150286033 Osborne Oct 2015 A1
20150288865 Osborne Oct 2015 A1
20150296112 Park et al. Oct 2015 A1
20150316744 Chen Nov 2015 A1
20150334309 Peng et al. Nov 2015 A1
20160028949 Lee et al. Jan 2016 A1
20160044250 Shabtay Feb 2016 A1
20160070088 Koguchi Mar 2016 A1
20160154066 Hioka et al. Jun 2016 A1
20160154202 Wippermann et al. Jun 2016 A1
20160154204 Lim et al. Jun 2016 A1
20160212358 Shikata Jul 2016 A1
20160212418 Demirdjian et al. Jul 2016 A1
20160238834 Erlich et al. Aug 2016 A1
20160241751 Park Aug 2016 A1
20160245669 Nomura Aug 2016 A1
20160291295 Shabtay et al. Oct 2016 A1
20160295112 Georgiev et al. Oct 2016 A1
20160301840 Du et al. Oct 2016 A1
20160301868 Acharya et al. Oct 2016 A1
20160342095 Bieling et al. Nov 2016 A1
20160353008 Osborne Dec 2016 A1
20160353012 Kao et al. Dec 2016 A1
20160381289 Kim et al. Dec 2016 A1
20170001577 Seagraves et al. Jan 2017 A1
20170019616 Zhu et al. Jan 2017 A1
20170070731 Darling et al. Mar 2017 A1
20170094187 Sharma et al. Mar 2017 A1
20170115466 Murakami et al. Apr 2017 A1
20170124987 Kim et al. May 2017 A1
20170150061 Shabtay et al. May 2017 A1
20170187962 Lee et al. Jun 2017 A1
20170214846 Du et al. Jul 2017 A1
20170214866 Zhu et al. Jul 2017 A1
20170219749 Hou et al. Aug 2017 A1
20170242225 Fiske Aug 2017 A1
20170276954 Bajorins et al. Sep 2017 A1
20170289458 Song et al. Oct 2017 A1
20170294002 Jia et al. Oct 2017 A1
20170329111 Hu et al. Nov 2017 A1
20180003925 Shmunk Jan 2018 A1
20180013944 Evans, V et al. Jan 2018 A1
20180017844 Yu et al. Jan 2018 A1
20180024329 Goldenberg et al. Jan 2018 A1
20180059379 Chou Mar 2018 A1
20180109660 Yoon et al. Apr 2018 A1
20180109710 Lee et al. Apr 2018 A1
20180120674 Avivi et al. May 2018 A1
20180150973 Tang et al. May 2018 A1
20180176426 Wei et al. Jun 2018 A1
20180183982 Lee et al. Jun 2018 A1
20180184010 Cohen et al. Jun 2018 A1
20180198897 Tang et al. Jul 2018 A1
20180216925 Yasuda et al. Aug 2018 A1
20180241922 Baldwin et al. Aug 2018 A1
20180249090 Nakagawa et al. Aug 2018 A1
20180295292 Lee et al. Oct 2018 A1
20180300901 Wakai et al. Oct 2018 A1
20180307005 Price et al. Oct 2018 A1
20180329281 Ye Nov 2018 A1
20180368656 Austin et al. Dec 2018 A1
20190089941 Bigioi et al. Mar 2019 A1
20190096047 Ogasawara Mar 2019 A1
20190100156 Chung et al. Apr 2019 A1
20190121103 Bachar et al. Apr 2019 A1
20190121216 Shabtay et al. Apr 2019 A1
20190130822 Jung et al. May 2019 A1
20190154466 Fletcher May 2019 A1
20190213712 Lashdan et al. Jul 2019 A1
20190215440 Rivard et al. Jul 2019 A1
20190222758 Goldenberg et al. Jul 2019 A1
20190227338 Bachar et al. Jul 2019 A1
20190228562 Song Jul 2019 A1
20190297238 Klosterman Sep 2019 A1
20190320119 Miyoshi Oct 2019 A1
20200014912 Kytsun et al. Jan 2020 A1
20200092486 Guo et al. Mar 2020 A1
20200103726 Shabtay et al. Apr 2020 A1
20200104034 Lee et al. Apr 2020 A1
20200118287 Hsieh et al. Apr 2020 A1
20200134848 El-Khamy et al. Apr 2020 A1
20200162682 Cheng et al. May 2020 A1
20200221026 Fridman et al. Jul 2020 A1
20200264403 Bachar et al. Aug 2020 A1
20200389580 Kodama et al. Dec 2020 A1
20210180989 Fukumura et al. Jun 2021 A1
20210208415 Goldenberg et al. Jul 2021 A1
20210333521 Yedid et al. Oct 2021 A9
20210368104 Bian et al. Nov 2021 A1
20220252963 Shabtay et al. Aug 2022 A1
20220368814 Topliss et al. Nov 2022 A1
Foreign Referenced Citations (79)
Number Date Country
101276415 Oct 2008 CN
201514511 Jun 2010 CN
102130567 Jul 2011 CN
102215373 Oct 2011 CN
102739949 Oct 2012 CN
102982518 Mar 2013 CN
