Compact folded camera

Information

  • Patent Grant
  • 12038671
  • Patent Number
    12,038,671
  • Date Filed
    Wednesday, October 4, 2023
    a year ago
  • Date Issued
    Tuesday, July 16, 2024
    5 months ago
Abstract
Folded cameras comprising a movable lens having a lens optical axis and positioned in an optical path between an optical path folding element (OPFE) and an image sensor, wherein the OPFE folds light from a first direction to a second direction, the second direction being substantially along the lens optical axis, and an actuator for controlled lens movement, the actuator including or being attached to a shield partially surrounding the lens, the shield having an opening positioned and dimensioned to enable installation of the lens into the shield from an insertion direction substantially parallel to the first direction. A folded camera disclosed herein may be included together with an upright camera in a dual-camera.
Description
FIELD

Embodiments disclosed herein relate in general to digital cameras and in particular to thin folded optics cameras.


BACKGROUND

In recent years, mobile devices such as cell-phones (and in particular smart-phones), tablets and laptops have become ubiquitous. Many of these devices include one or two compact cameras including, for example, a main rear-facing camera (i.e. a camera on the back side of the device, facing away from the user and often used for casual photography) and a secondary front-facing camera (i.e. a camera located on the front side of the device and often used for video conferencing).


Although relatively compact in nature, the design of most of these cameras is similar to the traditional structure of a digital still camera, i.e. it comprises a lens assembly (or a train of several optical elements) placed on top of an image sensor. The lens assembly (also referred to as “lens module” or simply “lens”) refracts the incoming light rays and bends them to create an image of a scene on the sensor. The dimensions of these cameras are largely determined by the size of the sensor and by the height of the optics. These are usually tied together through the focal length (“f”) of the lens and its field of view (FOV)—a lens that has to image a certain FOV on a sensor of a certain size has a specific focal length. Keeping the FOV constant, the larger the sensor dimensions the larger the focal length and the optics height.


The assembly process of a traditional camera typically includes handling of a few sub-assemblies: a lens, a sensor board sub-assembly and an actuator. The lens is typically made of plastic and includes a few (3-7) lens elements typically made of plastic or glass. The sensor board sub-assembly typically includes the image sensor, a printed circuit board (PCB) and electronics needed for the operation of the camera, as known in the art. The actuator is used for several purposes: (1) it serves as a chassis for the camera, on which other parts are installed, (2) it is used to move the lens for optical needs, for example for focusing and in particular auto focusing (AF) and/or optical image stabilization (OIS), and (3) it is used for mechanical protection of the other parts of the camera. In known art, the lens is inserted and attached (e.g. glued) to the actuator from one side, along the lens optical axis, whereas the sensor board is attached (e.g. glued) to the actuator from the opposite side along the optical axis.


Recently a “folded camera module” has been suggested to reduce the height of a compact camera. In the folded camera module, an optical path folding element (referred to hereinafter as “OPFE”) e.g. a prism or a mirror (otherwise referred to herein collectively as “reflecting element”) is added in order to tilt the light propagation direction from perpendicular to the smart-phone back surface to parallel to the smart-phone back surface. If the folded camera module is part of a dual-aperture camera, this provides a folded optical path through one lens assembly (e.g. a Tele lens). Such a camera is referred to herein as “folded-lens dual-aperture camera” or “dual-aperture camera with a folded lens”. In general, the folded camera module may be included in a multi-aperture camera, for example together with two “non-folded” (upright) camera modules in a triple-aperture camera.


A small height of a folded camera module (or simply “folded camera”) is important to allow a host device (e.g. a smartphone, tablets, laptops, smart TV) that includes it to be as thin as possible. The height of the camera is limited many times by the industrial design. In contrast, increasing the available height for the lens, sensor and OPFE may improve optical properties. Therefore, there is a need for having a folded camera in which the height of the lens is maximal for a given camera height, and/or the height of the image sensor active area is maximal for a given camera height, and/or the height of OPFE is maximal for a given camera height.


SUMMARY

Embodiments disclosed herein relate to thin folded cameras.


In various exemplary embodiments, there are provided folded cameras comprising a movable lens positioned in an optical path between an OPFE and an image sensor, wherein the OPFE folds light from a first direction to a second direction and wherein the lens has a lens optical axis substantially parallel to the second direction and a lens height substantially aligned with the first direction; a shield partially surrounding the lens and having a shield thickness, wherein the shield is part of an actuator and includes top and bottom parts with respective top and bottom surfaces that lie in planes that are substantially perpendicular to the first direction, and wherein one of the shield top or bottom parts has a respective opening; and a lid having a first lid thickness and covering the opening in the shield, wherein the folded camera has a camera height substantially equal to a sum of the lens height, the first lid thickness, the shield thickness, the size of a first air gap between a first point on a surface of the lens facing the lid and the size of a second air gap being between a second point on a surface of the lens diametrically opposed to the first point and facing the shield.


Note that as used hereinafter, the terms “top” and “bottom” refer to certain positions/directions: “top” indicates a side of the folded camera or a component of the folded camera in a direction facing a photographed object of interest (not shown), while “bottom” indicates a side of the folded camera or a component of the folded camera in a direction facing away from (opposite from) a photographed object of interest. In other words, the terms “top” and “bottom” refer to positioning of parts/elements/components lying in planes perpendicular to an axis 112 (see FIG. 1A below), where “top” is in a plane closer to the object of interest for photography and “bottom” is in a plane further away from the object of interest for photography than the top plane.


In an exemplary embodiment, the other of the top or bottom parts of the shield includes a respective second opening covered by a lid with a respective second lid thickness, the second air gap is between the second point and the second lid and the second lid thickness replaces the shield thickness.


In an exemplary embodiment, each air gap is in the range of 10-50 μm. In an exemplary embodiment, each air gap is in the range of 10-100 μm. In an exemplary embodiment, each air gap is in the range of 10-150 μm.


In an exemplary embodiment, a folded camera further comprises a lens carrier for holding the lens, the lens carrier having a V-groove structure for mechanically positioning the lens in a correct position inside the shield.


In an exemplary embodiment, the opening in the shield is dimensioned to enable insertion of the lens into the shield in a direction parallel to the first direction and perpendicular to the lens optical axis.


In an exemplary embodiment, the image sensor is wire bonded to a printed circuit board with wire bonds located on sides of the image sensor that are substantially perpendicular to the lid and to the opposite surface of the shield.


In an exemplary embodiment, the movable lens is movable for focusing.


In an exemplary embodiment, the movable lens is movable for optical image stabilization.


In various embodiments, the folded camera has a height not exceeding the lens height by more than 800 μm. In an embodiment, the folded camera has a height not exceeding the lens height by more than 700 μm. In an embodiment, the folded camera has a height not exceeding the lens height by more than 600 μm.


In an exemplary embodiment, there is provided a folded camera comprising a movable lens having a lens optical axis and positioned in an optical path between an OPFE and an image sensor, wherein the OPFE folds light from a first direction to a second direction, the second direction being substantially along the lens optical axis, and an actuator for controlled lens movement, the actuator including a shield partially surrounding the lens and having an opening positioned and dimensioned to enable installation of the lens into the shield from an insertion direction substantially parallel to the first direction.


In an exemplary embodiment, a folded camera further comprises a lens carrier for holding the lens, the lens carrier having a V-groove structure for mechanically positioning the lens in a correct position during installation.


In an exemplary embodiment, there is provided a folded camera comprising a lens positioned in an optical path between an optical path folding element and an image sensor, the lens having a lens height and an optical axis, wherein the folded camera has a height not exceeding the lens height by more than 600 μm.


In an exemplary embodiment, there is provided a folded camera comprising a lens positioned in an optical path between an OPFE and an image sensor, wherein the OPFE folds light from a first direction to a second direction and wherein the image sensor is wire bonded to a printed circuit board with wire bonds located on sides of the image sensor that are substantially parallel to the first direction.


