Embodiments disclosed herein relate in general to digital cameras and in particular to thin folded optics cameras.
In recent years, mobile devices such as cell-phones (and in particular smart-phones), tablets and laptops have become ubiquitous. Many of these devices include one or two compact cameras including, for example, a main rear-facing camera (i.e. a camera on the back side of the device, facing away from the user and often used for casual photography) and a secondary front-facing camera (i.e. a camera located on the front side of the device and often used for video conferencing).
Although relatively compact in nature, the design of most of these cameras is similar to the traditional structure of a digital still camera, i.e. it comprises a lens assembly (or a train of several optical elements) placed on top of an image sensor. The lens assembly (also referred to as “lens module” or simply “lens”) refracts the incoming light rays and bends them to create an image of a scene on the sensor. The dimensions of these cameras are largely determined by the size of the sensor and by the height of the optics. These are usually tied together through the focal length (“f”) of the lens and its field of view (FOV)—a lens that has to image a certain FOV on a sensor of a certain size has a specific focal length. Keeping the FOV constant, the larger the sensor dimensions the larger the focal length and the optics height.
The assembly process of a traditional camera typically includes handling of a few sub-assemblies: a lens, a sensor board sub-assembly and an actuator. The lens is typically made of plastic and includes a few (3-7) lens elements typically made of plastic or glass. The sensor board sub-assembly typically includes the image sensor, a printed circuit board (PCB) and electronics needed for the operation of the camera, as known in the art. The actuator is used for several purposes: (1) it serves as a chassis for the camera, on which other parts are installed, (2) it is used to move the lens for optical needs, for example for focusing and in particular auto focusing (AF) and/or optical image stabilization (OIS), and (3) it is used for mechanical protection of the other parts of the camera. In known art, the lens is inserted and attached (e.g. glued) to the actuator from one side, along the lens optical axis, whereas the sensor board is attached (e.g. glued) to the actuator from the opposite side along the optical axis.
Recently a “folded camera module” has been suggested to reduce the height of a compact camera. In the folded camera module, an optical path folding element (referred to hereinafter as “OPFE”) e.g. a prism or a mirror (otherwise referred to herein collectively as “reflecting element”) is added in order to tilt the light propagation direction from perpendicular to the smart-phone back surface to parallel to the smart-phone back surface. If the folded camera module is part of a dual-aperture camera, this provides a folded optical path through one lens assembly (e.g. a Tele lens). Such a camera is referred to herein as “folded-lens dual-aperture camera” or “dual-aperture camera with a folded lens”. In general, the folded camera module may be included in a multi-aperture camera, for example together with two “non-folded” (upright) camera modules in a triple-aperture camera.
A small height of a folded camera module (or simply “folded camera”) is important to allow a host device (e.g. a smartphone, tablets, laptops, smart TV) that includes it to be as thin as possible. The height of the camera is limited many times by the industrial design. In contrast, increasing the available height for the lens, sensor and OPFE may improve optical properties. Therefore, there is a need for having a folded camera in which the height of the lens is maximal for a given camera height, and/or the height of the image sensor active area is maximal for a given camera height, and/or the height of OPFE is maximal for a given camera height.
Embodiments disclosed herein relate to thin folded cameras.
In various exemplary embodiments, there are provided folded cameras comprising a movable lens positioned in an optical path between an OPFE and an image sensor, wherein the OPFE folds light from a first direction to a second direction and wherein the lens has a lens optical axis substantially parallel to the second direction and a lens height substantially aligned with the first direction; a shield partially surrounding the lens and having a shield thickness, wherein the shield is part of an actuator and includes top and bottom parts with respective top and bottom surfaces that lie in planes that are substantially perpendicular to the first direction, and wherein one of the shield top or bottom parts has a respective opening; and a lid having a first lid thickness and covering the opening in the shield, wherein the folded camera has a camera height substantially equal to a sum of the lens height, the first lid thickness, the shield thickness, the size of a first air gap between a first point on a surface of the lens facing the lid and the size of a second air gap being between a second point on a surface of the lens diametrically opposed to the first point and facing the shield.
Note that as used hereinafter, the terms “top” and “bottom” refer to certain positions/directions: “top” indicates a side of the folded camera or a component of the folded camera in a direction facing a photographed object of interest (not shown), while “bottom” indicates a side of the folded camera or a component of the folded camera in a direction facing away from (opposite from) a photographed object of interest. In other words, the terms “top” and “bottom” refer to positioning of parts/elements/components lying in planes perpendicular to an axis 112 (see
In an exemplary embodiment, the other of the top or bottom parts of the shield includes a respective second opening covered by a lid with a respective second lid thickness, the second air gap is between the second point and the second lid and the second lid thickness replaces the shield thickness.