103024272 Apr 2013 CN
203406908 Jan 2014 CN
203482298 Mar 2014 CN
103841404 Jun 2014 CN
204422947 Jun 2015 CN
205301703 Jun 2016 CN
105827903 Aug 2016 CN
105847662 Aug 2016 CN
107608052 Jan 2018 CN
107682489 Feb 2018 CN
109729266 May 2019 CN
1536633 Jun 2005 EP
1780567 May 2007 EP
2523450 Nov 2012 EP
S59191146 Oct 1984 JP
04211230 Aug 1992 JP
H07318864 Dec 1995 JP
08271976 Oct 1996 JP
2002010276 Jan 2002 JP
2003298920 Oct 2003 JP
2003304024 Oct 2003 JP
2004056779 Feb 2004 JP
2004133054 Apr 2004 JP
2004245982 Sep 2004 JP
2005099265 Apr 2005 JP
2005122084 May 2005 JP
2005321592 Nov 2005 JP
2006038891 Feb 2006 JP
2006191411 Jul 2006 JP
2006237914 Sep 2006 JP
2006238325 Sep 2006 JP
2008083377 Sep 2006 JP
2007086808 Apr 2007 JP
2007228006 Sep 2007 JP
2007306282 Nov 2007 JP
2008076485 Apr 2008 JP
2008245142 Oct 2008 JP
2008271026 Nov 2008 JP
2010204341 Sep 2010 JP
2011055246 Mar 2011 JP
2011085666 Apr 2011 JP
2011138407 Jul 2011 JP
2011203283 Oct 2011 JP
2012132739 Jul 2012 JP
2013101213 May 2013 JP
2013106289 May 2013 JP
2016105577 Jun 2016 JP
2017146440 Aug 2017 JP
2019126179 Jul 2019 JP
20070005946 Jan 2007 KR
20090058229 Jun 2009 KR
20100008936 Jan 2010 KR
20110080590 Jul 2011 KR
20110082494 Jul 2011 KR
20130104764 Sep 2013 KR
1020130135805 Nov 2013 KR
20140014787 Feb 2014 KR
101428042 Aug 2014 KR
101477178 Dec 2014 KR
20140144126 Dec 2014 KR
20150118012 Oct 2015 KR
20170105236 Sep 2017 KR
20180120894 Nov 2018 KR
20130085116 Jun 2019 KR
I407177 Sep 2013 TW
2000027131 May 2000 WO
2004084542 Sep 2004 WO
2006008805 Jan 2006 WO
2010122841 Oct 2010 WO
2014072818 May 2014 WO
2017025822 Feb 2017 WO
2017037688 Mar 2017 WO
2018130898 Jul 2018 WO
Non-Patent Literature Citations (17)
Entry
Zitova Bet Al: “Image Registration Methods: a Survey”, Image and Vision Computing, Elsevier, Guildford, GB, vol. 21, No. 11, Oct. 1, 2003 (Oct. 1, 2003), pp. 977-1000, XP00i 189327, ISSN: 0262-8856, DOI: i0_i0i6/ S0262-8856(03)00137-9.
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages.
A 3MPixel Multi-Aperture Image Sensor with 0.7μm Pixels in 0.11μm CMOS, Fife et al., Stanford University, 2008, 3 pages.
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages.
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages.
Defocus Video Matting, McGuire et al., Publisher: ACM SIGGRAPH, Jul. 31, 2005, 11 pages.
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages.
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages.
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages.
Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages.
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages.
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages.
Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM SIGGRAPH, 2007, 9 pages.
Superimposed multi-resolution imaging, Carles et al., Publisher: Optical Society of America, 2017, 13 pages.
Viewfinder Alignment, Adams et al., Publisher: EUROGRAPHICS, 2008, 10 pages.
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages.
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology, Jun. 2009, 3 pages.
Related Publications (1)
Number Date Country
20240302719 A1 Sep 2024 US
Provisional Applications (2)
Number Date Country
62618304 Jan 2018 US
62590324 Nov 2017 US
Continuations (4)
Number Date Country
Parent 18479081 Oct 2023 US
Child 18664484 US
Parent 18178582 Mar 2023 US
Child 18479081 US
Parent 17715093 Apr 2022 US
Child 18178582 US
Parent 16338483 US
Child 17715093 US