In various embodiments, a folded camera as above and as described below is included together with an upright camera in a dual-camera.


In various exemplary embodiments, there are provided methods for assembling a folded camera, comprising providing an actuator for the folded camera, the actuator having a shield, inserting a lens of the folded camera into the actuator through an opening in the shield, the lens having a lens optical axis, inserting an OPFE into the actuator, wherein the OPFE folds light arriving from a first direction to a second direction, wherein the top surface of the shield faces the light from the first direction and wherein the lens optical axis is substantially parallel to the second direction, covering the shield opening with a lid, and attaching an image sensor of the folded camera to the actuator.


In an exemplary embodiment, the covering the shield opening with a lid includes fixedly attaching the lid to the shield.


In an exemplary embodiment, the opening is a top opening in the shield, and wherein the inserting the OPFE into the actuator includes inserting the OPFE from a top surface of the actuator.


In an exemplary embodiment, the opening is a top opening in the shield, and wherein the inserting the OPFE into the actuator includes inserting the OPFE from a bottom surface of the actuator.


In an exemplary embodiment there is provided a method for assembling a folded camera, comprising: providing an actuator for the folded camera, the actuator having a shield and a base separated into a back base part and a front base part; inserting a lens of the folded camera into the actuator through an opening in the shield, the lens having a lens optical axis; inserting an OPFE into the actuator back base part, wherein the OPFE folds light arriving from a first direction to a second direction, wherein the top surface of the shield faces the light from the first direction and wherein the lens optical axis is substantially parallel to the second direction; attaching the back base part to the front base part; covering the shield opening with a lid; and attaching an image sensor of the folded camera to the actuator.





BRIEF DESCRIPTION OF THE DRAWINGS

Non-limiting examples of embodiments disclosed herein are described below with reference to figures attached hereto that are listed following this paragraph. Identical structures, elements or parts that appear in more than one figure are generally labeled with a same numeral in all the figures in which they appear. The drawings and descriptions are meant to illuminate and clarify embodiments disclosed herein, and should not be considered limiting in any way. In the drawings:



FIG. 1A shows describe an example of a folded camera disclosed herein;



FIG. 1B shows the folded camera of FIG. 1A separated into several parts and sub-systems or sub-assemblies;



FIG. 1C shows one embodiment of the actuator of the folded camera of FIG. 1A with opposite lens and OPFE directions of insertion into the actuator;



FIG. 1D shows another embodiment of the actuator of the folded camera of FIG. 1A with same lens and OPFE directions of insertion into the actuator;



FIG. 2A shows the lens of the folded camera of FIG. 1A in an isometric view;



FIG. 2B shows the lens of the folded camera of FIG. 1A in a longitudinal cross section;



FIG. 2C shows an embodiment of the lens of the folded camera of FIG. 1A having top and bottom flat facets in a radial cross section;



FIG. 2D shows an embodiment of the lens of the folded camera of FIG. 1A without top and bottom flat facets in a radial cross section;



FIG. 3A shows an image sensor-PCB sub-assembly of the folded camera of FIG. 1A in an exploded view;



FIG. 3B shows a rigid sensor PCB and an image sensor with wire bonds in the image sensor-PCB sub-assembly of FIG. 3A;



FIG. 4A shows an exploded view of an actuator of the folded camera of FIG. 1A;



FIG. 4B shows an electronic sub-system of the folded camera of FIG. 1A from one side;



FIG. 4C shows an electronic sub-system of the folded camera of FIG. 1A from another side;



FIG. 4D shows another embodiment of an actuator of the folded camera of FIG. 1A;



FIG. 5A shows a longitudinal cross section of a complete folded camera along a cut A-A in FIG. 1A;



FIG. 5B shows a radial cross section of a complete folded camera along a cut B-B in FIG. 1A;



FIG. 6 shows the internal structure of a driver integrated circuit for the actuator;



FIG. 7 shows schematically an example of a dual-camera including a folded camera as in FIG. 1A and an upright camera;



FIG. 8A shows schematically steps in the assembly of a folded camera according to an example embodiment;



FIG. 8B shows schematically steps in the assembly of a folded camera according to another exemplary embodiment.





DETAILED DESCRIPTION


FIG. 1A shows an embodiment of a folded camera numbered 100 in an isometric view. An orthogonal X-Y-Z coordinate (“axis”) system shown applies also to all following drawings. This coordinate system is exemplary. FIG. 1B shows camera 100 separated into several parts and sub-systems or sub-assemblies: a lens assembly (or simply “lens”) 102, an optical path folding element (OPFE) 104, an image sensor-PCB sub-assembly 106, an actuator 108 and a top lid 110. Top lid 110 includes a section 110a and a section 110b, the latter having an opening 110c. In some embodiments (such as in FIGS. 1A and 1B), section 110a and a section 110b are part of a single plate (lid 110).


In some embodiments (such as in FIGS. 1C and 1D) section 110a and a section 110b are separate parts of lid 110. OPFE 104 folds an optical path along an axis 112 parallel to the Y axis (in the exemplary coordinate system) from an object (not shown) into an optical path along an axis 114 parallel to the Z axis (in the exemplary coordinate system). Axis 114 is the optical axis of lens 102. An image sensor 116 included in sub-assembly 106 has a plane normal substantially aligned with axis 114. That is, image sensor 116 lies in a plane substantially perpendicular to axis 114. FIG. 1C shows one embodiment of camera 100 with opposite lens and OPFE directions of insertion into actuator 108, while FIG. 1D shows another embodiment of camera 100 with same lens and OPFE directions of insertion into actuator 108. As used herein with reference to a direction, “substantially” may refer to an exact alignment to the direction, or to a deviation of up to 0.5 degree, up to 1 degree, up to 5 degrees or even to 10 degrees.


Top lid 110 is made for example of metal, e.g. a non-ferromagnetic stainless-steel sheet, with typical thickness of 50-300 μm. Top lid 110 is positioned on a top side of actuator 108, after the assembly of actuator 108 and after the installation of lens 102 and OPFE 104 in actuator 108. Top lid 110 is close to touching the top surface of OPFE 104 during installation (a nominal gap of 10-30 μm). Opening 110c is designed such that light coming from an object will pass through it and reach OPFE 104.


Details of lens 102 are shown in and described with reference to FIGS. 2A-2D. Details of sub-assembly 106 are shown in, and described with reference to FIGS. 3A-3B. Details of actuator 108 are shown in, and described with reference to FIGS. 4A-C.


The height H of camera 100 is defined along the Y axis (direction of axis 112), from a lowermost end to an uppermost end, excluding a flex PCB 304 and a connector 306 (see below—FIG. 3B). H is an important figure of merit in commercial applications. Therefore, reducing H for a given lens size to be as small as possible is a major design goal. Alternatively, maximizing the lens size for a given H is a major design goal.



FIG. 2A shows lens 102 in an isometric view, FIG. 2B shows lens 102 in a longitudinal cross section, and FIGS. 2C and 2D show lens 102 in radial cross sections, respectively with and without flat facets on top and bottom external lens surfaces. Lens 102 includes several lens elements 202a-d (in general typically 3-8, with FIG. 2A showing as an example four), each lens element made for example of plastic or glass molding. Lens elements 202a-d are held in a lens barrel 204, made for example of plastic molding. A lens height (or “external diameter” in case of a cylindrically shaped lens) 206 is defined as the distance along the Y axis (or in the same direction as camera height H) from a lowermost point 206a on an external surface of lens 102 to an upper-most point 206b on the external surface of lens 102. Typically, points 206a-b are located on lens barrel 204, namely the height of lens 102 is limited by lens barrel 204. In some embodiments, at least one of lens elements 202a-d may extend outside of lens barrel 204. In such embodiments, the height of lens 102 may be limited by one or more of elements 202a-d and/or by lens barrel 204. An optical aperture 208 of lens 102 is defined as the diameter of the opening in lens 102 toward the OPFE (104) side, as known in the art. Optical aperture 208 determines many properties of the optical quality of lens 102 and of camera 100, as known in the art. The lens design is targeted to maximize optical aperture 208 vs. the lens height. Lens 102 typically has a general cylindrical shape, with a diameter larger than optical aperture 208 by, typically, 600 μm-2600 μm. In some embodiments, two flat facets 210a-b can be provided in the external surface (envelope) of lens 102 on its top and bottom sides, such as to reduce lens height 206 by, typically, 50-200 μm per facet, i.e. by a total of 100-400 μm. In such embodiments, the flat facets coincide with the lowermost and uppermost points 206a-b. The radial cross sections in FIGS. 2C and 2D show the lens with (FIG. 2C) and without (FIG. 2D) flat facets. The lens height (external diameter) reduction does not change the size of optical aperture 208.