In an exemplary embodiment, each air gap is in the range of 10-50 μm. In an exemplary embodiment, each air gap is in the range of 10-100 μm. In an exemplary embodiment, each air gap is in the range of 10-150 μm.
In an exemplary embodiment, a folded camera further comprises a lens carrier for holding the lens, the lens carrier having a V-groove structure for mechanically positioning the lens in a correct position inside the shield.
In an exemplary embodiment, the opening in the shield is dimensioned to enable insertion of the lens into the shield in a direction parallel to the first direction and perpendicular to the lens optical axis.
In an exemplary embodiment, the image sensor is wire bonded to a printed circuit board with wire bonds located on sides of the image sensor that are substantially perpendicular to the lid and to the opposite surface of the shield.
In an exemplary embodiment, the movable lens is movable for focusing.
In an exemplary embodiment, the movable lens is movable for optical image stabilization.
In various embodiments, the folded camera has a height not exceeding the lens height by more than 800 μm. In an embodiment, the folded camera has a height not exceeding the lens height by more than 700 μm. In an embodiment, the folded camera has a height not exceeding the lens height by more than 600 μm.
In an exemplary embodiment, there is provided a folded camera comprising a movable lens having a lens optical axis and positioned in an optical path between an OPFE and an image sensor, wherein the OPFE folds light from a first direction to a second direction, the second direction being substantially along the lens optical axis, and an actuator for controlled lens movement, the actuator including a shield partially surrounding the lens and having an opening positioned and dimensioned to enable installation of the lens into the shield from an insertion direction substantially parallel to the first direction.
In an exemplary embodiment, a folded camera further comprises a lens carrier for holding the lens, the lens carrier having a V-groove structure for mechanically positioning the lens in a correct position during installation.
In an exemplary embodiment, there is provided a folded camera comprising a lens positioned in an optical path between an optical path folding element and an image sensor, the lens having a lens height and an optical axis, wherein the folded camera has a height not exceeding the lens height by more than 600 μm.
In an exemplary embodiment, there is provided a folded camera comprising a lens positioned in an optical path between an OPFE and an image sensor, wherein the OPFE folds light from a first direction to a second direction and wherein the image sensor is wire bonded to a printed circuit board with wire bonds located on sides of the image sensor that are substantially parallel to the first direction.
In various embodiments, a folded camera as above and as described below is included together with an upright camera in a dual-camera.
In various exemplary embodiments, there are provided methods for assembling a folded camera, comprising providing an actuator for the folded camera, the actuator having a shield, inserting a lens of the folded camera into the actuator through an opening in the shield, the lens having a lens optical axis, inserting an OPFE into the actuator, wherein the OPFE folds light arriving from a first direction to a second direction, wherein the top surface of the shield faces the light from the first direction and wherein the lens optical axis is substantially parallel to the second direction, covering the shield opening with a lid, and attaching an image sensor of the folded camera to the actuator.
In an exemplary embodiment, the covering the shield opening with a lid includes fixedly attaching the lid to the shield.
In an exemplary embodiment, the opening is a top opening in the shield, and wherein the inserting the OPFE into the actuator includes inserting the OPFE from a top surface of the actuator.
In an exemplary embodiment, the opening is a top opening in the shield, and wherein the inserting the OPFE into the actuator includes inserting the OPFE from a bottom surface of the actuator.
In an exemplary embodiment there is provided a method for assembling a folded camera, comprising: providing an actuator for the folded camera, the actuator having a shield and a base separated into a back base part and a front base part; inserting a lens of the folded camera into the actuator through an opening in the shield, the lens having a lens optical axis; inserting an OPFE into the actuator back base part, wherein the OPFE folds light arriving from a first direction to a second direction, wherein the top surface of the shield faces the light from the first direction and wherein the lens optical axis is substantially parallel to the second direction; attaching the back base part to the front base part; covering the shield opening with a lid; and attaching an image sensor of the folded camera to the actuator.
Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. Identical structures, elements or parts that appear in more than one figure are generally labeled with a same numeral in all the figures in which they appear. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way. In the drawings:
In some embodiments (such as in
Top lid 110 is made for example of metal, e.g. a non-ferromagnetic stainless-steel sheet, with typical thickness of 50-300 μm. Top lid 110 is positioned on a top side of actuator 108, after the assembly of actuator 108 and after the installation of lens 102 and OPFE 104 in actuator 108. Top lid 110 is close to touching the top surface of OPFE 104 during installation (a nominal gap of 10-30 μm). Opening 110c is designed such that light coming from an object will pass through it and reach OPFE 104.
Details of lens 102 are shown in and described with reference to
The height H of camera 100 is defined along the Y axis (direction of axis 112), from a lowermost end to an uppermost end, excluding a flex PCB 304 and a connector 306 (see below—
Connector 306 is a board to board connector, as known in the art. Connector 306 is soldered to PCB 304 and allows sending and receiving digital signals required for the operation of image sensor 116 and IC driver 450 from the host device in which the camera is installed. The host may be for example a cell phone, a computer, a TV, a drone, smart eye glasses, etc.
