Compact, high speed electrical connector

Information

  • Patent Grant
  • 11817655
  • Patent Number
    11,817,655
  • Date Filed
    Thursday, September 16, 2021
    3 years ago
  • Date Issued
    Tuesday, November 14, 2023
    a year ago
Abstract
An electrical connector including a front housing member, signal and ground terminals disposed in a row in the front housing member, a cover member mounted to a rear of the front housing member, and a lossy member disposed in the cover member and contacting the ground terminals. Such a configuration improves signal integrity of the electronical connector while simplifying the manufacture and assembly of the electrical connector and reducing the cost thereof.
Description
RELATED APPLICATIONS

This application claims priority to and the benefit of Chinese Patent Application Serial No. 202022135407.9, filed on Sep. 25, 2020. The entire contents of these applications are incorporated herein by reference in their entirety.


FIELD

This application relates to electrical connectors, and in particular to an electrical connector for providing an electrical connection between electronic systems.


BACKGROUND

Electrical connectors are used to provide electrical connections between different electronic systems through conductive terminals. In certain applications, an electrical connector may provide an electrical connection between a first electronic system, such as a motherboard, and a second electronic system, such as a daughter card. Tail portions of the conductive terminals of the electrical connector are electrically connected to conductive portions of the first electronic system by, for example, soldering.


The electrical connector may act as a female connector for interfacing directly with conductive portions on or near the edge of the second electronic system, such as a daughter card, such that the conductive portions of the second electronic system are in contact with contact portions of the corresponding conductive terminals of the electrical connector. In this way, the conductive portions of the second electronic system may be electrically connected to the corresponding conductive portions of the first electronic system via the conductive terminals of the electrical connector, thereby establishing the electrical connection between the first electronic system and the second electronic system.


In other system configurations, a connector mounted to an electronic system may form interface indirectly with the second electronic system through a cable. The cable may be terminated with a plug connector that mates with a plug connector attached to a cable that is in turn connected to the electronic system. Electrical connections to the first electronic are nonetheless established through the conductive terminals of the connector mounted to the first electronic system.


BRIEF SUMMARY

Aspects of the present disclosure relate to compact, high speed electrical connectors with improved signal integrity.


Some embodiments relate to an electrical connector. The electrical connector may include a front housing member comprising a front member and a cover member mounted to a rear of the front member; a plurality of terminals arranged in the front housing member; and a bridging member comprising portions extending through the cover member and engaging a subset of the plurality of terminals.


In some embodiments, the bridging member may provide a conductive or partially conductive path among ground terminals of the plurality of terminals.


In some embodiments, the bridging member may be made of an electrically lossy material.


In some embodiments, the plurality of terminals may be arranged in two terminal rows mutually opposed and spaced apart, with the terminals in each of the terminal row aligned therein.


In some embodiments, the two terminal rows may be spaced apart in a manner that the terminals are offset from each other or aligned with each other along an arrangement direction.


In some embodiments, at least a portion of the plurality of terminals each may include a contact portion, a tail portion, and a body portion extending between the contact portion and the tail portion. For each of the at least a portion of the plurality of terminals, an accommodation space may form adjacent the body portion.


In some embodiments, a dimension of the accommodation space may match with a cross-sectional dimension of the cover member such that the cover member can be received in the accommodation space.


In some embodiments, the cover member may be fused to the front housing member and retain the at least a portion of the plurality of terminals in the front housing member.


In some embodiments, the cover member may include a recess. The bridging member may be disposed in the recess such that an outer surface of the cover member is approximately flush with an outer surface of the front member.


In some embodiments, the plurality of terminals may include signal terminals and ground terminals. The ground terminals may form the subset of the plurality of terminals. The ground terminals may include protruding portions extending from the body portions of the ground terminals into respective accommodation spaces.


Some embodiments relate to an electrical connector. The electrical connector may include a front housing member; a plurality of terminals disposed in a row in the front housing member, the plurality of terminals each comprising a contact portion, a tail portion, a body portion extending between the contact portion and the tail portion, and an accommodation space in parallel to the body portion, the plurality of terminals comprising ground terminals comprising protrusion portions protruding into respective accommodation spaces; and a lossy member comprising slots receiving the protrusion portions of the ground terminals.


In some embodiments, the front housing member may include top and bottom faces opposite each other, left and right side faces opposite each other, and front and rear side faces opposite each other, the front side face comprising a socket, the rear side face comprising a cavity. The electrical connector may include a cover member disposed in the cavity of the rear side face of the front housing member and fused to the front housing member.


In some embodiments, the cover member may include slots. The slots of the lossy member may be accessible via the slots of the cover member.


In some embodiments, the protruding portions of the ground terminals may protrude into the slots of the cover member.


In some embodiments, the lossy member may include a plurality of pairs of ribs. The slots of the lossy member may be between pairs of the plurality of pairs of ribs.


In some embodiments, the protruding portions of the ground terminals may be sandwiched between respective pairs of the plurality of pairs of ribs whereby the ground terminals are connected to the lossy member.


In some embodiments, the cover member may include a recess for receiving the lossy member.


Some embodiments relate to a method of manufacturing an electrical connector comprising a plurality of terminals each comprising a contact portion, a tail portion, and a body portion extending between the contact portion and the tail portion. The method may include inserting the plurality of terminals into a front housing member through an opening in a rear of the front housing; inserting a cover member into the opening in the rear and securing the cover member to the front housing; and filling a cavity of the cover member with lossy material.


In some embodiments, the cover member may be secured to the front housing member by a hot melt process.


In some embodiments, the filling the cavity of the cover member with the lossy material may include before or after the cover member is attached, molding the lossy material into the cavity, or inserting a member molded from the lossy material into the cavity.


Some embodiments relate to an electrical connector. The electrical connector may include a front housing member; a plurality of terminals may be arranged in the front housing member, the plurality of terminals comprising signal terminals and ground terminals; a cover member mounted to the front housing member; and a bridging member disposed in the cover member and connecting the ground terminals together.


In some embodiments, the bridging member may provide a conductive or partially conductive path among the ground terminals which may reduce electrical resonances.


In some embodiments, the bridging member may be made of an electrically lossy material.


In some embodiments, the bridging member may be molded to the cover member.


In some embodiments, the bridging member may be made as a separate member and may be mounted to the cover member.


In some embodiments, the cover member may electrically isolate the signal terminals from the bridging member.


In some embodiments, the plurality of terminals may be arranged in one or more terminal rows in the front housing member, with the terminals in each of the terminal rows aligned therein.


In some embodiments, the plurality of terminals may be arranged in two terminal rows mutually opposed and spaced apart, with the terminals in each of the terminal row aligned therein.


In some embodiments, the two terminal rows may be spaced apart in a manner that the terminals may be offset from each other or aligned with each other along an arrangement direction.


In some embodiments, at least one of the one or more terminal rows may include ground terminals and a plurality of pairs of signal terminals, and the ground terminals may separate the plurality of pairs of signal terminals from each other.


In some embodiments, each terminal in each of the at least one terminal row may include a contact portion, a tail portion and a body portion extending between the contact portion and the tail portion, and the body portion may form an accommodation space.


In some embodiments, the cover member may include at least one cover member, a dimension of the accommodation space of one terminal row of the at least one terminal row may match with a cross-sectional dimension of a corresponding cover member of the at least one cover member, such that the corresponding cover member can be received in the accommodation space of the one terminal row.


In some embodiments, the corresponding cover member may retain the one terminal row in the front housing member when received in the accommodation space of the one terminal row.


In some embodiments, the front housing member may include a first cavity, and the corresponding cover member may retain the one terminal row in the first cavity.


In some embodiments, an outer surface of the corresponding cover member may be approximately flush with that of the front housing member.


In some embodiments, each of the ground terminals may further include a protruding portion extending from the body portion of the ground terminal into the accommodation space.


In some embodiments, each of the at least one cover member may include a first set of slots, and at least a portion of the bridging member may be accessible via the first set of slots.


In some embodiments, the protruding portion of each of the ground terminals may be inserted into the bridging member through a corresponding one of the first set of slots in the cover member, when the corresponding cover member may be received in the accommodation space.


In some embodiments, the bridging member may further include a plurality of pairs of ribs extending therefrom, each pair of the plurality of pair of ribs may define a slot therebetween, and each pair of the plurality of pairs of ribs may be inserted in a corresponding one of the first set of slots in the cover member and may be accessible via the corresponding slot.


In some embodiments, the protruding portion of each of the ground terminals may be sandwiched between a corresponding pair of the plurality of pairs of ribs, whereby each of the ground terminals may be connected to the bridging member.


In some embodiments, the cover member may further include a first recess recessed into the cover member for receiving the bridging member.


In some embodiments, the corresponding cover member may be secured to the front housing member by a hot melt process.