FIG. 3A shows image sensor-PCB sub-assembly 106 in an exploded view. Sub-assembly 106 includes image sensor 116, a rigid sensor PCB 302, flex PCB 304, a connector 306, a bracket 308 and an IR filter 310. Image sensor 116, typically made of silicon as known in the art, is first mechanically attached (glued) and then electrically wire bonded to rigid sensor PCB 302. In order to minimize the camera height H and to maximize the height (dimension along Y) of image sensor 116, wire bonds 312 on image sensor 116 are located only on its two sides (along the X direction). The positioning of wire bonds 312 only to the sides of image sensor 116 allows rigid sensor PCB 302 not to exceed camera height H, as defined below. Thus, H can be minimized for a given PCB size or, alternatively, the PCB size can be maximized for a given H.



FIG. 3B shows rigid sensor PCB 302 and image sensor 116 with wire bonds 312. Rigid sensor PCB 302 further includes four wiring pads 314a-d, which are positioned next to wiring pads 452a-d (FIG. 4C) to pass electrical signals to an IC driver 450 (FIG. 4B), as described below. As known, rigid sensor PCB 302 and flex PCB 304 may be made as one unit in a rigid-flex technology. Rigid sensor PCB 302 had rigid mechanical properties which allow mounting of sensor 116 and other optional electronic components such as capacitors, resistors, memory IC, etc. (not shown in the figures). Rigid sensor PCB 302 may have several (typically 2-6) metal (e.g. copper) layers and a thickness of 200 μm or more. Flex PCB 304 has flexible mechanical properties, which allows it to bend such that the position of connector 306 does not increase the height H of camera 100. Flex PCB 304 may have only two copper layers and a thickness of 50-100 μm. These and other fabrication considerations for rigid, flex and rigid-flex PCBs are known in the art.


Connector 306 is a board to board connector, as known in the art. Connector 306 is soldered to PCB 304 and allows sending and receiving digital signals required for the operation of image sensor 116 and IC driver 450 from the host device in which the camera is installed. The host may be for example a cell phone, a computer, a TV, a drone, smart eye glasses, etc.


Camera 100 has the ability to actuate (move) lens 102 along its optical axis 114 for the purpose of focusing or auto focusing (AF), as known in the art. Focusing actuation is done using actuator 108, which is described now in more detail with reference to FIGS. 4A-4C.



FIG. 4A shows an exploded view of actuator 108. Actuator 108 includes an actuated-sub assembly 402. Actuated-sub assembly 402 includes a lens carrier 404, typically made of plastic, an actuation magnet 406 and a sensing magnet 408. Magnets 406 and 408 can be for example permanent magnets, made from a neodymium alloy (e.g. Nd2Fe14B) or a samarium-cobalt alloy (e.g. SmCo5). Magnet 406 can be fabricated (e.g. sintered) such that it changes the magnetic poles direction: on the positive Z side the north magnetic pole faces the negative X direction, while on the negative Z side the north-pole faces the positive X direction. Magnet 408 can be fabricated (e.g. sintered) such that its north magnetic pole faces the negative Z direction. Magnets 406 and 408 are fixedly attached (e.g. glued) to lens carrier 404 from the side (X direction). In other embodiments, magnets 406 and/or 408 may be attached to lens carrier 404 from the bottom (negative Y direction). The magnetic functions of magnets 406 and 408 are described below.


Lens carrier 404 houses lens 102 in an internal volume. Lens carrier 404 has a top opening (or gap) 410a, a bottom opening (or gap) 410b, a front opening 410c and a back opening 410d. Top opening 410a is made such that lens 102 can be inserted in (i.e. pass through) it during the assembly process. Openings 410a and/or 410b are designed such that when lens 102 is located inside lens carrier 404 there are no other parts between the lowermost and/or uppermost points (e.g. 206a-b) in lens 102 and, respectively, a bottom lid 412 and top lid 110. Openings 410c and 410d are dimensioned such that lens carrier 404 would not interfere with light coming from the OPFE to the image sensor. That is, openings 410c and 410d are made such that (1) any ray of light coming from the OPFE and which would have reached sensor 116 through the lens 102 if lens carrier 404 did not exist, will reach sensor 116 passing through openings 410c-d, and (2) any ray of light coming from the OPFE and which would have not reached sensor 116 through the lens if lens carrier 404 did not exist, will not reach sensor 116. In addition, in some embodiments, actuated sub-assembly 402 may be designed such that there is no point on actuated sub-assembly 402 higher than point 206a and there is no point on actuated sub-assembly 402 lower than point 206b. This feature ensures that height H of camera 100 is limited only by lens height 206.


Actuator 108 further includes a base 420, made for example of plastic or of a liquid crystal polymer. Actuated sub-assembly 402 is suspended over base 420 using two springs: a front spring 422 and a back spring 424. Springs 422 and 424 can be made for an example from stainless-steel or beryllium-copper. Springs 422 and 424 are designed such that they form a linear rail along the Z axis, namely that they have a low spring coefficient along the Z axis and a high spring coefficient in other directions: Y axis, X axis, and rotations around X, Y and Z axes. Using two springs to create a linear rail is known in the art, however springs 422 and 424 are designed such that their suspension point on base 420 is on one side (positive X axis) and their suspension point on lens carrier 404 is on the other side (negative X axis). Furthermore, each of springs 422 and 424 has an open circular part. The described design of springs allows to the following properties: (1) achieve desired linear rail properties; (2) the springs do not sacrifice optical properties of camera 100 by blocking any light coming from the OPFE to the image sensor; (3) a spring does not reflect any ray of light coming from the OPFE or from lens 102 that it would arrive at the sensor; (4) none of the suspensions of springs 422 and 424 is along the Y axis, and thereby no additional height is needed or used for the suspensions; and (5) the springs may withstand drop of the camera


In some embodiments, actuator 108 further includes integrally a shield 430, typically made of a folded non-ferromagnetic stainless-steel sheet, with typical thickness of 100-300 μm. In other embodiments, camera 100 may include a shield similar to shield 430 which is fixedly attached to camera 100 and/or to actuator 108 at some stage of assembly. Regardless of whether the shield is integral to the actuator or a separate part fixedly attached to the actuator, the description herein refers to the shield as being “part” of the actuator. Shield 430 surrounds base 420 and actuated sub-assembly 402 on four sides, see also FIG. 1B. Some sections of the shield may have openings, while other may be without openings. For example, an opening 431 in the top part of the shield allows the installation of lens 102 in actuator 108. In some embodiments, top lid 110 and bottom lid 412 are the only parts that add (in addition to the lens) to camera height H. In some embodiments (as in FIG. 4A) bottom lid 412 is part of shield 430, while in other embodiments, bottom lid 412 can be separated from shield 430. In some embodiments, shield 430 may have varying thicknesses, in the range given above, while the bottom lid 412 thickness is kept in the range of 50-200 μm.


