This invention relates to the safe use of High Intensity Discharge (HID) lamps. HID lamps operate by sending an electric arc through a mixture of gases enclosed in light transmissive discharge chamber, typically of a quartz or ceramic material. The gases in the discharge chamber ionize and produce visible and ultra-violet light. The ionized gases may reach high pressures and generate heat. Due to the generated heat, lamp parts have to be prevented from oxidizing in open air. For that reason, an outer envelope made of glass or quartz surrounds the discharge chamber. The envelope holds a vacuum or can be filled with inert gas. If the discharge chamber were to fail hot fragments would be ejected. If the pressure inside the discharge chamber is sufficiently high, the velocity of these fragments may be high enough to puncture the outer envelope that surrounds the oxygen-free chamber. Thus, the fragments may possibly injure persons or damage property. This invention relates the attachment and positioning of a shroud for containing these fragments while allowing optimal operation of the lamp.
HID lamps can be enclosed in housing or exposed directly, so called “outside use”. Exposed installation in a luminaire is considered to be outside use in this context. If the lamp is in a fully enclosed luminaire then the luminaire itself will prevent hot, high speed fragments from harming persons or property. The invention described here is for HID lamps which include a shroud to prevent the ejection of fragments.
HID lamps operate by sending electricity through a mixture of gases typically containing mercury and metal halide salts enclosed in a discharge chamber. The gases in the discharge chamber ionize, conduct electricity via an arc, and produce visible and ultra-violet light. The ionized gases can reach high pressures in some lamp types and generate heat. The discharge chamber may sustain high temperatures, and pressures for example, about 1000 degrees Celsius with pressures of 350 pounds per square inch (25 atmospheres) under standard operating conditions
The discharge chamber is typically suspended by two axial leads that supply electricity to the envelope and whose ends internal to the discharge chamber produce the electric arc. If exposed to oxygen, rapid oxidation of the discharge chamber and the electric leads would occur. The discharge chamber is therefore disposed within an anti-oxidation envelope containing a vacuum or an inert gas. This inert environment, which is free of oxygen, prevents oxidation damage to the discharge chamber and the leads that would otherwise shorten the life of the lamp. This anti-oxidation envelope is usually constructed of materials that also filter out LTV light as this may be harmful to the persons using the lamp as a light source. Typically the discharge chamber is suspended by its leads within the anti-oxidation envelope.
It is possible to construct the anti-oxidation envelope of such material that it also acts to prevent the ejection of fragments from the lamp.
Another solution is to place an internal enclosure surrounding the discharge chamber inside the anti-oxidation envelope to prevent the emission of fragments. If the overall lamp construction is compact, there may not be sufficient space to insert this internal enclosure. Furthermore, internal enclosures significantly increase the temperature of the discharge chamber and therefore often require redesign of the discharge chamber in order to prevent adverse effects over the life of the lamp.
A third solution is described by patent WO 2007/08872.9 where a shroud is placed external to the anti-oxidation envelope to prevent the emission of hot, high speed particles. This patent describes a shroud glued to the base. This mechanical arrangement has a tendency to degrade over time as the glue is subject to the high temperatures of the lamp. The advantage of a glued construction is a very rigid fixation of all elements to the lamp base.
The HID lamp in accordance with the invention comprises three nested envelopes where the outer envelope is a shroud, the intermediate envelope provides ultraviolet light filtering and an anti-oxidation environment, and the innermost envelope is a discharge chamber containing ionized gas during operation. The lamp is connected to the power source via a base element that has, for example, a screw type or locking pin arrangement which makes electro-mechanical connections
In one form of the invention, the anti-oxidation envelope is roughly cylindrical in shape and has a rounded end, which may have a cone shaped tip. The anti-oxidation envelope also has a mounting end. The anti-oxidation envelope permits the electrical leads connected to the discharge chamber to penetrate the mounting end of the envelope so that the leads can connect to the base element's external electrical terminals. The mounting end of the anti-oxidation envelope allows the passage of electrical leads and is fastened to the base element.
The anti-oxidation envelope in is in turn surrounded by a shroud preferably constructed of glass or quartz. However any transparent material of suitable mechanical and thermal properties can be used. The shroud retains any fragments that would be emitted in the event that the discharge chamber fails. Without a suitable shroud the HID lamp cannot be safely used in an exposed “outside” application. It is desirable to enable the use of the lamp “outside” without the use of a luminaire cover since it would allow minimization of the overall cost of the system and easy access to the lamp for replacement.
In one embodiment of the invention the shroud is cylindrically shaped. The shroud shape will preferably have a domed closed end and an open mounting end with the mounting end of the shroud being fastened to the base element via a peened collar. The domed top of the shroud is held in position via a spring which maintains a fixed distance between the anti-oxidation envelope and the shroud in both the axial and radial directions. The spring element, working in conjunction with the collar is used to achieve the mechanical objective of keeping the shroud optimally spaced away from the anti-oxidation envelope under conditions involving vibration and mechanical shocks. Typically these occur during shipping or high vibration use conditions such as installations on bridges. The spring element and collar are designed for minimal light blocking, while maintaining mechanical attachment and separation between glass/quartz parts which is long lived; other mechanisms such as the glue used in the WO 2007/08872.9 on the other hand, may degrade over time leading to a potential weakening of the attachment over the long life of some lamp types. The anti-oxidation envelope and thus the light source of the discharge chamber are centered inside the shroud for cosmetic reasons and for optimizing illumination from the lamp.