In some embodiments, the corresponding cover member may include a second set of slots, and the front housing member may include a first set of protrusions extending into the first cavity and may be capable of mating with the second set of slots.


In some embodiments, the corresponding cover member may further include a thermal melt bar capable of being heated and melted to flow into the second set of slots so as to secure the corresponding cover member to the front housing member, when the first set of protrusions mate with the second set of slots.


These techniques may be used alone or in any suitable combination. The foregoing summary is provided by way of illustration and is not intended to be limiting.





BRIEF DESCRIPTION OF DRAWINGS

The above and other aspects of the present disclosure will be more thoroughly understood and appreciated below when read in conjunction with the appended drawings. It should be noted that the appended drawings are only schematic and are not drawn to scale. In the appended drawings:



FIG. 1A is a perspective view of a right triangle connector, according to some embodiments.



FIG. 1B is another perspective view of the right angle connector shown in FIG. 1A.



FIG. 1C is a front view of the right angle connector shown in FIG. 1A.



FIG. 1D is a rear view of the right angle connector shown in FIG. 1A with the cover member and the bridging member removed.



FIG. 1E is a cross-sectional view along line E-E in FIG. 1C.



FIG. 1F is a cross-sectional view along line F-F in FIG. 1C.



FIG. 1G is a bottom view of the right angle connector shown in FIG. 1A.



FIG. 1H is an exploded view of the right angle connector shown in FIG. 1A.



FIG. 2 is a perspective view of the front housing member of the right angle connector shown in FIG. 1A, according to some embodiments.



FIG. 3A is a perspective view of some of the terminals in a first terminal row of the right angle connector shown in FIG. 1A.



FIG. 3B is another perspective view of the terminals shown in FIG. 3A with the ground terminals connected to the bridging member.



FIG. 4A is a perspective view of the set of three terminals of FIG. 3A.



FIG. 4B is a perspective view of a ground terminal of the set of three terminals shown in FIG. 4A.



FIG. 4C is a side view of the ground terminal shown in FIG. 4B.



FIG. 4D is a perspective view of a signal terminal of the set of three terminals shown in FIG. 4A.



FIG. 4E is a side view of the signal terminal shown in FIG. 4D.



FIG. 5A is a perspective view of the cover member of the right angle connector shown in FIG. 1A.



FIG. 5B is another perspective view of the cover member shown in FIG. 5A.



FIG. 6A is a perspective view of the bridging member of the right angle connector shown in FIG. 1A.



FIG. 6B is another perspective view of the bridging member shown in FIG. 6A.





LIST OF REFERENCE NUMERALS






    • 1 electrical connector


    • 100 front housing member


    • 101 top face


    • 103 bottom face


    • 105 front side face


    • 107 rear side face


    • 109 left side face


    • 111 right side face


    • 113
      a first socket


    • 113
      b second socket


    • 115
      a first positioning protrusion


    • 115
      b second positioning protrusion


    • 116 mounting slot


    • 117
      a first cavity


    • 118
      a first opening


    • 119
      a terminal slot


    • 121
      a a first set of protrusions


    • 200 terminals


    • 200
      a a first terminal row


    • 200
      b a second terminal row


    • 201 contact portion


    • 203 tail portion


    • 205 body portion


    • 207 accommodation space


    • 209 protruding portion


    • 210 ground terminal


    • 220 first signal terminal


    • 230 second signal terminal


    • 300 bridging member


    • 301 first surface


    • 303 second surface


    • 305
      a, 305b ribs


    • 307 slot


    • 400 cover member


    • 401 first surface


    • 403 second surface


    • 405 first recess


    • 407 a first set of slots


    • 409 a second set of slots


    • 411 hot melting bar.





DETAILED DESCRIPTION

Described herein is a compact, high speed electrical connector. The inventors have recognized techniques to simplify the assembly of the electrical connector and reduce the cost thereof. These techniques may be used alone or in combination. In some embodiments, the electrical connector may include a front housing member, signal and ground terminals disposed in a row in the front housing member, a cover member mounted to a rear of the front housing member, and a lossy member disposed in the cover member and contacting the ground terminals.


In some embodiments, the lossy member may be disposed in a recess of the cover member.


In some embodiments, portions of the lossy member may extend through the cover member to engage ground terminals. The ground terminals may be connected through the lossy member, for example, by inserting protruding portions of the ground terminals between the ribs of the lossy member through slots in the cover member.


In some embodiment, the cover member may be disposed in the accommodation spaces formed adjacent to body portions that are between contact portions and tails of the terminals, which may enable mounting the cover member in the front housing member without substantially changing external dimensions of the front housing member and thus without increasing the space occupied by the electrical connector on an electronic system. In some embodiments, the terminals may be retained in place by the cover member, which may eliminate the need to overmold the front housing member around the terminals or the need to provide an additional terminal retention mechanism. Further, intermediate portions of signal terminals may be securely retained within the front housing member without barbs or other features that change the width or other physical characteristics such that a relatively long intermediate portion is of uniform dimensions. In some embodiments, the cover may be fused to the front housing portion, such as by hot melting, for example. Securing the cover member to the front housing member may improve the stability of attachment of the bridging member to the electrical connector.


Preferred embodiments of the present disclosure are described in detail below in conjunction with some examples. It should be appreciated by the skilled person in the art that these embodiments are not meant to form any limitation on the present disclosure.



FIGS. 1A to 1H illustrate an electrical connector 1 according to a preferred embodiment of the present disclosure. As shown in FIGS. 1A to 1F, the electrical connector 1 is a right angle connector and may include a front housing member 100 and a plurality of terminals 200 arranged in the front housing member 100. The front housing member 100 may have a substantially block-shaped body and may include a top face 101, a bottom face 103 opposite to the top face 101, and four side faces extending between the top face 101 and the bottom face 103, i.e., front side face 105, rear side face 107, left side face 109 and right side face 111. Examples of materials that are suitable for forming the front housing member 100 include, but are not limited to, plastic, nylon, liquid crystal polymer (LCP), polyphenyline sulfide (PPS), high temperature nylon or polyphenylenoxide (PPO) or polypropylene (PP).


The plurality of terminals 200 may be housed in the front housing member 100. Each of the plurality of terminals 200 may be formed of a conductive material. Conductive materials that are suitable for forming the terminals 200 may be a metal, such as copper, or a metal alloy, such as copper alloy. The plurality of terminals 200 may be configured to establish an electrical connection between a first electronic system, such as a motherboard, and a second electronic system, such as a daughter card. Each of the plurality of terminals 200 may include a contact portion 201, a tail portion 203 and a body portion 205 extending between the contact portion 201 and the tail portion 203 (FIGS. 1D to 1F). The terminal 200 may be bent such that the contact portion 201 and the tail portion 203 can extend at a substantially right angle relative to the body portion 205 respectively. The tail portion 203 may be configured to mount (for example, by soldering) onto the first electronic system. The contact portion 201 may be configured to establish an electrical contact with a conductive portion of the second electronic system.


The terminals 200 may be arranged in rows, with the terminals in each terminal row aligned therein. As shown in FIG. 1C, when the terminals 200 are arranged in the front housing member 100, the terminals 200 are arranged in two rows, i.e., a first terminal row 200a and a second terminal row 200b, which are mutually opposed and spaced apart, with the terminals in each terminal row aligned therein. The first terminal row 200a and the second terminal row 200b can be spaced apart in a manner that the terminals 200 are offset (FIG. 1C) from each other or aligned (not shown) with each other along an arrangement direction. The first terminal row 200a and the second terminal row 200b being offset from each other along the arrangement direction may increase a distance between the terminals in the first terminal row 200a and the second terminal row 200b so as to reduce the scattering between high speed signals, thereby improving the electrical performance of the electrical connector 1. The conductive portions of the second electronic system may be inserted between the terminals in the first terminal row 200a and the second terminal row 200b, such that the conductive portions of the second electronic system are disposed in contact with the contact portions 201 of the corresponding terminals 200. It should be appreciated that the terminals 200 of the electrical connector 1 may also be arranged in any other numbers of rows.


With continuing reference to FIGS. 1A to 1G, when the terminals 200 are held in the front housing member 100, the tail portions 203 of the terminals 200 may be arranged to extend out from the bottom face 103 (which may also be referred to as the “mounting face”) of the front housing member 100 so as to mount onto the first electronic system, such as a motherboard. As shown, the tail portions 203 of the terminals 200 in the first terminal row 200a and the second terminal row 200b may be bent in opposite directions so as to be connected to the corresponding conductive portions of the first electronic system. The connection can be achieved by soldering or any other suitable means. The contact portions 201 of the terminals 200 in the first terminal row 200a and the second terminal row 200b are accessible through sockets in the front side face 105 of the front housing member 100. The conductive portions of the second electronic system may be inserted between the terminals in the first terminal row 200a and the second terminal row 200b, such that the conductive portions of the second electronic system are arranged in contact with the contact portions 201 of the corresponding terminals 200. In this way, the conductive portions of the second electronic system may be electrically connected to the corresponding conductive portions of the first electronic system, such as a motherboard, via the terminals 200, thereby establishing an electrical connection between the second electronic system and the first electronic system. The first electronic system and the second electronic system may communicate with each other through the electrical connector 1 using a standardized protocol, such as a PCI protocol.