In camera 100, OPFE 104 is positioned in a back side 432 (negative Z) of base 420. FIG. 4D shows another embodiment of an actuator disclosed herein, numbered 108′. In actuator 108′, base 420 is separated into two parts: a base back side 432 and a base back front side 433. In actuator 108′, OPFE 104 is installed in-base back side 432, and then base back side 432 is attached (e.g. glued) to other parts of actuator 108′.


Actuator 108 further includes an electronic sub-system 440, FIG. 4B shows electronic sub-system 440 from one side, and FIG. 4C shows electronic sub-system 440 from another side. Electronic sub-system 440 includes actuator PCB 442, a coil 444 and a driver integrated circuit (IC) 450. Coil 444 and IC 450 are soldered to actuator PCB 442, such that coil 444 is connected electrically to IC 450 and IC 450 is connected to four wiring pads 452a-d on actuator PCB 442. Wiring pads 452a-d are used to deliver electronics signals to IC 450. Four electrical signals typically included operating voltage (Vdd), ground (Gnd) and two signals used for IIC protocol (signal clock (SCL) and signal data (SDA)) as known in the art. In other embodiments, other protocols may be used, such as SPI protocol, known in the art, or IC 450 may need more than one operating voltage to operate; is such cases there may be more, or less, than 4 wiring pads, for example in the range of 2-8. Actuator PCB 442 is glued to base 420 from the outside such that coil 442 and IC 450 pass through a hole 420a in base 420, and such that coil 444 is positioned next to magnet 406, and IC 450 is positioned next to magnet 408. The typical distance of coil 444 to magnet 406, and of IC 450 to magnet 408 is in the range of 50-200 μm. This distance may allow actuated sub-assembly 402 to move along the Z axis without interference. In some embodiments, actuator 108 may work in an open-loop control method, as known in the art, i.e. where a current signal is sent to the coil without position control mechanism,


Coil 444 has exemplarily stadium shape, typically with a few tens of windings (e.g. in a not limiting range of 50-250) and with a typical resistance of 10-30 ohm. Coil 444 is fixedly connected to IC 450, capable of sending input currents to coil 444. Current in coil 444 creates a Lorentz force due to magnetic field of magnet 406: exemplary a current in a clockwise direction will create a force in the positive Z direction, while a current in counterclockwise direction will create a force in the negative Z direction. The full magnetic scheme (e.g. the pole direction of fixed magnet 406) is known in the art, and described for example in detail in patent application PCT/IB2016/052179.



FIGS. 5A and 5B show, respectively, cross sections of a complete camera 100 along cuts A-A and B-B (FIG. 1A). Cuts A-A and B-B are respectively in Y-Z and X-Y planes. As shown in the cross section of FIG. 5B, lens carrier 404 may further include a V-groove 504 in its bottom. V-groove 504 allows pick-and-place mounting of lens 102 by insertion from top opening 410a without the need of active alignment (see below).


In the embodiment shown in FIG. 5A and FIG. 5B, that height H of camera 100 is equal to the height of lens 102+the thickness of bottom lid 412+the thickness of top lid 110+two air gaps 510a and 510b. Air gaps 510a-b are dimensioned to allow motion of lens 102 without interference during actuation. The motion of lens 102 is for focusing (and in particular for auto focusing) along the Z axis and\or for OIS along the X direction; actuation modes for both AF and OIS are known in the art. For example, in some embodiments, each air gap 510a or 510b may be larger than about 10 μm, for example in the range 10-50 μm, 10-100 μm or 10-150 μm. Thus, the structure of camera 100 maximizes the contribution of lens 102 to the total height of camera 100. In other embodiments, the camera height may slightly exceed H, for example by up to 300 μm, due to the OPFE or the image sensors having a height dimension slightly larger than H. To summarize, in camera 100 the height H is no more than about 600 μm above height 206 of lens 102. In this description, the use of the terms “about” or “substantially” or “approximately” with reference to height or another dimension mean, in some embodiments, the exact value of the height or dimension. In other embodiments, these terms mean the exact value plus a variation of up to 1% of the value, the exact value plus a variation of up to 5% of the value, or even the exact value plus a variation of up to 10% of the exact value.



FIG. 6 shows the internal structure of IC 450. IC 450 includes a current driving circuit 602, exemplary an H-bridge, a position (e.g. PID) controller 604, an analog to digital converter (A2D) 606, a Hall bar element 608 and a user interface 610. Upon actuation, the relative position of actuated sub-assembly 402 and Hall bar element 608 is changed. The intensity and direction of the magnetic field senses by Hall bar element 608 is changed as well. The output voltage of Hall element 608 is proportional to the magnetic field intensity. A2D 606 converts the voltage level to digital numbers which are input to position controller 604. Position controller 604 is used to control the position of the actuated sub-assembly and set to the position commands given by user in user interface 610. The control circuit output is the amount of current applied in coil 444. The full magnetic scheme (e.g. the pole direction of fixed magnet 408) is known in the art, and described for example in detail in PCT patent application PCT/IB2016/052179.


The description of actuator 108 provided herein is only an example. In other embodiments, the actuator may have a different guiding mechanism (for example a ball guided actuator as disclosed in co-owned patent application PCT/IB2017/054088), may include more actuation directions (for example an actuator including AF and OIS as disclosed in PCT/IB2017/054088), may have a different magnetic scheme (for example an actuator with magnetic reluctance magnetic scheme as disclosed in co-owned U.S. Pat. No. 9,448,382). In all such cases the actuator may be dimensioned/made/designed such that some or all of the following properties of camera 100 are preserved: (1) the height H is no more than about 600 μm above height 206 of lens 102; (2) the height H is substantially equal to a sum of the lens height (206), the first lid thickness, the shield thickness, the size of a first air gap between a first point on a surface of the lens facing the lid and the size of a second air gap being between a second point on a surface of the lens diametrically opposed to the first point and facing the shield; (3) there is no point on actuated sub-assembly 402 higher than point 206a and there is no point on actuated sub-assembly 402 lower than point 206b.



FIG. 7 shows a dual-camera 700 that includes for example a camera such as camera 100 as well as an upright camera 702, the latter known in the art. The operation of a dual-camera is known in the art, for example as described in co-owned patent applications PCT/IB2015/056004 and PCT/IB2016/052179. Camera 702 is fixedly attached to camera 100 close to OPFE 104. In embodiment 700, the location of camera 702 is to the negative Z side of folded camera 100, and the mechanical attachment is done using a bracket 704, normally made from stain-less steel. In other embodiments, camera 702 may be located on the negative or positive X side of camera 100, for example as described in PCT/IB2016/052179. In other embodiments camera 702 may be attached to camera 100 by other ways and means than by bracket 704.


Example of Folded Camera Assembly Process


In one embodiment, an example assembly process (method) for a folded camera described with reference to FIG. 8A may include, after a known in the art assembly of an actuator such as actuator 108:

    • Step 1: Insertion of lens 102 into actuator 108 and attaching it to lens carrier 404 from the top (Y direction, perpendicular to optical axis 114) using e.g. a pick-and-place method. This can be achieved because of top opening 431 left in shield 430 of actuator 108 and opening 410a left in lens carrier 404 of actuator 108, and because of the mechanical structure of lens carrier 404 and base 420. When inserting lens 102, air gap 510b is formed below lens 102 and above shield 430.
    • Step 2: Insertion of OPFE 104 into base 420 of actuator 108 from the top (Y direction, perpendicular to optical axis 114) using e.g. a pick-and-place method. This can be achieved because of the mechanical structure of base 420.
    • Step 3: Fixedly attach top lid 110 to the top surface of shield 430. When fixing top lid 110, air gap 510a is formed above lens 102 and below lid 110.
    • Step 4: Installation of image sensor-PCB sub-assembly 106. Sensor 116 may be installed using two optional methods: (1) an active alignment process or (2) a mechanical alignment process. The two alignment processes allow setting the image sensor perpendicular to optical axis 114 with different accuracy, as known in the art.


The creation of air gaps 510a, 510b in respectively steps 1 and 3 above allows motion of lens 102 relative to the other parts of camera 100.