Camera 100 has the ability to actuate (move) lens 102 along its optical axis 114 for the purpose of focusing or auto focusing (AF), as known in the art. Focusing actuation is done using actuator 108, which is described now in more detail with reference to
Lens carrier 404 houses lens 102 in an internal volume. Lens carrier 404 has a top opening (or gap) 410a, a bottom opening (or gap) 410b, a front opening 410c and a back opening 410d. Top opening 410a is made such that lens 102 can be inserted in (i.e. pass through) it during the assembly process. Openings 410a and/or 410b are designed such that when lens 102 is located inside lens carrier 404 there are no other parts between the lowermost and/or uppermost points (e.g. 206a-b) in lens 102 and, respectively, a bottom lid 412 and top lid 110. Openings 410c and 410d are dimensioned such that lens carrier 404 would not interfere with light coming from the OPFE to the image sensor. That is, openings 410c and 410d are made such that (1) any ray of light coming from the OPFE and which would have reached sensor 116 through the lens 102 if lens carrier 404 did not exist, will reach sensor 116 passing through openings 410c-d, and (2) any ray of light coming from the OPFE and which would have not reached sensor 116 through the lens if lens carrier 404 did not exist, will not reach sensor 116. In addition, in some embodiments, actuated sub-assembly 402 may be designed such that there is no point on actuated sub-assembly 402 higher than point 206a and there is no point on actuated sub-assembly 402 lower than point 206b. This feature ensures that height H of camera 100 is limited only by lens height 206.
Actuator 108 further includes a base 420, made for example of plastic or of a liquid crystal polymer. Actuated sub-assembly 402 is suspended over base 420 using two springs: a front spring 422 and a back spring 424. Springs 422 and 424 can be made for an example from stainless-steel or beryllium-copper. Springs 422 and 424 are designed such that they form a linear rail along the Z axis, namely that they have a low spring coefficient along the Z axis and a high spring coefficient in other directions: Y axis, X axis, and rotations around X, Y and Z axes. Using two springs to create a linear rail is known in the art, however springs 422 and 424 are designed such that their suspension point on base 420 is on one side (positive X axis) and their suspension point on lens carrier 404 is on the other side (negative X axis). Furthermore, each of springs 422 and 424 has an open circular part. The described design of springs allows to the following properties: (1) achieve desired linear rail properties; (2) the springs do not sacrifice optical properties of camera 100 by blocking any light coming from the OPFE to the image sensor; (3) a spring does not reflect any ray of light coming from the OPFE or from lens 102 that it would arrive at the sensor; (4) none of the suspensions of springs 422 and 424 is along the Y axis, and thereby no additional height is needed or used for the suspensions; and (5) the springs may withstand drop of the camera
In some embodiments, actuator 108 further includes integrally a shield 430, typically made of a folded non-ferromagnetic stainless-steel sheet, with typical thickness of 100-300 μm. In other embodiments, camera 100 may include a shield similar to shield 430 which is fixedly attached to camera 100 and/or to actuator 108 at some stage of assembly. Regardless of whether the shield is integral to the actuator or a separate part fixedly attached to the actuator, the description herein refers to the shield as being “part” of the actuator. Shield 430 surrounds base 420 and actuated sub-assembly 402 on four sides, see also
In camera 100, OPFE 104 is positioned in a back side 432 (negative Z) of base 420.
Actuator 108 further includes an electronic sub-system 440,
Coil 444 has exemplarily stadium shape, typically with a few tens of windings (e.g. in a not limiting range of 50-250) and with a typical resistance of 10-30 ohm. Coil 444 is fixedly connected to IC 450, capable of sending input currents to coil 444. Current in coil 444 creates a Lorentz force due to magnetic field of magnet 406: exemplary a current in a clockwise direction will create a force in the positive Z direction, while a current in counterclockwise direction will create a force in the negative Z direction. The full magnetic scheme (e.g. the pole direction of fixed magnet 406) is known in the art, and described for example in detail in patent application PCT/IB2016/052179.
In the embodiment shown in
The description of actuator 108 provided herein is only an example. In other embodiments, the actuator may have a different guiding mechanism (for example a ball guided actuator as disclosed in co-owned patent application PCT/IB2017/054088), may include more actuation directions (for example an actuator including AF and OIS as disclosed in PCT/IB2017/054088), may have a different magnetic scheme (for example an actuator with magnetic reluctance magnetic scheme as disclosed in co-owned U.S. Pat. No. 9,448,382). In all such cases the actuator may be dimensioned/made/designed such that some or all of the following properties of camera 100 are preserved: (1) the height H is no more than about 600 μm above height 206 of lens 102; (2) the height H is substantially equal to a sum of the lens height (206), the first lid thickness, the shield thickness, the size of a first air gap between a first point on a surface of the lens facing the lid and the size of a second air gap being between a second point on a surface of the lens diametrically opposed to the first point and facing the shield; (3) there is no point on actuated sub-assembly 402 higher than point 206a and there is no point on actuated sub-assembly 402 lower than point 206b.