One of the four side faces of the front housing member 100 may have at least one socket, such that the contact portion 201 of each of the plurality of terminals 200 is accessible through the socket. Such a side face may also be referred to as the “interfacing face”. The second electronic system, such as a daughter card, may be interfaced with the front housing member 100 via the interfacing face. For example, the conductive portions of the second electronic system may be inserted between the terminals in the first terminal row 200a and the second terminal row 200b through the socket in the interfacing face, such that the conductive portions of the second electronic system are arranged in contact with the contact portion 201 of the corresponding terminals 200. As shown in FIGS. 1B and 1C, the front side face 105 of the front housing member 100 may have two sockets, i.e., a first socket 113a and a second socket 113b, with the contact portions 201 of the respective terminals in the first terminal row 200a and the second terminal row 200b, which are mutually opposed and spaced apart, positioned in the first socket 113a and the second socket 113b, such that the contact portions 201 of the plurality of terminals 200 are accessible through the first socket 113a and the second socket 113b. It should be appreciated that the front side face 105 of the front housing member 100 may have any other numbers of sockets, such as one socket or more than two sockets.


The electrical connector 1 may further include a positioning mechanism provided on the front housing member 100 for ensuring the proper positioning of the electrical connector 1 on the first electronic system, such as a motherboard, when the electrical connector 1 is mounted onto the first electronic system, and for preventing the front housing member 100 from moving along a surface of the first electronic system. For example, the first positioning mechanism may be in the form of a positioning protrusion, two positioning protrusions are shown in FIGS. 1A to 1G: a first positioning protrusion 115a and a second positioning protrusion 115b. The first positioning protrusion 115a and the second positioning protrusion 115b may be provided on the bottom face 103 of the front housing member 100, near the opposite ends of the front housing member 100, respectively. However, it should be appreciated that the first positioning protrusion 115a and the second positioning protrusion 115b may also be provided at any other suitable location. The first positioning protrusion 115a and the second positioning protrusion 115b may be designed to provide a dummy-proof design to prevent the electrical connector 1 from being intentionally or unintentionally mounted in a wrong orientation on the first electronic system. As the electrical connector 1 is mounted onto the first electronic system, the first positioning protrusion 115a and the second positioning protrusion 115b may cooperate with a mating positioning mechanism (for example, a recess or hole) on the first electronic system to ensure that the electrical connector 1 is properly positioned on the first electronic system and to prevent movement of the front housing member 100 along the surface of the first electronic system. It should be appreciated that the positioning mechanism may also be in any other suitable form.


The electrical connector 1 may further include a fixing mechanism for fixing the electrical connector 1 onto the first electronic system, such as a motherboard. For example, the fixing mechanism may be in the form of a mounting slot for receiving a fixing member. In FIG. 1A are shown two mounting slots 116, which may be used to receive fixing members, such as mounting tabs. The fixing members may for example be disposed in the corresponding mounting slots 116 and protrude from the bottom face 103 of the electrical connector 1, with the protruded portions of the fixing members received by mating structures of the first electronic system, whereby the electrical connector 1 can be securely fixed onto the first electronic system. It should be appreciated that the electrical connector 1 may have any other numbers of fixing mechanisms, and/or the fixing mechanisms may be in any other suitable form.


At least some of the terminals 200 of the electrical connector 1 may be configured for transmitting differential signals. FIGS. 3A and 3B illustrate some of the terminals in the first terminal row 200a, which may include a plurality of terminal sets. FIG. 4A illustrates the leftmost set of three terminals in FIG. 3A in detail. As shown in FIG. 4A, each terminal set may include three terminals, i.e., a ground terminal (“G”) 210, a first signal terminal (“S”) 220 and a second signal terminal (“S”) 230. The first signal terminal 220 and the second signal terminal 230 may have the same configurations. The first signal terminal 220 and the second signal terminal 230 may constitute a differential signaling pair. For example, the first signal terminal 220 may be energized by a first voltage, and the second signal terminal 230 may be energized by a second voltage complementary to the first voltage. The voltage difference between the first signal terminal 220 and the second signal terminal 230 represents a signal. The first terminal row 200a may include a plurality of pairs of signal terminals for transmitting signals. A ground terminal 210 may be arranged adjacent to each pair of the signal terminals to control the impedance of these terminals and to reduce crosstalk among signals, thereby improving signal integrity. These terminals are aligned in terminal rows in a “G-S-S-G-S-S . . . G-S-S” pattern as shown in FIGS. 3A and 3B, with each pair of the signal terminals sharing a ground terminal.


When transmitting high speed signals (for example, signals at frequencies up to about 25 GHz or up to about 40 GHz, up to about 56 GHz or up to about 60 GHz or up to about 75 GHz or up to about 112 GHz or higher), undesired resonances may occur within the ground terminals 210, which in turn may affect signal integrity. Therefore, it is expected to reduce the effect of resonances through changing the frequency of resonances or attenuating the energy associated with resonances.


In order to reduce the effect of resonances on the electrical performance of electrical connector 1, a bridging member 300 may be incorporated among the ground terminals 210 of the electrical connector 1 to reduce resonances. In particular, the bridging member 300 may provide a conductive or partially conductive path among the ground terminals 210 to control or damp undesired resonances that occur within the ground terminals 210 during operation of the electrical connector 1, thereby improving signal integrity. The ground terminals 210 may be connected to the bridging member 300. The signal terminals (i.e., the first signal terminals 220 and the second signal terminals 230) may be electrically isolated from the bridging member 300. In some examples, the bridging member 300 may change the frequency at which resonance occurs, such that the resonance frequency is outside an intended operating range for a differential signal transmitted via the signal terminals, thereby reducing the effect of resonances on signal integrity, in some examples, the bridging member 300 may dissipate resonant energy to reduce the effect of resonances on signal integrity.


The bridging member 300 may be formed of any suitable material. In some examples, the bridging member 300 may be formed from the same material as that used to form the ground terminal 210 or any other suitable conductive material. In some examples, the bridging member 300 may be formed from an electrically lossy material. For example, the bridging member 300 may be molded of or contain an electrically lossy material.


Materials that conduct, but with some loss, or material which by another physical mechanism absorbs electromagnetic energy over the frequency range of interest are referred to herein generally as “electrically lossy materials”. Electrically lossy materials can be formed from lossy dielectric and/or poorly conductive and/or lossy magnetic materials. Magnetically lossy material can be formed, for example, from materials traditionally regarded as ferromagnetic materials, such as those that have a magnetic loss tangent greater than approximately 0.05 in the frequency range of interest. The “magnetic loss tangent” is the ratio of the imaginary part to the real part of the complex electrical permeability of the material. Practical lossy magnetic materials or mixtures containing lossy magnetic materials may also exhibit useful amounts of dielectric loss or conductive loss effects over portions of the frequency range of interest. Electrically lossy material can be formed from material traditionally regarded as dielectric materials, such as those that have an electric loss tangent greater than approximately 0.05 in the frequency range of interest. The “electric loss tangent” is the ratio of the imaginary part to the real part of the complex electrical permittivity of the material. Electrically lossy materials can also be formed from materials that are generally thought of as conductors, but are either relatively poor conductors over the frequency range of interest, contain conductive particles or regions that are sufficiently dispersed that they do not provide high conductivity or otherwise are prepared with properties that lead to a relatively weak bulk conductivity compared to a good conductor, such as copper, over the frequency range of interest.


Electrically lossy materials typically have a bulk conductivity of about 1 Siemen/meter to about 10,000 Siemens/meter and in some embodiments about 1 Siemen/meter to about 5,000 Siemens/meter. In some examples, a material with a bulk conductivity of between about 10 Siemens/meter and about 200 Siemens/meter may be used. As a specific example, a material with a conductivity of about 50 Siemens/meter may be used. However, it should be appreciated that the conductivity of the material may be selected empirically or through an electrical simulation using known simulation tools to determine a suitable conductivity that provides a suitably low crosstalk with a suitably low signal path attenuation or insertion loss.


Electrically lossy materials may be partially conductive materials, such as those that have a surface resistivity between 1 Ω/square and 100,000 Ω/square. In some examples, the electrically lossy material has a surface resistivity between 10 Ω/square and 1000 Ω/square. As a specific example, the material may have a surface resistivity of between about 20 Ω/square and 80 Ω/square.