The assembly process above (steps 1-4) is relevant to a folded camera as in FIG. 1B and FIG. 5B. In some other embodiments, for example as in FIGS. 1C and 1D, the assembly process may include insertion of the OPFE from one side and insertion of the lens from the opposite side. In yet other embodiments, the insertion of the lens may be through a bottom opening (not shown) in a bottom surface of the shield opposite to the top opening above, and the bottom opening is then further covered by a bottom shield lid (not shown), which may have the same or similar thickness as the top lid.


In yet other embodiments with an actuator such as actuator 108′ where the base is separated into two parts, OPFE 104 may be installed from other directions (top or front) in base back side 432. In this case, base back side 432 may be attached to actuator 108′ after the OPFE and lens installation in a step 2′ between steps 2 and 3 (FIG. 8B).


As used herein, the phrase “for example,” “such as”, “for instance” and variants thereof describe non-limiting embodiments of the presently disclosed subject matter. Reference in the specification to “one case”, “some cases”, “and other cases” or variants thereof means that a particular feature, structure or characteristic described in connection with the embodiment(s) is included in at least one embodiment of the presently disclosed subject matter. Thus, the appearance of the phrase “one case”, “some cases”, “other cases” or variants thereof does not necessarily refer to the same embodiment(s).


Unless otherwise stated, the use of the expression “and/or” between the last two members of a list of options for selection indicates that a selection of one or more of the listed options is appropriate and may be made.


It should be understood that where the claims or specification refer to “a” or “an” element, such reference is not to be construed as there being only one of that element.


It is appreciated that certain features of embodiments disclosed herein, which are, for clarity, described in the context of separate embodiments or examples, may also be provided in combination in a single embodiment. Conversely, various features disclosed herein, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable sub-combination or as suitable in any other described embodiment disclosed herein. Certain features described in the context of various embodiments are not to be considered essential features of those embodiments, unless the embodiment is inoperative without those elements.


In embodiments of the presently disclosed subject matter one or more steps illustrated in FIGS. 8A and 8B may be executed in a different order and/or one or more groups of steps may be executed simultaneously.


All patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual patents and patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission that such reference is available as prior art to the present invention.


While this disclosure has been described in terms of certain embodiments and generally associated methods, alterations and permutations of the embodiments and methods will be apparent to those skilled in the art. The disclosure is to be understood as not limited by the specific embodiments described herein, but only by the scope of the appended claims.

Claims
  • 1. A method for assembling a folded camera, comprising: providing an actuator for the folded camera, the actuator having a shield and a lens carrier, wherein the shield has top and bottom surfaces;inserting a movable lens of the folded camera into the actuator through respective openings in the shield top or bottom surfaces and the lens carrier, the movable lens having a lens optical axis;inserting an optical path folding element (OPFE) into the actuator, wherein the OPFE folds light arriving from a first direction to a second direction, wherein the top surface of the shield faces the light from the first direction, and wherein the second direction is substantially parallel to the lens optical axis;covering the shield opening with a lid, such that air gaps formed above and below the movable lens are dimensioned to allow motion of the lens without interference during actuation; andattaching an image sensor of the folded camera to the actuator,wherein the respective opening is opposite the surface of the movable lens facing the lid.
  • 2. The method of claim 1, wherein the actuator includes a base, and wherein at least parts of the base are surrounded by the shield.
  • 3. The method of claim 2, wherein the inserting the OPFE into the actuator includes inserting the OPFE into the base of the actuator from a direction parallel to the first direction.
  • 4. The method of claim 1, wherein the actuator includes a base separated into two base parts, and wherein the inserting the OPFE into the actuator includes inserting the OPFE into the base of the actuator from a direction parallel to the first direction or from a direction parallel to the second direction.
  • 5. The method of claim 1, wherein the covering the shield opening with a lid includes fixedly attaching the lid to the shield.
  • 6. The method of claim 1, wherein the opening is a top opening in the shield, and wherein the inserting the OPFE into the actuator includes inserting the OPFE from a direction parallel to the first direction.
  • 7. The method of claim 1, wherein each air gap is in the range of 10-50 μm.
  • 8. The method of claim 1, wherein each air gap is in the range of 10-100 μm.
  • 9. The method of claim 1, wherein each air gap is in the range of 10-150 μm.
  • 10. The method of claim 1, wherein the folded camera is used in a mobile device.
  • 11. The method of claim 10, wherein the mobile device is a smartphone.
  • 12. A method for assembling a folded camera, comprising: providing an actuator for the folded camera, the actuator having a shield, a lens carrier and a base separated into a back base part and a front base part, wherein the shield has top and bottom surfaces;inserting a movable lens of the folded camera into the actuator through respective openings in the shield top or bottom surfaces and the lens carrier, the movable lens having a lens optical axis;inserting an optical path folding element (OPFE) into the actuator back base part, wherein the OPFE folds light arriving from a first direction to a second direction, wherein the top surface of the shield faces the light from the first direction, and the second direction is substantially parallel to the lens optical axis;attaching the back base part to the front base part;covering the shield opening with a lid, such that air gaps formed above and below the movable lens are dimensioned to allow motion of the lens without interference during actuation; andattaching an image sensor of the folded camera to the actuator,wherein the respective opening is opposite the surface of the movable lens facing the lid.
  • 13. The method of claim 12, wherein the covering the shield opening with a lid includes fixedly attaching the lid to the shield.
  • 14. The method of claim 12, wherein the opening is a top opening in the shield, and wherein the inserting the OPFE into the actuator includes inserting the OPFE from a direction parallel to the first direction.
  • 15. The method of claim 12, wherein each air gap is in the range of 10-50 μm.
  • 16. The method of claim 12, wherein each air gap is in the range of 10-100 μm.
  • 17. The method of claim 12, wherein each air gap is in the range of 10-150 μm.
  • 18. The method of claim 12, wherein the folded camera is used in a mobile device.
  • 19. The method of claim 18, wherein the mobile device is a smartphone.
CROSS REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/110,344 filed Dec. 3, 2020 (now allowed), which was a continuation of U.S. patent application Ser. No. 16/332,946 filed Mar. 13, 2019 (now U.S. Pat. No. 10,884,321), which was a 371 application from international patent application No. PCT/IB2017/058403 filed Dec. 26, 2017, and is related to and claims the benefit of U.S. Provisional patent application 62/445,271 filed Jan. 12, 2017, which is incorporated herein by reference in its entirety.