Example of Folded Camera Assembly Process
In one embodiment, an example assembly process (method) for a folded camera described with reference to
The creation of air gaps 510a, 510b in respectively steps 1 and 3 above allows motion of lens 102 relative to the other parts of camera 100.
The assembly process above (steps 1-4) is relevant to a folded camera as in
In yet other embodiments with an actuator such as actuator 108′ where the base is separated into two parts, OPFE 104 may be installed from other directions (top or front) in base back side 432. In this case, base back side 432 may be attached to actuator 108′ after the OPFE and lens installation in a step 2′ between steps 2 and 3 (
As used herein, the phrase “for example,” “such as”, “for instance” and variants thereof describe non-limiting embodiments of the presently disclosed subject matter. Reference in the specification to “one case”, “some cases”, “and other cases” or variants thereof means that a particular feature, structure or characteristic described in connection with the embodiment(s) is included in at least one embodiment of the presently disclosed subject matter. Thus, the appearance of the phrase “one case”, “some cases”, “other cases” or variants thereof does not necessarily refer to the same embodiment(s).
Unless otherwise stated, the use of the expression “and/or” between the last two members of a list of options for selection indicates that a selection of one or more of the listed options is appropriate and may be made.
It should be understood that where the claims or specification refer to “a” or “an” element, such reference is not to be construed as there being only one of that element.
It is appreciated that certain features of embodiments disclosed herein, which are, for clarity, described in the context of separate embodiments or examples, may also be provided in combination in a single embodiment. Conversely, various features disclosed herein, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination or as suitable in any other described embodiment disclosed herein. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.
In embodiments of the presently disclosed subject matter one or more steps illustrated in
All patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual patents and patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.
While this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of the embodiments and methods will be apparent to those skilled in the art. The disclosure is to be understood as not limited by the specific embodiments described herein, but only by the scope of the appended claims.
This application is a 371 application from international patent application No. PCT/IB2017/058403 filed Dec. 26, 2017, and is related to and claims the benefit of U.S. Provisional patent application 62/445,271 filed Jan. 12, 2017, which is incorporated herein by reference in its entirety.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2017/058403 | 12/26/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/130898 | 7/19/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4199785 | McCullough et al. | Apr 1980 | A |
5005083 | Grage et al. | Apr 1991 | A |
5032917 | Aschwanden | Jul 1991 | A |
5041852 | Misawa et al. | Aug 1991 | A |
5051830 | von Hoessle | Sep 1991 | A |
5099263 | Matsumoto et al. | Mar 1992 | A |
5248971 | Mandl | Sep 1993 | A |
5287093 | Amano et al. | Feb 1994 | A |
5394520 | Hall | Feb 1995 | A |
5436660 | Sakamoto | Jul 1995 | A |
5444478 | Lelong et al. | Aug 1995 | A |