In some examples, electrically lossy material is formed by adding to a binder a filler that contains conductive particles. In such examples, the bridging member 300 may be formed by molding or otherwise shaping the binder with filler into a desired form. Examples of conductive particles that may be used as a filler to form an electrically lossy material include carbon or graphite formed as fibers, flakes, nanoparticles, or other types of particles. Metal in the form of powder, flakes, fibers or other particles may also be used to provide suitable electrically lossy properties. Alternatively, combinations of fillers may be used. For example, metal plated carbon particles may be used. Silver and nickel are suitable metal plating materials for fibers. Coated particles may be used alone or in combination with other fillers, such as carbon flake. The binder or matrix may be any material that will set, cure, or can otherwise be used to position the filler material. In some examples, the binder may be a thermoplastic material traditionally used in the manufacture of electrical connectors to facilitate the molding of the electrically lossy material into the desired shapes and locations as part of the manufacture of the electrical connectors. Examples of such materials include liquid crystal polymer (LCP) and nylon. However, many alternative forms of binder materials may be used. Curable materials, such as epoxies, may serve as a binder. Alternatively, materials, such as thermosetting resins or adhesives, may be used.


Also, while the above-described binder materials may be used to create an electrically lossy material by forming a binder around conducting particle fillers, the disclosure is not so limited. For example, conducting particles may be impregnated into a formed matrix material or may be coated onto a formed matrix material, such as by applying a conductive coating to a plastic component or a metal component. As used herein, the term “binder” encompasses a material that encapsulates the filler, is impregnated with the filler or otherwise serves as a substrate to hold the filler.


In some embodiments, the fillers will be present in a sufficient volume percentage to allow conducting paths to be created from particle to particle. For example, when a metal fiber is used, the fiber may be present in about 3% to 40% by volume. The amount of filler may impact the conducting properties of the material.


Filled materials may be purchased commercially, such as materials sold under the trade name Celestran® by Celanese Corporation which can be filled with carbon fibers or stainless steel filaments. A lossy material, such as lossy conductive carbon filled adhesive preform, such as those sold by Techfilm of Billerica, Mass., US, may also be used. This preform can include an epoxy binder filled with carbon fibers and/or other carbon particles. The binder surrounds carbon particles, which act as a reinforcement for the preform. Such a preform may be inserted in a connector wafer to form all or part of the housing. In some examples, the preform may adhere through the adhesive in the preform, which may be cured in a heat treating process. In some examples, the adhesive may take the form of a separate conductive or non-conductive adhesive layer. In some examples, the adhesive in the preform alternatively or additionally may be used to secure one or more conductive elements, such as foil bars, to the lossy material.


Various forms of reinforcing fiber, in woven or non-woven form, coated or non-coated may be used. Non-woven carbon fiber is one suitable material. Other suitable materials, such as custom blends as sold by RIP Company, can be employed, as the present disclosure is not limited in this respect.


In some examples, the bridging member 300 may be manufactured by stamping a preform or sheet of the lossy material. For example, the bridging member 300 may be formed by stamping a preform as described above with a die having an appropriate pattern. However, other materials may be used instead of or in addition to such a preform. A sheet of ferromagnetic material, for example, may be used.


However, the bridging member 300 may also be formed in other ways. In some examples, the bridging member 300 may be formed by interleaving layers of lossy and conductive material, such as a metal foil. These layers may be rigidly attached to one another, such as through the use of epoxy or other adhesive, or may be held together in any other suitable way. The layers may be of the desired shape before being secured to one another or may be stamped or otherwise shaped after they are held together. As a further alternative, the bridging member 300 may be formed by plating plastic or other insulative material with a lossy coating, such as a diffuse metal coating.


As shown in FIGS. 1A, 1E, 1F and 1H, the electrical connector 1 may further include a cover member 400 which can be mounted to the front housing member 100 in any suitable way. The bridging member 300 may be disposed in the cover member 400 and connect the ground terminals 210 together. In other words, the cover member 400 may be mounted to the front housing member 100 such that the ground terminals 210 of the plurality of terminals 200 are connected to the bridging member 300. In this way, the bridging member 300 may provide a conductive or partially conductive path among the ground terminals 210 to control or damp undesired resonances occurring within the ground terminal 210 during operation of the electrical connector 1, thereby improving signal integrity.


With continued reference to FIGS. 5A and 5B, the cover member 400 may have a plate-like shape and may include a first surface (which may also be referred to as “outer surface”) 401 and a second surface (which may also be referred to as “inner surface”) 403 opposite to the first surface 401. The first surface 401 faces outward when the cover member 400 is mounted to the front housing member 100, and the second surface 403 faces inward when the cover member 400 is mounted to the front housing member 100, and faces the first terminal row 200a, as shown in FIGS. 1A, 1E, 1F and 1H. A first recess 405 is recessed from the first surface 401 into the cover member 400 for receiving the bridging member 300. A first set of slots 407 extends from the second surface 403 opposite to the first surface 401 through the cover member 400 to the bottom face 406 of the first recess 405 such that at least a portion of the bridging member 300 is accessible via the first set of slots 407 when the bridging member 300 is disposed in the first recess 405. The cover member 400 may be made of any suitable material. In some embodiments, the cover member 400 may be made of an insulative material. Examples of insulative materials that are suitable for forming the cover member 400 include, but are not limited to, plastic, nylon, liquid crystal polymer (LCP), polyphenyline sulfide (PPS), high temperature nylon or polyphenylenoxide (PPO) or polypropylene (PP).


The bridging member 300 may be arranged on the cover member 400 in any suitable way. As shown in FIGS. 6A and 6B, the bridging member 300 may be bar-shaped and include a first surface 301 and a second surface 303 opposite to the first surface 301. The first surface 301 faces outward and may be substantially flush with the first surface 401 of the cover member 400 when the bridging member 300 is disposed in the first recess 405 in the cover member 400. The second surface 303 faces inward when the bridging member 300 is disposed in the first recess 405 in the cover member 400. The bridging member 300 may also include a plurality of pairs of ribs 305a and 305b extending from the second surface 303. Each pair of ribs 305a and 305b defines a slot 307 therebetween fir receiving a mating portion (which will be described in detail below) of a corresponding ground terminal 210. When the bridging member 300 is disposed in the first recess 405 in the cover member 400, each pair of the plurality of pair of ribs 305a and 305b may extend into and be accessible via a corresponding slot 407 of the first set of slots 407 in the cover member 400. The mating portion of the ground terminal 210 can be inserted into the slot 307 through the slot 407. In this way, the mating portion of the ground terminal 210 can be sandwiched between a pair of ribs 305a and 305b, thereby allowing the ground terminal 210 to be connected to the bridging member 300.


In some examples, the bridging member 300 may be configured as a separate member to be installed (for example, inserted) into the first recess 405 in the cover member 400 before or after the cover member 400 is mounted to the front housing member 100. In some other examples, the bridging member 300 may be molded into the first recess 405 in the cover member 400 before or after the cover member 400 is mounted to the front housing member 100.


Turning back to FIG. 2, FIG. 2 illustrates the front housing member 100 of the electrical connector 1 in detail. The front housing member 100 may include a first cavity 117a for arranging the first terminal row 200a. The rear side face 107 of the front housing member 100 may include a first opening 118a configured for opening to the first cavity 117a. The front housing member 100 may also include a plurality of terminal slots 119a extending from the first cavity 117a for receiving the terminals in the first terminal row 200a. The plurality of terminal slots 119a may open to the sockets 113a and 113b, respectively, such that the contact portion 201 of each terminal of the first terminal row 200a can extend into and be accessible via the sockets. The number of terminal slots 119a may correspond to the number of terminals in the first terminal row 200a, such that each terminal in the first terminal row 200a can be disposed in a corresponding terminal slot 119a.


With continued reference to FIGS. 1A, 1E, and 1F, when the cover member 400 is fixed to the front housing member 100, the cover member 400 may retain each terminal in the first terminal row 200a in place in the first cavity 117a. As shown in FIGS. 3A and FIGS. 4A to 4E, the body portion 205 of each terminal (including the ground terminal 210, the first signal terminal 220 and the second signal terminal 230) in the first terminal row 200a may be configured to form an accommodation space 207. That is, when the terminals are arranged in the first terminal row 200a, each terminal in the first terminal row 200a is aligned in the terminal row and the accommodation space 207 formed by the body portion 205 of each terminal are aligned. Turning to FIGS. 1E and 1F, a dimension of the accommodation space 207 may match with a cross-sectional dimension (perpendicular to the first surface 401 or the second surface 403) of the cover member 400 such that the cover member 400 can be received in the accommodation space 207. That is, the cover member 400 may be received in the accommodation space 207 when the cover member 400 is disposed in the first cavity 17a. In this way, the cover member 400 can press tightly against each terminal in the first terminal row 200a, thereby retaining each terminal in the first terminal row 200a in place in the first cavity 117a. This eliminates the need to retain each terminal in the first terminal row 200a in place by overmolding the front housing member 100 around the first terminal row 200a or by providing an additional terminal retention mechanism, thereby simplifying the manufacture and assembly of the electrical connector and reducing the cost thereof. In addition, when the cover member 400 is disposed into the first cavity 117a, the first surface 401 of the cover member 400 may be substantially flush with the rear side face 107 of the front housing member 100. This allows the cover member 400 to be mounted in the front housing member 100 without substantially changing the external dimensions of the front housing member 100 and thus without increasing the space occupied by the electrical connector on the electronic system.