Exemplary embodiments of the invention will now be disclosed in more detail with reference to the figures, in which:
Throughout the figures, the same reference numerals are used for the same features.
The discharge chamber 130 comprises a sealed pressure envelope 134 containing the gas 133 and two electrical leads 131 and 132. The discharge chamber 130 is mechanically suspended within the anti-oxidation envelope 120 via the electrical leads 131 and 132 and the suspension structure 135 and 136, consisting of electrically conductive support members, which also enables electrical connection through the anti-oxidation envelope 120 at the mounting end, to the terminals 150 and 151 of the lamp.
The anti-oxidation envelope 120 is cylindrical in shape and has a rounded end 123 with a longitudinally extending cone shaped tip 124 and a mounting end where electrical and mechanical connection is made to a base 140 as is well known in the art. The anti-oxidation envelope 120 containing the suspension structure 135 and 136 is sealed so that it may contain the vacuum or inert gas 122.
The shroud 110, which surrounds the anti-oxidation envelope 120, comprises a domed end 112 and a flared mounting end 113 shown in the cutaway portion of the base and also in
A wire frame spring 170 is positioned between shroud 110 and anti-oxidation envelope 120. The combination of the collar 160 and the wire frame spring 170 keep the shroud 110 from being dislodged from its optimal position during normal use and shipping even in presence of external vibrations and mechanical shock. Specifically the collar 160 in conjunction with the spring 170 serves to keep the shroud 110 centered in both the longitudinal and radial direction about anti-oxidation envelope 120. Various types of springs may be used, some of which are illustrated in
The base 140 further contains the external electrical terminals 150 and 151 which are used to connect the lamp 100 to the electrical supply.
The collar 160 comprises a lower cylindrical section 162 which is shaped and dimensioned to snugly fit around the top portion of base 140 and has a tapered upper section 161 designed to fit over the domed end 112 of shroud 110 and capture the flared mounting end 113.
a and
The base 140 also contains one or more, but in this exemplary embodiment four, indentations 142 preferably disposed symmetrically about the top of the base 140.
During attachment of the anti-oxidation envelope 120 to the base 140 the wire frame spring 170 is placed over the cone shaped tip 124 extending longitudinally from rounded end 123 of anti-oxidation envelope 120.
Thereafter, shroud 110 is placed over the rounded end 123 of anti-oxidation envelope 120 and the flared end 113 of the shroud is placed on the base 140, while aligning the v-shaped notch 111 in shroud 110 with v-shaped projection 141 and compressing the wire frame spring 170. Collar 160 is then placed over the shroud 110 so that the upper portion 161 of collar 160 captures the flare shaped end 113 of shroud 110 and the lower cylindrical portion 162 is snugly placed over the top of base 140. The collar 160 is then fastened in place by peening part of lower cylindrical portion 162 into the indentations 142 of base 140. The peening process thus fastens the shroud 110 to the base 140 via collar 160.
The combination of peened collar 160 together with the stabilization produced by compressed wire frame spring 170 maintain the optimum position of the shroud 110 about the anti-oxidation envelope 120 even in the presence of mechanical shocks and vibration. At the same time the spacing between the shroud 110 and the anti-oxidation envelope 120 maintained by collar 160 in conjunction with wire frame spring 170 ensure that neither the shroud 110 nor the anti-oxidation envelope 120 will be damaged as a result of shocks and vibration. Further the spring and collar arrangement blocks a minimal amount of light.
The end of the wire frame spring 170 opposite the grasping member 173 forms a helical member 171, with these two members being joined via an integral attachment member 172. The helical member 171 has one or more helical turns. The helical member 171 is positioned by the attachment member 172 so that both the grasping member 173 and helical member 171 center on the longitudinal axis X-X of the lamp. The inner diameter of the helical member 171 should be of sufficient size so that it is easily passed over the longitudinally extending cone shaped tip 124 of anti-oxidation envelope 120 and will rest securely on the rounded end 123 of the anti-oxidation envelope 120 so that the axis Q-Q of wire frame spring 170 is aligned with the axis X-X of the lamp 100.
The wire frame spring 170 is shown with square cross section with rounded corners and a single turn around the anti-oxidation envelope 120, but many other configurations may be equally useful or even more useful given different circumstances and different materials for constructing the lamp components. For instance a hexagonal cross section with rounded corners could be used instead of square cross section for the grasping member 173. Alternatively sharp corners could be used. Likewise, several turns of wire around the anti-oxidation envelope 120 could be used if additional friction were needed. The turns around the anti-oxidation envelope could be an open or closed form where the coils are placed close to each other. Likewise the helical member 171 could comprise many turns or a single turn or even a small semi-circular strut.