5459520 | Sasaki | Oct 1995 | A |
5657402 | Bender et al. | Aug 1997 | A |
5682198 | Katayama et al. | Oct 1997 | A |
5768443 | Michael et al. | Jun 1998 | A |
5926190 | Turkowski et al. | Jul 1999 | A |
5940641 | McIntyre et al. | Aug 1999 | A |
5982951 | Katayama et al. | Nov 1999 | A |
6101334 | Fantone | Aug 2000 | A |
6128416 | Oura | Oct 2000 | A |
6148120 | Sussman | Nov 2000 | A |
6208765 | Bergen | Mar 2001 | B1 |
6268611 | Pettersson et al. | Jul 2001 | B1 |
6549215 | Jouppi | Apr 2003 | B2 |
6611289 | Yu et al. | Aug 2003 | B1 |
6643416 | Daniels et al. | Nov 2003 | B1 |
6650368 | Doron | Nov 2003 | B1 |
6680748 | Monti | Jan 2004 | B1 |
6714665 | Hanna et al. | Mar 2004 | B1 |
6724421 | Glatt | Apr 2004 | B1 |
6738073 | Park et al. | May 2004 | B2 |
6741250 | Furlan et al. | May 2004 | B1 |
6750903 | Miyatake et al. | Jun 2004 | B1 |
6778207 | Lee et al. | Aug 2004 | B1 |
7002583 | Rabb, III | Feb 2006 | B2 |
7015954 | Foote et al. | Mar 2006 | B1 |
7038716 | Klein et al. | May 2006 | B2 |
7199348 | Olsen et al. | Apr 2007 | B2 |
7206136 | Labaziewicz et al. | Apr 2007 | B2 |
7248294 | Slatter | Jul 2007 | B2 |
7256944 | Labaziewicz et al. | Aug 2007 | B2 |
7305180 | Labaziewicz et al. | Dec 2007 | B2 |
7339621 | Fortier | Mar 2008 | B2 |
7346217 | Gold, Jr. | Mar 2008 | B1 |
7365793 | Cheatle et al. | Apr 2008 | B2 |
7411610 | Doyle | Aug 2008 | B2 |
7424218 | Baudisch et al. | Sep 2008 | B2 |
7453517 | Fujimoto | Nov 2008 | B2 |
7509041 | Hosono | Mar 2009 | B2 |
7533819 | Barkan et al. | May 2009 | B2 |
7619683 | Davis | Nov 2009 | B2 |
7738016 | Toyofuku | Jun 2010 | B2 |
7773121 | Huntsberger et al. | Aug 2010 | B1 |
7809256 | Kuroda et al. | Oct 2010 | B2 |
7880776 | LeGall et al. | Feb 2011 | B2 |
7918398 | Li et al. | Apr 2011 | B2 |
7964835 | Olsen et al. | Jun 2011 | B2 |
7978239 | Deever et al. | Jul 2011 | B2 |
8115825 | Culbert et al. | Feb 2012 | B2 |
8149327 | Lin et al. | Apr 2012 | B2 |
8154610 | Jo et al. | Apr 2012 | B2 |
8238695 | Davey et al. | Aug 2012 | B1 |
8274552 | Dahi et al. | Sep 2012 | B2 |
8390729 | Long et al. | Mar 2013 | B2 |
8391697 | Cho et al. | Mar 2013 | B2 |
8400555 | Georgiev et al. | Mar 2013 | B1 |
8439265 | Ferren et al. | May 2013 | B2 |
8446484 | Muukki et al. | May 2013 | B2 |
8483452 | Ueda et al. | Jul 2013 | B2 |
8514491 | Duparre | Aug 2013 | B2 |
8547389 | Hoppe et al. | Oct 2013 | B2 |
8553106 | Scarff | Oct 2013 | B2 |
8587691 | Takane | Nov 2013 | B2 |
8619148 | Watts et al. | Dec 2013 | B1 |
8803990 | Smith | Aug 2014 | B2 |
8896655 | Mauchly et al. | Nov 2014 | B2 |
8976255 | Matsuoto et al. | Mar 2015 | B2 |
9019387 | Nakano | Apr 2015 | B2 |
9025073 | Attar et al. | May 2015 | B2 |
9025077 | Attar et al. | May 2015 | B2 |
9041835 | Honda | May 2015 | B2 |
9137447 | Shibuno | Sep 2015 | B2 |
9185291 | Shabtay et al. | Nov 2015 | B1 |
9215377 | Sokeila et al. | Dec 2015 | B2 |
9215385 | Luo | Dec 2015 | B2 |
9270875 | Brisedoux et al. | Feb 2016 | B2 |
9286680 | Jiang et al. | Mar 2016 | B1 |
9344626 | Silverstein et al. | May 2016 | B2 |
9360671 | Zhou | Jun 2016 | B1 |
9369621 | Malone et al. | Jun 2016 | B2 |
9413930 | Geerds | Aug 2016 | B2 |
9413984 | Attar et al. | Aug 2016 | B2 |
9420180 | Jin | Aug 2016 | B2 |
9438792 | Nakada et al. | Sep 2016 | B2 |
9485432 | Medasani et al. | Nov 2016 | B1 |
9578257 | Attar et al. | Feb 2017 | B2 |
9618748 | Munger et al. | Apr 2017 | B2 |
9681057 | Attar et al. | Jun 2017 | B2 |
9723220 | Sugie | Aug 2017 | B2 |
9736365 | Laroia | Aug 2017 | B2 |
9736391 | Du et al. | Aug 2017 | B2 |
9768310 | Ahn et al. | Sep 2017 | B2 |