US Referenced Citations (389)
Number Name Date Kind
3085354 Rasmussen et al. Apr 1963 A
3584513 Gates Jun 1971 A
3941001 LaSarge Mar 1976 A
4199785 McCullough et al. Apr 1980 A
4792822 Akiyama et al. Dec 1988 A
5005083 Grage et al. Apr 1991 A
5032917 Aschwanden Jul 1991 A
5041852 Misawa et al. Aug 1991 A
5051830 von Hoessle Sep 1991 A
5099263 Matsumoto et al. Mar 1992 A
5248971 Mandl Sep 1993 A
5287093 Amano et al. Feb 1994 A
5331465 Miyano Jul 1994 A
5394520 Hall Feb 1995 A
5436660 Sakamoto Jul 1995 A
5444478 Lelong et al. Aug 1995 A
5459520 Sasaki Oct 1995 A
5502537 Utagawa Mar 1996 A
5657402 Bender et al. Aug 1997 A
5682198 Katayama et al. Oct 1997 A
5768443 Michael et al. Jun 1998 A
5892855 Kakinami et al. Apr 1999 A
5926190 Turkowski et al. Jul 1999 A
5940641 McIntyre et al. Aug 1999 A
5982951 Katayama et al. Nov 1999 A
6101334 Fantone Aug 2000 A
6128416 Oura Oct 2000 A
6148120 Sussman Nov 2000 A
6201533 Rosenberg et al. Mar 2001 B1
6208765 Bergen Mar 2001 B1
6211668 Duesler et al. Apr 2001 B1
6215299 Reynolds et al. Apr 2001 B1
6222359 Duesler et al. Apr 2001 B1
6268611 Pettersson et al. Jul 2001 B1
6520643 Holman et al. Feb 2003 B1
6549215 Jouppi Apr 2003 B2
6611289 Yu et al. Aug 2003 B1
6643416 Daniels et al. Nov 2003 B1
6650368 Doron Nov 2003 B1
6680748 Monti Jan 2004 B1
6714665 Hanna et al. Mar 2004 B1
6724421 Glatt Apr 2004 B1
6738073 Park et al. May 2004 B2
6741250 Furlan et al. May 2004 B1
6750903 Miyatake et al. Jun 2004 B1
6778207 Lee et al. Aug 2004 B1
7002583 Rabb, III Feb 2006 B2
7015954 Foote et al. Mar 2006 B1
7038716 Klein et al. May 2006 B2
7199348 Olsen et al. Apr 2007 B2
7206136 Labaziewicz et al. Apr 2007 B2
7248294 Slatter Jul 2007 B2
7256944 Labaziewicz et al. Aug 2007 B2
7305180 Labaziewicz et al. Dec 2007 B2
7339621 Fortier Mar 2008 B2
7346217 Gold, Jr. Mar 2008 B1
7365793 Cheatle et al. Apr 2008 B2
7411610 Doyle Aug 2008 B2
7424218 Baudisch et al. Sep 2008 B2
7509041 Hosono Mar 2009 B2
7533819 Barkan et al. May 2009 B2
7619683 Davis Nov 2009 B2
7738016 Toyofuku Jun 2010 B2
7773121 Huntsberger et al. Aug 2010 B1
7809256 Kuroda et al. Oct 2010 B2
7880776 LeGall et al. Feb 2011 B2
7918398 Li et al. Apr 2011 B2
7964835 Olsen et al. Jun 2011 B2
7978239 Deever et al. Jul 2011 B2
8115825 Culbert et al. Feb 2012 B2
8149327 Lin et al. Apr 2012 B2
8154610 Jo et al. Apr 2012 B2
8238695 Davey et al. Aug 2012 B1
8274552 Dahi et al. Sep 2012 B2
8390729 Long et al. Mar 2013 B2
8391697 Cho et al. Mar 2013 B2
8400555 Georgiev et al. Mar 2013 B1
8439265 Ferren et al. May 2013 B2
8446484 Muukki et al. May 2013 B2
8483452 Ueda et al. Jul 2013 B2
8514491 Duparre Aug 2013 B2
8547389 Hoppe et al. Oct 2013 B2
8553106 Scarff Oct 2013 B2
8587691 Takane Nov 2013 B2
8619148 Watts et al. Dec 2013 B1
8752969 Kane et al. Jun 2014 B1
8803990 Smith Aug 2014 B2
8896655 Mauchly et al. Nov 2014 B2
8976255 Matsuoto et al. Mar 2015 B2
9019387 Nakano Apr 2015 B2
9025073 Attar et al. May 2015 B2
9025077 Attar et al. May 2015 B2
9041835 Honda May 2015 B2
9137447 Shibuno Sep 2015 B2
9185291 Shabtay et al. Nov 2015 B1
9215377 Sokeila et al. Dec 2015 B2
9215385 Luo Dec 2015 B2
9270875 Brisedoux et al. Feb 2016 B2
9286680 Jiang et al. Mar 2016 B1
9344626 Silverstein et al. May 2016 B2
9360671 Zhou Jun 2016 B1
9369621 Malone et al. Jun 2016 B2
9413930 Geerds Aug 2016 B2
9413984 Attar et al. Aug 2016 B2
9420180 Jin Aug 2016 B2
9438792 Nakada et al. Sep 2016 B2
9485432 Medasani et al. Nov 2016 B1
9578257 Attar et al. Feb 2017 B2
9618748 Munger et al. Apr 2017 B2
9681057 Attar et al. Jun 2017 B2
9723220 Sugie Aug 2017 B2
9736365 Laroia Aug 2017 B2
9736391 Du et al. Aug 2017 B2
9768310 Ahn et al. Sep 2017 B2
9800798 Ravirala et al. Oct 2017 B2
9851803 Fisher et al. Dec 2017 B2
9894287 Qian et al. Feb 2018 B2
9900522 Lu Feb 2018 B2
9927600 Goldenberg et al. Mar 2018 B2
10884321 Jerby Jan 2021 B2
11809065 Jerby Nov 2023 B2
20020005902 Yuen Jan 2002 A1
20020030163 Zhang Mar 2002 A1
20020054214 Yoshikawa May 2002 A1
20020063711 Park et al. May 2002 A1
20020075258 Park et al. Jun 2002 A1
20020122113 Foote Sep 2002 A1
20020136554 Nomura et al. Sep 2002 A1
20020167741 Koiwai et al. Nov 2002 A1
20030030729 Prentice et al. Feb 2003 A1
20030093805 Gin May 2003 A1
20030156751 Lee et al. Aug 2003 A1
20030160886 Misawa et al. Aug 2003 A1
20030162564 Kimura et al. Aug 2003 A1
20030202113 Yoshikawa Oct 2003 A1
20040008773 Itokawa Jan 2004 A1
20040012683 Yamasaki et al. Jan 2004 A1
20040017386 Liu et al. Jan 2004 A1
20040027367 Pilu Feb 2004 A1
20040061788 Bateman Apr 2004 A1
20040141065 Hara et al. Jul 2004 A1
20040141086 Mihara Jul 2004 A1
20040227838 Atarashi et al. Nov 2004 A1
20040239313 Godkin Dec 2004 A1
20040240052 Minefuji et al. Dec 2004 A1
20050013509 Samadani Jan 2005 A1
20050046740 Davis Mar 2005 A1
20050134697 Mikkonen et al. Jun 2005 A1
20050141390 Lee et al. Jun 2005 A1
20050157184 Nakanishi et al. Jul 2005 A1
20050168834 Matsumoto et al. Aug 2005 A1
20050185049 Iwai et al. Aug 2005 A1
20050200718 Lee Sep 2005 A1
20050248667 Schweng et al. Nov 2005 A1
20060054782 Olsen et al. Mar 2006 A1
20060056056 Ahiska et al. Mar 2006 A1
20060067672 Washisu et al. Mar 2006 A1
20060102907 Lee et al. May 2006 A1
20060125937 LeGall et al. Jun 2006 A1
20060126737 Boice et al. Jun 2006 A1
20060170793 Pasquarette et al. Aug 2006 A1
20060175549 Miller et al. Aug 2006 A1
20060181619 Liow et al. Aug 2006 A1
20060187310 Janson et al. Aug 2006 A1
20060187322 Janson et al. Aug 2006 A1
20060187338 May et al. Aug 2006 A1
20060227236 Pak Oct 2006 A1
20070024737 Nakamura et al. Feb 2007 A1
20070114990 Godkin May 2007 A1
20070126911 Nanjo Jun 2007 A1
20070127040 Davidovici Jun 2007 A1
20070159344 Kisacanin Jul 2007 A1
20070177025 Kopet et al. Aug 2007 A1
20070188653 Pollock et al. Aug 2007 A1
20070189386 Imagawa et al. Aug 2007 A1