Leaf spring 180 comprises an annular central member 184 to provide a structural base for parts of the leaf spring 180. Annular central member 184 defines a circular opening 185, centered on axis Y-Y. The diameter of circular opening 185 should be large enough to allow penetration of longitudinally extending cone shaped tip 124 of rounded end 123 of anti-oxidation envelope 120 and still allow annular central member 184 to rest securely on the rounded end 123 of the anti-oxidation envelope 120 with the axis Y-Y of the leaf spring 180 being coincident with the axis X-X of the lamp 100.
Extending from the annular central member 184 are three groups of integrally formed positioning members. A first group of lower spring members, 181a, 181b, 181c and 181d are symmetrically positioned around the axis Y-Y as best shown in
A third group of upper spring members 183a, 183b, 183c and 183d extend from the annular central member 184 directly above grasping members 182a, 182b, 182c, and 182d respectively. The connection points of each upper spring member 183 straddle the connection point of each grasping member 182. All upper spring members 183 are bent up from the annular central member 184 in the opposite direction from grasping members 182. The angle of bending from the flat center member 184 and the curvature of the upper spring members 183 are formed to ensure that the upper spring members 183 are compressed by the domed end 112 of shroud 110 when the shroud 110 is placed correctly on base 140.
The leaf spring 180 is attached by placing the grasping members 182 snugly onto the rounded top 123 of anti-oxidation envelope 120. It is preferred that the leaf spring 180 should be placed so that the circular opening 185 is centered on narrow cone shaped tip 124 of rounded end 123 of anti-oxidation envelope 120 and the surface of annular central member 184 is in direct contact with the rounded end 123 of anti-oxidation envelope 120. Shroud 110 should be placed onto base 140 while simultaneously compressing upper spring members 183 and lower spring members 182 of leaf spring 180.
Although this description describes a leaf spring 180 with lower spring members 181 alternating with grasping members 182 and having upper spring members 183 directly above simple grasping members 182 other configurations may be used and may be more suitable depending on manufacturing or material parameters. For instance but without being exhaustive there may be fewer grasping members 182 or there may be additional members including types that are known in the art but now shown here. Likewise there may be fewer upper spring members 183 or different types of spring members or the upper spring members 183 may be attached to the flat centered member 184 at different points, for instance in between the lower spring members 181 and the grasping members 182. These variations and others similar variations are included within the scope of our invention.
The spiral spring member 191 comprises one or more coils arranged in increasing diameters with the smallest coil being connected to the intermediate attachment member 192. The smallest coil diameter of spiral spring member 191 is such that it will fit around narrow cone shaped tip 124 of rounded end 123 of anti-oxidation envelope 120 and rest securely on the rounded end 123.
Ideally the intermediate attachment member 192 positions the centers of the coils of spiral spring member 191 directly over the center of the coils of grasping coil 193 with the axis X-X of the lamp 100 and the axis Z-Z of open spring 190 being coincident
Open spring 190 is attached by placing the grasping coil 193 snugly onto the rounded top 123 of anti-oxidation envelope 120 with the smallest coil of spiral spring member 191 centered on narrow cone shaped tip 124 of rounded end 123 of anti-oxidation envelope 120 and in direct contact with the rounded end 123. Shroud 110 should be placed onto base 140 while simultaneously compressing the spiral spring member 191.
Although this description of open spring 190 includes a spiral spring member 191 other arrangements are also possible such as using a helical spring member in place of or to augment the spiral spring member 191. Likewise the spiral spring member 191 of open spring 190 could be used to replace or augment the helical member 171 of wire frame spring 170.
Although this description describes a cylindrically shaped lamp with a domed end and a base end other shapes are possible and often used such as bulbous cylinders, and lamps with two base ends. Likewise the lamp could have a hexagonal or square cross section as opposed to the round cross section described. Indeed it may be desirable to use different shapes for the various envelopes within various external shapes of the shroud. These variation and any other similar variations are included in our invention.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2010/053484 | 7/30/2010 | WO | 00 | 3/2/2012 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2011/027241 | 3/10/2011 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4401913 | Koza | Aug 1983 | A |
4499396 | Fohl et al. | Feb 1985 | A |
5065069 | Hunter | Nov 1991 | A |
5079480 | Canale | Jan 1992 | A |
6133677 | Shippee | Oct 2000 | A |
6326721 | Shippee | Dec 2001 | B1 |
6614188 | Lindhout | Sep 2003 | B1 |
20090267480 | Kawakatsu et al. | Oct 2009 | A1 |
20090278435 | Sasai | Nov 2009 | A1 |
Number | Date | Country |
---|---|---|
2031634 | Mar 2009 | EP |
1574750 | Jul 1969 | FR |
440138 | Dec 1935 | GB |
2009152171 | Jul 2009 | JP |
2009289524 | Dec 2009 | JP |
2007088729 | Aug 2007 | WO |
2008055543 | May 2008 | WO |
2009017144 | May 2009 | WO |
Number | Date | Country | |
---|---|---|---|
20120153820 A1 | Jun 2012 | US |
Number | Date | Country | |
---|---|---|---|
61239882 | Sep 2009 | US |