9800798 | Ravirala et al. | Oct 2017 | B2 |
9851803 | Fisher et al. | Dec 2017 | B2 |
9894287 | Qian et al. | Feb 2018 | B2 |
9900522 | Lu | Feb 2018 | B2 |
9927600 | Goldenberg et al. | Mar 2018 | B2 |
20020005902 | Yuen | Jan 2002 | A1 |
20020030163 | Zhang | Mar 2002 | A1 |
20020063711 | Park et al. | May 2002 | A1 |
20020075258 | Park et al. | Jun 2002 | A1 |
20020122113 | Foote | Sep 2002 | A1 |
20020167741 | Koiwai et al. | Nov 2002 | A1 |
20030030729 | Prentice et al. | Feb 2003 | A1 |
20030093805 | Gin | May 2003 | A1 |
20030160886 | Misawa et al. | Aug 2003 | A1 |
20030202113 | Yoshikawa | Oct 2003 | A1 |
20040008773 | Itokawa | Jan 2004 | A1 |
20040012683 | Yamasaki et al. | Jan 2004 | A1 |
20040017386 | Liu et al. | Jan 2004 | A1 |
20040027367 | Pilu | Feb 2004 | A1 |
20040061788 | Bateman | Apr 2004 | A1 |
20040141065 | Hara et al. | Jul 2004 | A1 |
20040141086 | Mihara | Jul 2004 | A1 |
20040240052 | Minefuji et al. | Dec 2004 | A1 |
20050013509 | Samadani | Jan 2005 | A1 |
20050046740 | Davis | Mar 2005 | A1 |
20050157184 | Nakanishi et al. | Jul 2005 | A1 |
20050168834 | Matsumoto et al. | Aug 2005 | A1 |
20050185049 | Iwai et al. | Aug 2005 | A1 |
20050200718 | Lee | Sep 2005 | A1 |
20060054782 | Olsen et al. | Mar 2006 | A1 |
20060056056 | Ahiska et al. | Mar 2006 | A1 |
20060067672 | Washisu et al. | Mar 2006 | A1 |
20060102907 | Lee et al. | May 2006 | A1 |
20060125937 | LeGall et al. | Jun 2006 | A1 |
20060170793 | Pasquarette et al. | Aug 2006 | A1 |
20060175549 | Miller et al. | Aug 2006 | A1 |
20060187310 | Janson et al. | Aug 2006 | A1 |
20060187322 | Janson et al. | Aug 2006 | A1 |
20060187338 | May et al. | Aug 2006 | A1 |
20060227236 | Pak | Oct 2006 | A1 |
20070024737 | Nakamura et al. | Feb 2007 | A1 |
20070126911 | Nanjo | Jun 2007 | A1 |
20070177025 | Kopet et al. | Aug 2007 | A1 |
20070188653 | Pollock et al. | Aug 2007 | A1 |
20070189386 | Imagawa et al. | Aug 2007 | A1 |
20070257184 | Olsen et al. | Nov 2007 | A1 |
20070285550 | Son | Dec 2007 | A1 |
20080017557 | Witdouck | Jan 2008 | A1 |
20080024614 | Li et al. | Jan 2008 | A1 |
20080025634 | Border et al. | Jan 2008 | A1 |
20080030592 | Border et al. | Feb 2008 | A1 |
20080030611 | Jenkins | Feb 2008 | A1 |
20080084484 | Ochi et al. | Apr 2008 | A1 |
20080106629 | Kurtz et al. | May 2008 | A1 |
20080117316 | Orimoto | May 2008 | A1 |
20080129831 | Cho et al. | Jun 2008 | A1 |
20080218611 | Parulski et al. | Sep 2008 | A1 |
20080218612 | Border et al. | Sep 2008 | A1 |
20080218613 | Janson et al. | Sep 2008 | A1 |
20080219654 | Border et al. | Sep 2008 | A1 |
20090086074 | Li et al. | Apr 2009 | A1 |
20090109556 | Shimizu et al. | Apr 2009 | A1 |
20090122195 | Van Baar et al. | May 2009 | A1 |
20090122406 | Rouvinen et al. | May 2009 | A1 |
20090128644 | Camp et al. | May 2009 | A1 |
20090219547 | Kauhanen et al. | Sep 2009 | A1 |
20090252484 | Hasuda et al. | Oct 2009 | A1 |
20090295949 | Ojala | Dec 2009 | A1 |
20090324135 | Kondo et al. | Dec 2009 | A1 |
20100013906 | Border et al. | Jan 2010 | A1 |
20100020221 | Tupman et al. | Jan 2010 | A1 |
20100060746 | Olsen et al. | Mar 2010 | A9 |
20100097444 | Lablans | Apr 2010 | A1 |
20100103194 | Chen et al. | Apr 2010 | A1 |
20100165131 | Makimoto et al. | Jul 2010 | A1 |
20100196001 | Ryynänen et al. | Aug 2010 | A1 |
20100238327 | Griffith et al. | Sep 2010 | A1 |
20100259836 | Kang et al. | Oct 2010 | A1 |
20100283842 | Guissin et al. | Nov 2010 | A1 |
20100321494 | Peterson et al. | Dec 2010 | A1 |
20110058320 | Kim et al. | Mar 2011 | A1 |