20070257184 Olsen et al. Nov 2007 A1
20070285550 Son Dec 2007 A1
20080017557 Witdouck Jan 2008 A1
20080024614 Li et al. Jan 2008 A1
20080025634 Border et al. Jan 2008 A1
20080030592 Border et al. Feb 2008 A1
20080030611 Jenkins Feb 2008 A1
20080084484 Ochi et al. Apr 2008 A1
20080088942 Seo Apr 2008 A1
20080106629 Kurtz et al. May 2008 A1
20080117316 Orimoto May 2008 A1
20080129831 Cho et al. Jun 2008 A1
20080218611 Parulski et al. Sep 2008 A1
20080218612 Border et al. Sep 2008 A1
20080218613 Janson et al. Sep 2008 A1
20080219654 Border et al. Sep 2008 A1
20090086074 Li et al. Apr 2009 A1
20090102948 Scherling Apr 2009 A1
20090109556 Shimizu et al. Apr 2009 A1
20090122195 Van Baar et al. May 2009 A1
20090122406 Rouvinen et al. May 2009 A1
20090128644 Camp et al. May 2009 A1
20090168135 Yu et al. Jul 2009 A1
20090200451 Conners Aug 2009 A1
20090219547 Kauhanen et al. Sep 2009 A1
20090234542 Orlewski Sep 2009 A1
20090252484 Hasuda et al. Oct 2009 A1
20090295949 Ojala Dec 2009 A1
20090324135 Kondo et al. Dec 2009 A1
20100013906 Border et al. Jan 2010 A1
20100020221 Tupman et al. Jan 2010 A1
20100060746 Olsen et al. Mar 2010 A9
20100097444 Lablans Apr 2010 A1
20100103194 Chen et al. Apr 2010 A1
20100134621 Namkoong et al. Jun 2010 A1
20100165131 Makimoto et al. Jul 2010 A1
20100196001 Ryynänen et al. Aug 2010 A1
20100202068 Ito Aug 2010 A1
20100238327 Griffith et al. Sep 2010 A1
20100246024 Aoki et al. Sep 2010 A1
20100259836 Kang et al. Oct 2010 A1
20100265331 Tanaka Oct 2010 A1
20100283842 Guissin et al. Nov 2010 A1
20100321494 Peterson et al. Dec 2010 A1
20110058320 Kim et al. Mar 2011 A1
20110063417 Peters et al. Mar 2011 A1
20110063446 McMordie et al. Mar 2011 A1
20110064327 Dagher et al. Mar 2011 A1
20110080487 Venkataraman et al. Apr 2011 A1
20110121666 Park et al. May 2011 A1
20110128288 Petrou et al. Jun 2011 A1
20110164172 Shintani et al. Jul 2011 A1
20110221599 Högasten Sep 2011 A1
20110229054 Weston et al. Sep 2011 A1
20110234798 Chou Sep 2011 A1
20110234853 Hayashi et al. Sep 2011 A1
20110234881 Wakabayashi et al. Sep 2011 A1
20110242286 Pace et al. Oct 2011 A1
20110242355 Goma et al. Oct 2011 A1
20110285714 Swic et al. Nov 2011 A1
20110298966 Kirschstein et al. Dec 2011 A1
20120014682 David et al. Jan 2012 A1
20120026366 Golan et al. Feb 2012 A1
20120044372 Cote et al. Feb 2012 A1
20120062780 Morihisa Mar 2012 A1
20120069235 Imai Mar 2012 A1
20120075489 Nishihara Mar 2012 A1
20120105579 Jeon et al. May 2012 A1
20120124525 Kang May 2012 A1
20120154547 Aizawa Jun 2012 A1
20120154614 Moriya et al. Jun 2012 A1
20120196648 Havens et al. Aug 2012 A1
20120229663 Nelson et al. Sep 2012 A1
20120249815 Bohn et al. Oct 2012 A1
20120287315 Huang et al. Nov 2012 A1
20120320467 Baik et al. Dec 2012 A1
20130002928 Imai Jan 2013 A1
20130016427 Sugawara Jan 2013 A1
20130063629 Webster et al. Mar 2013 A1
20130076922 Shihoh et al. Mar 2013 A1
20130093842 Yahata Apr 2013 A1
20130094126 Rappoport et al. Apr 2013 A1
20130113894 Mirlay May 2013 A1
20130135445 Dahi et al. May 2013 A1
20130148215 Mori et al. Jun 2013 A1
20130148854 Wang et al. Jun 2013 A1
20130155176 Paripally et al. Jun 2013 A1
20130163085 Lim et al. Jun 2013 A1
20130182150 Asakura Jul 2013 A1
20130201360 Song Aug 2013 A1
20130202273 Ouedraogo et al. Aug 2013 A1
20130229544 Bando Sep 2013 A1
20130235224 Park et al. Sep 2013 A1
20130250150 Malone et al. Sep 2013 A1
20130258044 Betts-LaCroix Oct 2013 A1
20130258048 Wang et al. Oct 2013 A1
20130270419 Singh et al. Oct 2013 A1
20130278785 Nomura et al. Oct 2013 A1
20130286221 Shechtman et al. Oct 2013 A1
20130321668 Kamath Dec 2013 A1
20140009631 Topliss Jan 2014 A1
20140049615 Uwagawa Feb 2014 A1
20140118584 Lee et al. May 2014 A1
20140160311 Hwang et al. Jun 2014 A1
20140192224 Laroia Jul 2014 A1
20140192238 Attar et al. Jul 2014 A1
20140192253 Laroia Jul 2014 A1
20140218587 Shah Aug 2014 A1
20140313316 Olsson et al. Oct 2014 A1
20140362242 Takizawa Dec 2014 A1
20140376090 Terajima Dec 2014 A1
20140379103 Ishikawa et al. Dec 2014 A1
20150002683 Hu et al. Jan 2015 A1
20150002684 Kuchiki Jan 2015 A1
20150042870 Chan et al. Feb 2015 A1
20150070781 Cheng et al. Mar 2015 A1
20150086127 Camilus et al. Mar 2015 A1
20150092066 Geiss et al. Apr 2015 A1
20150103147 Ho et al. Apr 2015 A1
20150110345 Weichselbaum Apr 2015 A1
20150124059 Georgiev et al. May 2015 A1
20150138381 Ahn May 2015 A1
20150145965 Livyatan et al. May 2015 A1
20150154776 Zhang et al. Jun 2015 A1
20150162048 Hirata et al. Jun 2015 A1
20150195458 Nakayama et al. Jul 2015 A1
20150198464 El Alami Jul 2015 A1
20150215516 Dolgin Jul 2015 A1
20150237280 Choi et al. Aug 2015 A1
20150242994 Shen Aug 2015 A1
20150244906 Wu et al. Aug 2015 A1
20150253543 Mercado Sep 2015 A1
20150253647 Mercado Sep 2015 A1
20150261299 Wajs Sep 2015 A1
20150271471 Hsieh et al. Sep 2015 A1
20150281678 Park et al. Oct 2015 A1
20150286033 Osborne Oct 2015 A1
20150296112 Park et al. Oct 2015 A1
20150316744 Chen Nov 2015 A1
20150334309 Peng et al. Nov 2015 A1
20160044250 Shabtay et al. Feb 2016 A1
20160070088 Koguchi Mar 2016 A1
20160154066 Hioka et al. Jun 2016 A1
20160154202 Wippermann et al. Jun 2016 A1
20160154204 Lim et al. Jun 2016 A1
20160212358 Shikata Jul 2016 A1
20160212418 Demirdjian et al. Jul 2016 A1
20160238834 Erlich et al. Aug 2016 A1
20160241751 Park Aug 2016 A1
20160245669 Nomura Aug 2016 A1
20160291295 Shabtay et al. Oct 2016 A1
20160295112 Georgiev et al. Oct 2016 A1
20160301840 Du et al. Oct 2016 A1
20160301868 Acharya et al. Oct 2016 A1
20160342095 Bieling et al. Nov 2016 A1
20160353008 Osborne Dec 2016 A1
20160353012 Kao et al. Dec 2016 A1
20160381289 Kim et al. Dec 2016 A1
20170001577 Seagraves et al. Jan 2017 A1
20170019616 Zhu et al. Jan 2017 A1
20170070731 Darling et al. Mar 2017 A1