In order to connect the ground terminals 210 to the bridging member 300, as shown in FIGS. 3A to 3B and FIGS. 4A to 4C, the ground terminal 210 may also include a protruding portion 209 extending from the body portion 205 into the accommodation space 207, and the protruding portion 209 may be used as the aforementioned mating portion of the ground terminal 210. As shown in FIG. 1E, when the bridging member 300 is disposed in the cover member 400 and the cover member 400 is received in the accommodation space 207, each slot 407 of the first set of slots 407 in the cover member 400 is aligned with a corresponding ground terminal 210 such that the protruding portions 209 of the ground terminals 210 can be inserted into the slots 307 of the bridging member 300 through the slots 407 in the cover member 400. In this way, the protruding portion 209 of the ground terminal 210 may be sandwiched between ribs 305a and 305b such that the ground terminal 210 is connected to the bridging member 300. FIG. 3B further illustrates the ground terminal 210 in the first terminal row 200a connected to the bridging member 300, with the cover member removed for ease of illustration.


As shown in FIGS. 3A, 3B, 4A, 4D, and 4E, the first signal terminal 220 is devoid of a protruding portion similar to the protruding portion 209 of the ground terminal 210. As the second signal terminal 230 has the same configuration as that of the first signal terminal 220, the second signal terminal 230 is also devoid of a protruding portion similar to the protruding portion 209 of the ground terminal 210. As shown in FIG. 1F, when the bridging member 300 is disposed in the cover member 400 and the cover member 400 is received in the accommodation space 207, the cover member 400 may space the first signal terminal 220 and the second signal terminal 230 apart from the bridge member 300, thereby electrically isolating the bridge member 300 from the first signal terminal 220 and the second signal terminal 230.


The cover member 400 may be secured to the front housing member 100 in any suitable way. In some examples, the cover member 400 may be secured to the front housing member 100 by a hot melt process. In particular, as shown in FIG. 2, the front housing member 100 may include a first set of protrusions 121a extending into the first cavity 117a. As shown in FIG. 5B, the cover member 400 may include a second set of slots 409 for receiving the first set of protrusions 121a of the front housing member 100. When the cover member 400 is received in the accommodation space 207, each of the first set of protrusions 121a of the front housing member 100 may be inserted into a corresponding slot of the second set of slots 409. The hot melt bar 411 is then applied to the cover member 400, and heated and melted to flow into the second set of slots 409 so as to secure the first set of protrusions 121a in the slots 409, thereby securing the cover member 400 to the front housing member 100. It should be appreciated that the hot melt bar 411 may be formed integrally with the cover member 400, or may be formed separately from the cover member 400 and then applied to the cover member 400. It should also be appreciated that the cover member 400 may also be secured to the front housing member 100 in other suitable manner, such as by a snap fit connection or a bolt connection.


As compared with conventional electrical connectors, the electrical connector 1 according to the preferred embodiments of the present disclosure provides at least one of the following advantages: (1) attaching the bridging member 300 to the electrical connector 1 by using the cover member 400 can simplify the manufacture and assembly of the electrical connector and reduce the cost thereof; (2) through receiving the cover member 400 in the accommodation space formed by the body portion of the terminals, it is possible to mount the cover member 400 in the front housing member 100 without substantially changing the external dimensions of the front housing member 100 and thus without increasing the space occupied by the electrical connector on the electronic system; (3) through retaining the terminals in place by the cover member 400, it is possible to eliminate the needs to overmold the front housing member 100 around the terminals or the needs to provide an additional terminal retention mechanism, thereby simplifying the manufacture and assembly of the electrical connector and reducing the cost thereof; (4) connecting the ground terminals 210 to the bridge member 300 by inserting the protruding portions 209 of the ground terminals 210 between the ribs 305a and 305b of the bridge member 300 through the slots 407 in the cover member 400, it is possible to simplify the assembly of the electrical connector and reduce the cost thereof; (5) through securing the cover member 400 to the front housing member 100 by a hot-melt process, it is possible to improve the stability of attachment of the bridging member 300 to the electrical connector 1.


Although the present disclosure is described in detail with respect to only the terminals in the first terminal row 200a, it should be appreciated that the electrical connector 1 may also include an additional bridging member similar to the bridging member 300 and an additional cover member similar to the cover member 400, so as to provide at least one of the above advantages. For example, the additional cover member may be mounted to the front housing member 100, and the additional bridging member may be disposed in the additional cover member and connect the ground terminals in the second terminal row 200b together. It should also be appreciated that the electrical connector 1 may also include only one terminal row, or may include more than two terminal rows. Accordingly, the electrical connector 1 may comprise at least one cover member.


Although the present disclosure is described in detail above in connection with a right angle connector, it should be appreciated that the present disclosure is also applicable to vertical connectors and other suitable types of electrical connectors. Unlike the right angle connector, in a vertical connector, a socket is formed in a top face of the front housing member opposite to a bottom face (in other words, in a vertical connector, an interfacing face is provided opposite to a mounting surface), and terminals of the vertical connector are configured such that contact portions of the terminals are accessible via the socket. The vertical connector may also be used to connect a second electronic system, such as a daughter card, to a first electronic system, such as a mother board. In some examples, the vertical connector may be configured for mounting to the first electronic system, such as a motherboard, such that the tail portions of the terminals of the vertical connector are electrically connected to the conductive portions (for example, conductive traces) of the first electronic system. The second electronic system, such as a daughter card, may be inserted into the socket such that the conductive portions of the second electronic system are disposed in contact with the contact portions of the corresponding terminals. In this way, the conductive portions of the second electronic system may be electrically connected to the corresponding conductive portions of the first electronic system via the terminals of the vertical connector, thereby establishing an electrical connection between the second electronic system and the first electronic system. The first electronic system and the second electronic system may communicate with each other by transmitting signals using the vertical connector using a standardized protocol, such as a PCI protocol.


It should also be appreciated that the terms “first” and “second” are only used to distinguish an element or component from another element or component, and that these elements and/or components should not be limited by the terms.


The present disclosure has been described in detail in conjunction with specific embodiments. Obviously, the above description and the embodiments shown in the appended drawings should be understood to be exemplary and do not constitute a limitation on the present disclosure. For a person skilled in the art, various variations or modifications can be made without departing from the spirit of the present disclosure, and these variations or modifications fall within the scope of the present disclosure.