20110063417 | Peters et al. | Mar 2011 | A1 |
20110063446 | McMordie et al. | Mar 2011 | A1 |
20110064327 | Dagher et al. | Mar 2011 | A1 |
20110080487 | Venkataraman et al. | Apr 2011 | A1 |
20110128288 | Petrou et al. | Jun 2011 | A1 |
20110164172 | Shintani et al. | Jul 2011 | A1 |
20110229054 | Weston et al. | Sep 2011 | A1 |
20110234798 | Chou | Sep 2011 | A1 |
20110234853 | Hayashi et al. | Sep 2011 | A1 |
20110234881 | Wakabayashi et al. | Sep 2011 | A1 |
20110242286 | Pace et al. | Oct 2011 | A1 |
20110242355 | Goma et al. | Oct 2011 | A1 |
20110298966 | Kirschstein et al. | Dec 2011 | A1 |
20120026366 | Golan et al. | Feb 2012 | A1 |
20120044372 | Cote et al. | Feb 2012 | A1 |
20120050835 | Otani | Mar 2012 | A1 |
20120062780 | Morihisa | Mar 2012 | A1 |
20120069235 | Imai | Mar 2012 | A1 |
20120075489 | Nishihara | Mar 2012 | A1 |
20120105579 | Jeon et al. | May 2012 | A1 |
20120124525 | Kang | May 2012 | A1 |
20120154547 | Aizawa | Jun 2012 | A1 |
20120154614 | Moriya et al. | Jun 2012 | A1 |
20120196648 | Havens et al. | Aug 2012 | A1 |
20120229663 | Nelson et al. | Sep 2012 | A1 |
20120249815 | Bohn et al. | Oct 2012 | A1 |
20120287315 | Huang et al. | Nov 2012 | A1 |
20120320467 | Baik et al. | Dec 2012 | A1 |
20130002928 | Imai | Jan 2013 | A1 |
20130016427 | Sugawara | Jan 2013 | A1 |
20130063629 | Webster et al. | Mar 2013 | A1 |
20130076922 | Shihoh et al. | Mar 2013 | A1 |
20130093842 | Yahata | Apr 2013 | A1 |
20130094126 | Rappoport et al. | Apr 2013 | A1 |
20130113894 | Mirlay | May 2013 | A1 |
20130113979 | Nomura | May 2013 | A1 |
20130135445 | Dahi et al. | May 2013 | A1 |
20130155176 | Paripally et al. | Jun 2013 | A1 |
20130182150 | Asakura | Jul 2013 | A1 |
20130201360 | Song | Aug 2013 | A1 |
20130202273 | Ouedraogo et al. | Aug 2013 | A1 |
20130235224 | Park et al. | Sep 2013 | A1 |
20130250150 | Malone et al. | Sep 2013 | A1 |
20130258044 | Betts-LaCroix | Oct 2013 | A1 |
20130270419 | Singh et al. | Oct 2013 | A1 |
20130278785 | Nomura et al. | Oct 2013 | A1 |
20130321668 | Kamath | Dec 2013 | A1 |
20140009631 | Topliss | Jan 2014 | A1 |
20140049615 | Uwagawa | Feb 2014 | A1 |
20140118584 | Lee et al. | May 2014 | A1 |
20140192238 | Attar et al. | Jul 2014 | A1 |
20140192253 | Laroia | Jul 2014 | A1 |
20140218587 | Shah | Aug 2014 | A1 |
20140218799 | Suzuka | Aug 2014 | A1 |
20140313316 | Olsson et al. | Oct 2014 | A1 |
20140362242 | Takizawa | Dec 2014 | A1 |
20150002683 | Hu et al. | Jan 2015 | A1 |
20150042870 | Chan | Feb 2015 | A1 |
20150070781 | Cheng et al. | Mar 2015 | A1 |
20150092066 | Geiss et al. | Apr 2015 | A1 |
20150103147 | Ho et al. | Apr 2015 | A1 |
20150138381 | Ahn | May 2015 | A1 |
20150154776 | Zhang et al. | Jun 2015 | A1 |
20150162048 | Hirata et al. | Jun 2015 | A1 |
20150195458 | Nakayama et al. | Jul 2015 | A1 |
20150215516 | Dolgin | Jul 2015 | A1 |
20150237280 | Choi et al. | Aug 2015 | A1 |
20150242994 | Shen | Aug 2015 | A1 |
20150244906 | Wu et al. | Aug 2015 | A1 |
20150253543 | Mercado | Sep 2015 | A1 |
20150253647 | Mercado | Sep 2015 | A1 |
20150261299 | Wajs | Sep 2015 | A1 |
20150271471 | Hsieh et al. | Sep 2015 | A1 |
20150281678 | Park et al. | Oct 2015 | A1 |
20150286033 | Osborne | Oct 2015 | A1 |
20150316744 | Chen | Nov 2015 | A1 |
20150334309 | Peng et al. | Nov 2015 | A1 |
20160044250 | Shabtay et al. | Feb 2016 | A1 |
20160070088 | Koguchi | Mar 2016 | A1 |
20160154202 | Wippermann et al. | Jun 2016 | A1 |
20160154204 | Lim et al. | Jun 2016 | A1 |
20160212358 | Shikata | Jul 2016 | A1 |
20160212418 | Demirdjian et al. | Jul 2016 | A1 |