20170094187 Sharma et al. Mar 2017 A1
20170124987 Kim et al. May 2017 A1
20170150061 Shabtay et al. May 2017 A1
20170187962 Lee et al. Jun 2017 A1
20170214846 Du et al. Jul 2017 A1
20170214866 Zhu et al. Jul 2017 A1
20170219749 Hou et al. Aug 2017 A1
20170242225 Fiske Aug 2017 A1
20170276954 Bajorins et al. Sep 2017 A1
20170289458 Song et al. Oct 2017 A1
20180003925 Shmunk Jan 2018 A1
20180013944 Evans, V et al. Jan 2018 A1
20180017844 Yu et al. Jan 2018 A1
20180024329 Goldenberg et al. Jan 2018 A1
20180059379 Chou Mar 2018 A1
20180109660 Yoon et al. Apr 2018 A1
20180109710 Lee et al. Apr 2018 A1
20180120674 Avivi et al. May 2018 A1
20180150973 Tang et al. May 2018 A1
20180176426 Wei et al. Jun 2018 A1
20180184010 Cohen et al. Jun 2018 A1
20180198897 Tang et al. Jul 2018 A1
20180216925 Yasuda et al. Aug 2018 A1
20180241922 Baldwin et al. Aug 2018 A1
20180295292 Lee et al. Oct 2018 A1
20180300901 Wakai et al. Oct 2018 A1
20180307005 Price et al. Oct 2018 A1
20180329281 Ye Nov 2018 A1
20180368656 Austin et al. Dec 2018 A1
20190100156 Chung et al. Apr 2019 A1
20190121103 Bachar et al. Apr 2019 A1
20190121216 Shabtay et al. Apr 2019 A1
20190130822 Jung et al. May 2019 A1
20190154466 Fletcher May 2019 A1
20190213712 Lashdan et al. Jul 2019 A1
20190215440 Rivard et al. Jul 2019 A1
20190222758 Goldenberg et al. Jul 2019 A1
20190227338 Bachar et al. Jul 2019 A1
20190228562 Song Jul 2019 A1
20190297238 Klosterman Sep 2019 A1
20190320119 Miyoshi Oct 2019 A1
20200092486 Guo et al. Mar 2020 A1
20200103726 Shabtay et al. Apr 2020 A1
20200104034 Lee et al. Apr 2020 A1
20200118287 Hsieh et al. Apr 2020 A1
20200134848 El-Khamy et al. Apr 2020 A1
20200221026 Fridman et al. Jul 2020 A1
20200264403 Bachar et al. Aug 2020 A1
20200389580 Kodama et al. Dec 2020 A1
20210180989 Fukumura et al. Jun 2021 A1
20210208415 Goldenberg et al. Jul 2021 A1
20210333521 Yedid et al. Oct 2021 A9
20220252963 Shabtay et al. Aug 2022 A1
Foreign Referenced Citations (72)
Number Date Country
101276415 Oct 2008 CN
201514511 Jun 2010 CN
102130567 Jul 2011 CN
102215373 Oct 2011 CN
102739949 Oct 2012 CN
102982518 Mar 2013 CN
103024272 Apr 2013 CN
203406908 Jan 2014 CN
103841404 Jun 2014 CN
205301703 Jun 2016 CN
105827903 Aug 2016 CN
105847662 Aug 2016 CN
107608052 Jan 2018 CN
107682489 Feb 2018 CN
109729266 May 2019 CN
1536633 Jun 2005 EP
1780567 May 2007 EP
2523450 Nov 2012 EP
S59191146 Oct 1984 JP
04211230 Aug 1992 JP
H07318864 Dec 1995 JP
08271976 Oct 1996 JP
2002010276 Jan 2002 JP
2003298920 Oct 2003 JP
2003304024 Oct 2003 JP
2004056779 Feb 2004 JP
2004133054 Apr 2004 JP
2004245982 Sep 2004 JP
2005099265 Apr 2005 JP
2005122084 May 2005 JP
2005321592 Nov 2005 JP
2006191411 Jul 2006 JP
2006237914 Sep 2006 JP
2006238325 Sep 2006 JP
2007228006 Sep 2007 JP
2007306282 Nov 2007 JP
2008076485 Apr 2008 JP
2008271026 Nov 2008 JP
2010204341 Sep 2010 JP
2011055246 Mar 2011 JP
2011085666 Apr 2011 JP
2011138407 Jul 2011 JP
2011203283 Oct 2011 JP
2012132739 Jul 2012 JP
2013101213 May 2013 JP
2013106289 May 2013 JP
2016105577 Jun 2016 JP
2017146440 Aug 2017 JP
2019126179 Jul 2019 JP
20070005946 Jan 2007 KR
20090058229 Jun 2009 KR
20100008936 Jan 2010 KR
20110080590 Jul 2011 KR
20130104764 Sep 2013 KR
1020130135805 Nov 2013 KR
20140014787 Feb 2014 KR
101428042 Aug 2014 KR
101477178 Dec 2014 KR
20140144126 Dec 2014 KR
20150118012 Oct 2015 KR
20170105236 Sep 2017 KR
20180120894 Nov 2018 KR
20130085116 Jun 2019 KR
I407177 Sep 2013 TW
2000027131 May 2000 WO
2004084542 Sep 2004 WO
2006008805 Jan 2006 WO
2010122841 Oct 2010 WO
2014072818 May 2014 WO
2017025822 Feb 2017 WO
2017037688 Mar 2017 WO
2018130898 Jul 2018 WO
Non-Patent Literature Citations (16)
Entry
Statistical Modeling and Performance Characterization of a Real-Time Dual Camera Surveillance System, Greienhagen et al., Publisher: IEEE, 2000, 8 pages.
A 3MPixel Multi-Aperture Image Sensor with 0.7 μm Pixels in 0.11 μm CMOS, Fife et al., Stanford University, 2008, 3 pages.
Dual camera intelligent sensor for high definition 360 degrees surveillance, Scotti et al., Publisher: IET, May 9, 2000, 8 pages.
Dual-sensor foveated imaging system, Hua et al., Publisher: Optical Society of America, Jan. 14, 2008, 11 pages.
Defocus Video Matting, McGuire et al., Publisher: ACM SIGGRAPH, Jul. 31, 2005, 11 pages.
Compact multi-aperture imaging with high angular resolution, Santacana et al., Publisher: Optical Society of America, 2015, 10 pages.
Multi-Aperture Photography, Green et al., Publisher: Mitsubishi Electric Research Laboratories, Inc., Jul. 2007, 10 pages.
Multispectral Bilateral Video Fusion, Bennett et al., Publisher: IEEE, May 2007, 10 pages.
Super-resolution imaging using a camera array, Santacana et al., Publisher: Optical Society of America, 2014, 6 pages.
Optical Splitting Trees for High-Precision Monocular Imaging, McGuire et al., Publisher: IEEE, 2007, 11 pages.
High Performance Imaging Using Large Camera Arrays, Wilburn et al., Publisher: Association for Computing Machinery, Inc., 2005, 12 pages.
Real-time Edge-Aware Image Processing with the Bilateral Grid, Chen et al., Publisher: ACM SIGGRAPH, 2007, 9 pages.
Superimposed multi-resolution imaging, Carles et al., Publisher: Optical Society of America, 2017, 13 pages.
Viewfinder Alignment, Adams et al., Publisher: EUROGRAPHICS, 2008, 10 pages.
Dual-Camera System for Multi-Level Activity Recognition, Bodor et al., Publisher: IEEE, Oct. 2014, 6 pages.
Engineered to the task: Why camera-phone cameras are different, Giles Humpston, Publisher: Solid State Technology, Jun. 2009, 3 pages.
Related Publications (1)
Number Date Country
20240045312 A1 Feb 2024 US
Provisional Applications (1)
Number Date Country
62445271 Jan 2017 US
Continuations (2)
Number Date Country
Parent 17110344 Dec 2020 US
Child 18480530 US
Parent 16332946 US
Child 17110344 US