Claims
  • 1. An electrical connector, comprising: a front housing member;a cover member mounted to a rear of the front housing member;a plurality of terminals arranged in the front housing member; anda bridging member comprising portions extending through the cover member and engaging a subset of the plurality of terminals, wherein:each terminal of the subset of the plurality of terminals comprises a contact portion, a tail portion, and a body portion extending between the contact portion and the tail portion,for each terminal of the subset of the plurality of terminals, an accommodation space is disposed adjacent the body portion, andthe terminals of the subset of the plurality of terminals comprise protruding portions extending from the body portions of the terminals into respective accommodation spaces.
  • 2. The electrical connector of claim 1, wherein the bridging member provides a conductive or partially conductive path among ground terminals of the plurality of terminals.
  • 3. The electrical connector of claim 1, wherein the bridging member is made of an electrically lossy material.
  • 4. The electrical connector of claim 1, wherein the plurality of terminals are arranged in two terminal rows mutually opposed and spaced apart, with the terminals in each of the terminal row aligned therein.
  • 5. The electrical connector of claim 4, wherein the two terminal rows are spaced apart in a manner that the terminals are offset from each other or aligned with each other along an arrangement direction.
  • 6. The electrical connector of claim 1, wherein a dimension of the accommodation space matches with a cross-sectional dimension of the cover member such that the cover member can be received in the accommodation space.
  • 7. The electrical connector of claim 6, wherein the cover member is fused to the front housing member and retains the at least a portion of the plurality of terminals in the front housing member.
  • 8. The electrical connector of claim 1, wherein: the cover member comprises a recess, andthe bridging member is disposed in the recess such that an outer surface of the cover member is approximately flush with an outer surface of the front member.
  • 9. An electrical connector, comprising: a front housing member;a plurality of terminals disposed in a row in the front housing member, the plurality of terminals each comprising a contact portion, a tail portion, a body portion extending between the contact portion and the tail portion, and an accommodation space in parallel to the body portion, the plurality of terminals comprising ground terminals comprising protrusion portions protruding into respective accommodation spaces; anda lossy member comprising slots receiving the protrusion portions of the ground terminals.
  • 10. The electrical connector of claim 9, wherein: the front housing member comprises top and bottom faces opposite each other, left and right side faces opposite each other, and front and rear side faces opposite each other, the front side face comprising a socket, the rear side face comprising a cavity, andthe electrical connector comprises a cover member disposed in the cavity of the rear side face of the front housing member and fused to the front housing member.
  • 11. The electrical connector of claim 10, wherein: the cover member comprises slots, andthe slots of the lossy member are accessible via the slots of the cover member.
  • 12. The electrical connector of claim 11, wherein the protruding portions of the ground terminals protrude into the slots of the cover member.
  • 13. The electrical connector of claim 9, wherein: the lossy member comprises a plurality of pairs of ribs, andthe slots of the lossy member are between pairs of the plurality of pairs of ribs.
  • 14. The electrical connector of claim 13, wherein: the protruding portions of the ground terminals are sandwiched between respective pairs of the plurality of pairs of ribs whereby the ground terminals are connected to the lossy member.
  • 15. The electrical connector of claim 10, wherein the cover member comprises a recess for receiving the lossy member.
  • 16. A method of manufacturing an electrical connector comprising a plurality of terminals each comprising a contact portion, a tail portion, and a body portion extending between the contact portion and the tail portion, the method comprising: inserting the plurality of terminals into a front housing member through an opening in a rear of the front housing member, wherein the front housing member comprises a plurality of protrusions;inserting a cover member into the opening in the rear of the front housing member and securing the cover member to the front housing member, wherein: the cover member comprises a plurality of slots, andinserting the cover member into the opening in the rear of the front housing member comprises inserting the plurality of protrusions of the front housing member into the plurality of slots of the cover member; andfilling a cavity of the cover member with lossy material.
  • 17. The method of claim 16, wherein: for each of the at least a portion of the plurality of terminals, an accommodation space forms adjacent the body portion.
  • 18. The method of claim 17, wherein: the plurality of terminals comprises signal terminals and ground terminals,the ground terminals form the subset of the plurality of terminals, andthe ground terminals comprise protruding portions extending from the body portions of the ground terminals into respective accommodation spaces.
  • 19. The method of claim 16, wherein: the cover member is secured to the front housing member by a hot melt process for forming a hot melt bar.
  • 20. The method of claim 16, wherein the filling the cavity of the cover member with the lossy material comprises before or after the cover member is attached, molding the lossy material into the cavity, or inserting a member molded from the lossy material into the cavity.
Priority Claims (1)
Number Date Country Kind
202022135407.9 Sep 2020 CN national
US Referenced Citations (658)
Number Name Date Kind
2996710 Pratt Aug 1961 A
3002162 Garstang Sep 1961 A
3134950 Cook May 1964 A
3243756 Ruete et al. Mar 1966 A
3322885 May et al. May 1967 A
3390369 Zavertnik et al. Jun 1968 A
3390389 Bluish Jun 1968 A
3505619 Bishop Apr 1970 A
3573677 Detar Apr 1971 A
3731259 Occhipinti May 1973 A
3743978 Fritz Jul 1973 A
3745509 Woodward et al. Jul 1973 A
3786372 Epis et al. Jan 1974 A
3825874 Peverill Jul 1974 A
3848073 Simons et al. Nov 1974 A
3863181 Glance et al. Jan 1975 A
3999830 Herrmann, Jr. et al. Dec 1976 A
4155613 Brandeau May 1979 A
4175821 Hunter Nov 1979 A
4195272 Boutros Mar 1980 A
4215910 Walter Aug 1980 A
4272148 Knack, Jr. Jun 1981 A
4276523 Boutros et al. Jun 1981 A
4371742 Manly Feb 1983 A
4408255 Adkins Oct 1983 A
4447105 Ruehl May 1984 A
4457576 Cosmos et al. Jul 1984 A
4471015 Ebneth et al. Sep 1984 A
4472765 Hughes Sep 1984 A
4484159 Whitley Nov 1984 A
4490283 Kleiner Dec 1984 A
4518651 Wolfe, Jr. May 1985 A
4519664 Tillotson May 1985 A
4519665 Althouse et al. May 1985 A
4571014 Robin et al. Feb 1986 A