20160241751 | Park | Aug 2016 | A1 |
20160291295 | Shabtay et al. | Oct 2016 | A1 |
20160295112 | Georgiev et al. | Oct 2016 | A1 |
20160301840 | Du et al. | Oct 2016 | A1 |
20160353008 | Osborne | Dec 2016 | A1 |
20160353012 | Kao et al. | Dec 2016 | A1 |
20170019616 | Zhu et al. | Jan 2017 | A1 |
20170070731 | Darling et al. | Mar 2017 | A1 |
20170187962 | Lee et al. | Jun 2017 | A1 |
20170214846 | Du et al. | Jul 2017 | A1 |
20170214866 | Zhu et al. | Jul 2017 | A1 |
20170242225 | Fiske | Aug 2017 | A1 |
20170289458 | Song et al. | Oct 2017 | A1 |
20180013944 | Evans et al. | Jan 2018 | A1 |
20180017844 | Yu et al. | Jan 2018 | A1 |
20180024329 | Goldenberg et al. | Jan 2018 | A1 |
20180059379 | Chou | Mar 2018 | A1 |
20180120674 | Avivi et al. | May 2018 | A1 |
20180150973 | Tang et al. | May 2018 | A1 |
20180176426 | Wei et al. | Jun 2018 | A1 |
20180198897 | Tang et al. | Jul 2018 | A1 |
20180241922 | Baldwin et al. | Aug 2018 | A1 |
20180295292 | Lee et al. | Oct 2018 | A1 |
20180300901 | Wakai et al. | Oct 2018 | A1 |
20190121103 | Bachar et al. | Apr 2019 | A1 |
Number | Date | Country |
---|---|---|
101276415 | Oct 2008 | CN |
201514511 | Jun 2010 | CN |
102739949 | Oct 2012 | CN |
103024272 | Apr 2013 | CN |
103841404 | Jun 2014 | CN |
1536633 | Jun 2005 | EP |
1780567 | May 2007 | EP |
2523450 | Nov 2012 | EP |
S59191146 | Oct 1984 | JP |
04211230 | Aug 1992 | JP |
H07318864 | Dec 1995 | JP |
08271976 | Oct 1996 | JP |
2002010276 | Jan 2002 | JP |
2003298920 | Oct 2003 | JP |
2004133054 | Apr 2004 | JP |
2004245982 | Sep 2004 | JP |
2005099265 | Apr 2005 | JP |
2006238325 | Sep 2006 | JP |
2007228006 | Sep 2007 | JP |
2007306282 | Nov 2007 | JP |
2008076485 | Apr 2008 | JP |
2010204341 | Sep 2010 | JP |
2011085666 | Apr 2011 | JP |
2013106289 | May 2013 | JP |
20070005946 | Jan 2007 | KR |
20090058229 | Jun 2009 | KR |
20100008936 | Jan 2010 | KR |
20140014787 | Feb 2014 | KR |
101477178 | Dec 2014 | KR |
20140144126 | Dec 2014 | KR |
20150118012 | Oct 2015 | KR |
2000027131 | May 2000 | WO |
2004084542 | Sep 2004 | WO |
2006008805 | Jan 2006 | WO |
2010122841 | Oct 2010 | WO |
2014072818 | May 2014 | WO |
2017025822 | Feb 2017 | WO |
2017037688 | Mar 2017 | WO |
2018130898 | Jul 2018 | WO |
Entry |
---|
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages. |
A 3MPixel Multi-Aperture Image Sensor with 0.7μm Pixels in 0.11μm CMOS, Fife et al., Stanford University, 2008, 3 pages. |
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages. |
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages. |
Defocus Video Matting, McGuire et al., Publisher: ACM SIGGRAPH, Jul. 31, 2005, 11 pages. |
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages. |
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages. |
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages. |
Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages. |
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages. |
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages. |
Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM SIGGRAPH, 2007, 9 pages. |
Superimposed multi-resolution imaging, Carles et al., Publisher: Optical Society of America, 2017, 13 pages. |
Viewfinder Alignment, Adams et al., Publisher: EUROGRAPHICS, 2008, 10 pages. |
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages. |
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology, Jun. 2009, 3 pages. |
Number | Date | Country | |
---|---|---|---|
20190361323 A1 | Nov 2019 | US |
Number | Date | Country | |
---|---|---|---|
62445271 | Jan 2017 | US |