4605914 Harman Aug 1986 A
4607907 Bogursky Aug 1986 A
4632476 Schell Dec 1986 A
4636752 Saito Jan 1987 A
4655518 Johnson et al. Apr 1987 A
4674812 Thom et al. Jun 1987 A
4678260 Gallusser et al. Jul 1987 A
4682129 Bakermans et al. Jul 1987 A
4686607 Johnson Aug 1987 A
4728762 Roth et al. Mar 1988 A
4737598 O'Connor Apr 1988 A
4751479 Parr Jun 1988 A
4761147 Gauthier Aug 1988 A
4806107 Arnold et al. Feb 1989 A
4824383 Lemke Apr 1989 A
4836791 Grabbe et al. Jun 1989 A
4846724 Sasaki et al. Jul 1989 A
4846727 Glover et al. Jul 1989 A
4871316 Herrell et al. Oct 1989 A
4876630 Dara Oct 1989 A
4878155 Conley Oct 1989 A
4889500 Lazar et al. Dec 1989 A
4902243 Davis Feb 1990 A
4948922 Varadan et al. Aug 1990 A
4970354 Iwasa et al. Nov 1990 A
4971726 Maeno et al. Nov 1990 A
4975084 Fedder et al. Dec 1990 A
4984992 Beamenderfer et al. Jan 1991 A
4992060 Meyer Feb 1991 A
5000700 Masubuchi et al. Mar 1991 A
5046084 Barrett et al. Sep 1991 A
5046952 Cohen et al. Sep 1991 A
5046960 Fedder Sep 1991 A
5066236 Broeksteeg Nov 1991 A
5135405 Fusselman et al. Aug 1992 A
5141454 Garrett et al. Aug 1992 A
5150086 Ito Sep 1992 A
5166527 Solymar Nov 1992 A
5168252 Naito Dec 1992 A
5168432 Murphy et al. Dec 1992 A
5176538 Hansell, III et al. Jan 1993 A
5190472 Voltz et al. Mar 1993 A
5246388 Collins et al. Sep 1993 A
5259773 Champion et al. Nov 1993 A
5266055 Naito et al. Nov 1993 A
5280257 Cravens et al. Jan 1994 A
5281762 Long et al. Jan 1994 A
5287076 Johnescu et al. Feb 1994 A
5323299 Weber Jun 1994 A
5334050 Andrews Aug 1994 A
5335146 Stucke Aug 1994 A
5340334 Nguyen Aug 1994 A
5346410 Moore, Jr. Sep 1994 A
5352123 Sample et al. Oct 1994 A
5403206 McNamara et al. Apr 1995 A
5407622 Cleveland et al. Apr 1995 A
5429520 Morlion et al. Jul 1995 A
5429521 Morlion et al. Jul 1995 A
5433617 Morlion et al. Jul 1995 A
5433618 Morlion et al. Jul 1995 A
5456619 Belopolsky et al. Oct 1995 A
5461392 Mott et al. Oct 1995 A
5474472 Niwa et al. Dec 1995 A
5484310 McNamara et al. Jan 1996 A
5490372 Schlueter Feb 1996 A
5496183 Soes et al. Mar 1996 A
5499935 Powell Mar 1996 A
5539148 Konishi et al. Jul 1996 A
5551893 Johnson Sep 1996 A
5554050 Marpoe, Jr. Sep 1996 A
5562497 Yagi et al. Oct 1996 A
5564949 Wellinsky Oct 1996 A
5571991 Highum et al. Nov 1996 A
5597328 Mouissie Jan 1997 A
5605469 Wellinsky et al. Feb 1997 A
5620340 Andrews Apr 1997 A
5651702 Hanning et al. Jul 1997 A
5660551 Sakurai Aug 1997 A
5669789 Law Sep 1997 A
5702258 Provencher et al. Dec 1997 A
5755597 Panis et al. May 1998 A
5795191 Preputnick et al. Aug 1998 A
5796323 Uchikoba et al. Aug 1998 A
5803768 Zell et al. Sep 1998 A
5831491 Buer et al. Nov 1998 A
5833486 Shinozaki Nov 1998 A
5833496 Hollander et al. Nov 1998 A
5842887 Andrews Dec 1998 A
5870528 Fukuda Feb 1999 A
5885095 Cohen et al. Mar 1999 A
5887158 Sample et al. Mar 1999 A
5904594 Longueville et al. May 1999 A
5924899 Paagman Jul 1999 A
5931686 Sasaki et al. Aug 1999 A
5959591 Aurand Sep 1999 A
5961355 Morlion et al. Oct 1999 A
5971809 Ho Oct 1999 A
5980321 Cohen et al. Nov 1999 A
5981869 Kroger Nov 1999 A
5982253 Perrin et al. Nov 1999 A
5993259 Stokoe et al. Nov 1999 A
5997361 Driscoll et al. Dec 1999 A
6019616 Yagi et al. Feb 2000 A
6042394 Mitra et al. Mar 2000 A
6083047 Paagman Jul 2000 A
6102747 Paagman Aug 2000 A
6116926 Ortega et al. Sep 2000 A
6120306 Evans Sep 2000 A
6123554 Ortega et al. Sep 2000 A
6132255 Verhoeven Oct 2000 A
6132355 Derie Oct 2000 A
6135824 Okabe et al. Oct 2000 A
6146202 Ramey et al. Nov 2000 A
6152274 Blard et al. Nov 2000 A
6152742 Cohen et al. Nov 2000 A
6152747 McNamara Nov 2000 A
6163464 Ishibashi et al. Dec 2000 A
6168469 Lu Jan 2001 B1
6171115 Mickievicz et al. Jan 2001 B1
6171149 van Zanten Jan 2001 B1
6174202 Mitra Jan 2001 B1
6174203 Asao Jan 2001 B1
6174944 Chiba et al. Jan 2001 B1
6179651 Huang Jan 2001 B1
6179663 Bradley et al. Jan 2001 B1
6196853 Harting et al. Mar 2001 B1
6203396 Asmussen et al. Mar 2001 B1
6206729 Bradley et al. Mar 2001 B1
6210182 Elco et al. Apr 2001 B1
6210227 Yamasaki et al. Apr 2001 B1
6217372 Reed Apr 2001 B1
6227875 Wu et al. May 2001 B1
6231391 Ramey et al. May 2001 B1
6238245 Stokoe et al. May 2001 B1
6267604 Mickievicz et al. Jul 2001 B1
6273758 Lloyd et al. Aug 2001 B1
6293827 Stokoe Sep 2001 B1
6296496 Trammel Oct 2001 B1
6299438 Sahagian et al. Oct 2001 B1
6299483 Cohen et al. Oct 2001 B1
6299484 Van Woensel Oct 2001 B2
6299492 Pierini et al. Oct 2001 B1
6328572 Higashida et al. Dec 2001 B1
6328601 Yip et al. Dec 2001 B1
6333468 Endoh et al. Dec 2001 B1
6343955 Billman et al. Feb 2002 B2
6343957 Kuo et al. Feb 2002 B1
6347962 Kline Feb 2002 B1
6350134 Fogg et al. Feb 2002 B1
6358088 Nishio et al. Mar 2002 B1
6358092 Siemon et al. Mar 2002 B1
6364711 Berg et al. Apr 2002 B1
6364713 Kuo Apr 2002 B1
6375510 Asao Apr 2002 B2
6379188 Cohen et al. Apr 2002 B1
6380485 Beaman et al. Apr 2002 B1
6392142 Uzuka et al. May 2002 B1
6394839 Reed May 2002 B2
6396712 Kuijk May 2002 B1
6398588 Bickford Jun 2002 B1
6409543 Astbury, Jr. et al. Jun 2002 B1
6413119 Gabrisko, Jr. et al. Jul 2002 B1
6428344 Reed Aug 2002 B1
6431914 Billman Aug 2002 B1
6435913 Billman Aug 2002 B1
6435914 Billman Aug 2002 B1
6441313 Novak Aug 2002 B1
6454605 Bassler et al. Sep 2002 B1
6461202 Kline Oct 2002 B2
6471549 Lappohn Oct 2002 B1
6478624 Ramey et al. Nov 2002 B2
6482017 Van Doorn Nov 2002 B1
6491545 Spiegel et al. Dec 2002 B1
6503103 Cohen et al. Jan 2003 B1
6506076 Cohen et al. Jan 2003 B2
6517360 Cohen Feb 2003 B1
6520803 Dunn Feb 2003 B1
6527587 Ortega et al. Mar 2003 B1
6528737 Kwong et al. Mar 2003 B1
6530790 McNamara et al. Mar 2003 B1
6533613 Turner et al. Mar 2003 B1
6537087 McNamara et al. Mar 2003 B2
6538524 Miller Mar 2003 B1
6538899 Krishnamurthi et al. Mar 2003 B1
6540522 Sipe Apr 2003 B2
6540558 Paagman Apr 2003 B1
6540559 Kemmick et al. Apr 2003 B1
6541712 Gately et al. Apr 2003 B1
6544072 Olson Apr 2003 B2
6544647 Hayashi et al. Apr 2003 B1
6551140 Billman et al. Apr 2003 B2
6554647 Cohen et al. Apr 2003 B1
6565387 Cohen May 2003 B2
6565390 Wu May 2003 B2
6579116 Brennan et al. Jun 2003 B2
6582244 Fogg et al. Jun 2003 B2
6585540 Gutierrez et al. Jul 2003 B2
6592381 Cohen et al. Jul 2003 B2
6595802 Watanabe et al. Jul 2003 B1
6602095 Astbury, Jr. et al. Aug 2003 B2
6607402 Cohen et al. Aug 2003 B2
6608762 Patriche Aug 2003 B2
6609933 Yamasaki Aug 2003 B2
6612871 Givens Sep 2003 B1
6616482 De La Cruz et al. Sep 2003 B2
6616864 Jiang et al. Sep 2003 B1
6621373 Mullen et al. Sep 2003 B1
6652318 Winings et al. Nov 2003 B1
6652319 Billman Nov 2003 B1
6655966 Rothermel et al. Dec 2003 B2
6663427 Billman et al. Dec 2003 B1
6663429 Korsunsky et al. Dec 2003 B1
6692272 Lemke et al. Feb 2004 B2
6705895 Hasircoglu Mar 2004 B2
6706974 Chen et al. Mar 2004 B2
6709294 Cohen et al. Mar 2004 B1
6712648 Padro et al. Mar 2004 B2
6713672 Stickney Mar 2004 B1
6717825 Volstorf Apr 2004 B2
6722897 Wu Apr 2004 B1
6741141 Kormanyos May 2004 B2
6743057 Davis et al. Jun 2004 B2
6749444 Murr et al. Jun 2004 B2
6762941 Roth Jul 2004 B2
6764341 Lappoehn Jul 2004 B2
6776645 Roth et al. Aug 2004 B2
6776659 Stokoe et al. Aug 2004 B1
6786771 Gailus Sep 2004 B2
6792941 Andersson Sep 2004 B2
6806109 Furuya et al. Oct 2004 B2
6808419 Korsunsky et al. Oct 2004 B1
6808420 Whiteman, Jr. et al. Oct 2004 B2
6814519 Policicchio et al. Nov 2004 B2
6814619 Stokoe et al. Nov 2004 B1
6816486 Rogers Nov 2004 B1
6817870 Kwong et al. Nov 2004 B1
6823587 Reed Nov 2004 B2
6830478 Ko et al. Dec 2004 B1
6830483 Wu Dec 2004 B1
6830489 Aoyama Dec 2004 B2
6857899 Reed et al. Feb 2005 B2
6872085 Cohen et al. Mar 2005 B1
6875031 Korsunsky et al. Apr 2005 B1
6899566 Kline et al. May 2005 B2
6903939 Chea, Jr. et al. Jun 2005 B1
6913490 Whiteman, Jr. et al. Jul 2005 B2
6932649 Rothermel et al. Aug 2005 B1
6957967 Petersen et al. Oct 2005 B2
6960103 Tokunaga Nov 2005 B2
6971916 Tokunaga Dec 2005 B2
6979202 Benham et al. Dec 2005 B2
6979226 Otsu et al. Dec 2005 B2
6982378 Dickson Jan 2006 B2
7004793 Scherer et al. Feb 2006 B2
7021969 Matsunaga Apr 2006 B2
7044794 Consoli et al. May 2006 B2
7057570 Irion, II et al. Jun 2006 B2
7074086 Cohen et al. Jul 2006 B2
7094102 Cohen et al. Aug 2006 B2
7108556 Cohen et al. Sep 2006 B2
7120327 Bozso et al. Oct 2006 B2
7137849 Nagata Nov 2006 B2
7163421 Cohen et al. Jan 2007 B1
7182643 Winings et al. Feb 2007 B2
7229318 Winings et al. Jun 2007 B2
7261591 Korsunsky et al. Aug 2007 B2
7270573 Houtz Sep 2007 B2
7285018 Kenny et al. Oct 2007 B2
7303427 Swain Dec 2007 B2
7309239 Shuey et al. Dec 2007 B2
7309257 Minich Dec 2007 B1
7316585 Smith et al. Jan 2008 B2
7322855 Mongold et al. Jan 2008 B2
7331830 Minich Feb 2008 B2
7335063 Cohen et al. Feb 2008 B2
7347721 Kameyama Mar 2008 B2
7351114 Benham et al. Apr 2008 B2
7354274 Minich Apr 2008 B2
7365269 Donazzi et al. Apr 2008 B2
7371117 Gailus May 2008 B2
7390218 Smith et al. Jun 2008 B2
7390220 Wu Jun 2008 B1
7407413 Minich Aug 2008 B2
7494383 Cohen et al. Feb 2009 B2
7540781 Kenny et al. Jun 2009 B2
7554096 Ward et al. Jun 2009 B2
7581990 Kirk et al. Sep 2009 B2
7585186 McAlonis et al. Sep 2009 B2
7588464 Kim Sep 2009 B2
7588467 Chang Sep 2009 B2
7594826 Kobayashi et al. Sep 2009 B2
7604490 Chen et al. Oct 2009 B2
7604502 Pan Oct 2009 B2
7674133 Fogg et al. Mar 2010 B2
7690946 Knaub et al. Apr 2010 B2
7699644 Szczesny et al. Apr 2010 B2
7699663 Little et al. Apr 2010 B1
7722401 Kirk et al. May 2010 B2
7731537 Amleshi et al. Jun 2010 B2
7753731 Cohen et al. Jul 2010 B2
7758357 Pan et al. Jul 2010 B2
7771233 Gailus Aug 2010 B2
7789676 Morgan et al. Sep 2010 B2
7794240 Cohen et al. Sep 2010 B2
7794278 Cohen et al. Sep 2010 B2
7806729 Nguyen et al. Oct 2010 B2
7828595 Mathews Nov 2010 B2
7833068 Bright Nov 2010 B2
7871296 Fowler et al. Jan 2011 B2
7874873 Do et al. Jan 2011 B2
7887371 Kenny et al. Feb 2011 B2
7887379 Kirk Feb 2011 B2
7906730 Atkinson et al. Mar 2011 B2
7914304 Cartier et al. Mar 2011 B2
7927143 Helster et al. Apr 2011 B2
7985097 Gulla Jul 2011 B2
8018733 Jia Sep 2011 B2
8057267 Johnescu Nov 2011 B2
8083553 Manter et al. Dec 2011 B2
8167631 Ito May 2012 B2
8182289 Stokoe et al. May 2012 B2
8215968 Cartier et al. Jul 2012 B2
8216001 Kirk Jul 2012 B2
8251745 Johnescu et al. Aug 2012 B2
8267721 Minich Sep 2012 B2
8272877 Stokoe et al. Sep 2012 B2
8328565 Westman Dec 2012 B2
8348701 Lan et al. Jan 2013 B1
8371875 Gailus Feb 2013 B2
8382524 Khilchenko et al. Feb 2013 B2
8545240 Casher Oct 2013 B2
8550861 Cohen et al. Oct 2013 B2
8657627 McNamara et al. Feb 2014 B2
8678860 Minich et al. Mar 2014 B2
8715003 Buck et al. May 2014 B2
8715005 Pan May 2014 B2
8764460 Smink Jul 2014 B2
8764488 Zeng Jul 2014 B2
8771016 Atkinson et al. Jul 2014 B2
8864521 Atkinson et al. Oct 2014 B2
8926377 Kirk et al. Jan 2015 B2
8944831 Stoner et al. Feb 2015 B2
8944863 Yang Feb 2015 B1
8998642 Manter et al. Apr 2015 B2
9004942 Paniagua Apr 2015 B2
9011177 Lloyd et al. Apr 2015 B2
9022806 Cartier, Jr. et al. May 2015 B2
9028201 Kirk et al. May 2015 B2
9028281 Kirk et al. May 2015 B2
9065230 Milbrand, Jr. Jun 2015 B2
9077115 Yang Jul 2015 B2
9083130 Casher et al. Jul 2015 B2
9124009 Atkinson et al. Sep 2015 B2
9219335 Atkinson et al. Dec 2015 B2
9225083 Krenceski et al. Dec 2015 B2
9225085 Cartier, Jr. et al. Dec 2015 B2
9257778 Buck et al. Feb 2016 B2
9257794 Wanha et al. Feb 2016 B2
9300074 Gailus Mar 2016 B2
9401570 Phillips Jul 2016 B2
9450344 Cartier, Jr. et al. Sep 2016 B2
9461378 Chen Oct 2016 B1
9484674 Cartier, Jr. et al. Nov 2016 B2
9509101 Cartier, Jr. et al. Nov 2016 B2
9520689 Cartier, Jr. et al. Dec 2016 B2
9634432 Su Apr 2017 B2
9692183 Phillips Jun 2017 B2
9692188 Godana et al. Jun 2017 B2
9705218 Ito Jul 2017 B2
9705255 Atkinson et al. Jul 2017 B2
9742132 Hsueh Aug 2017 B1
9748698 Morgan et al. Aug 2017 B1
9831588 Cohen Nov 2017 B2
9843135 Guetig et al. Dec 2017 B2
9899774 Gailus Feb 2018 B2
9923309 Aizawa et al. Mar 2018 B1
9972945 Huang et al. May 2018 B1
9979136 Wu May 2018 B1
9985389 Morgan et al. May 2018 B1
10038284 Krenceski et al. Jul 2018 B2
10096921 Johnescu et al. Oct 2018 B2
10122129 Milbrand, Jr. et al. Nov 2018 B2
10148025 Trout et al. Dec 2018 B1
10186814 Khilchenko et al. Jan 2019 B2
10211577 Milbrand, Jr. et al. Feb 2019 B2
10243304 Kirk et al. Mar 2019 B2
10270191 Li et al. Apr 2019 B1
10283910 Chen et al. May 2019 B1
10348040 Cartier, Jr. et al. Jul 2019 B2
10355416 Pickel et al. Jul 2019 B1
10381767 Milbrand, Jr. et al. Aug 2019 B1
10431936 Horning et al. Oct 2019 B2
10446983 Krenceski et al. Oct 2019 B2
10511128 Kirk et al. Dec 2019 B2
10601181 Lu et al. Mar 2020 B2
10777921 Lu et al. Sep 2020 B2
10797417 Scholeno et al. Oct 2020 B2
10847936 Tang Nov 2020 B2
10916894 Kirk et al. Feb 2021 B2
10931050 Cohen Feb 2021 B2
10938162 Lin Mar 2021 B2
10965063 Krenceski et al. Mar 2021 B2
11189971 Lu Nov 2021 B2
11381039 Hsiao Jul 2022 B2
11600950 Takai Mar 2023 B2
20010012730 Ramey et al. Aug 2001 A1
20010041477 Billman et al. Nov 2001 A1
20010042632 Manov et al. Nov 2001 A1
20010046810 Cohen et al. Nov 2001 A1
20020042223 Belopolsky et al. Apr 2002 A1
20020086582 Nitta et al. Jul 2002 A1
20020089464 Joshi Jul 2002 A1
20020098738 Astbury et al. Jul 2002 A1
20020102885 Kline Aug 2002 A1
20020111068 Cohen et al. Aug 2002 A1
20020111069 Astbury et al. Aug 2002 A1
20020115335 Saito Aug 2002 A1
20020123266 Ramey et al. Sep 2002 A1
20020136506 Asada et al. Sep 2002 A1
20020146926 Fogg et al. Oct 2002 A1
20020168898 Billman et al. Nov 2002 A1
20020172469 Benner et al. Nov 2002 A1
20020181215 Guenthner Dec 2002 A1
20020192988 Droesbeke et al. Dec 2002 A1
20030003803 Billman et al. Jan 2003 A1
20030008561 Lappoehn Jan 2003 A1
20030008562 Yamasaki Jan 2003 A1
20030022555 Vicich et al. Jan 2003 A1
20030027439 Johnescu et al. Feb 2003 A1
20030109174 Korsunsky et al. Jun 2003 A1
20030143894 Kline et al. Jul 2003 A1
20030147227 Egitto et al. Aug 2003 A1
20030162441 Nelson et al. Aug 2003 A1
20030220018 Winings et al. Nov 2003 A1
20030220021 Whiteman et al. Nov 2003 A1
20040001299 van Haaster et al. Jan 2004 A1
20040005815 Mizumura et al. Jan 2004 A1
20040020674 McFadden et al. Feb 2004 A1
20040043661 Okada et al. Mar 2004 A1
20040072473 Wu Apr 2004 A1
20040097112 Minich et al. May 2004 A1
20040115968 Cohen Jun 2004 A1
20040121652 Gailus Jun 2004 A1
20040171305 McGowan et al. Sep 2004 A1
20040196112 Welbon et al. Oct 2004 A1
20040224559 Nelson et al. Nov 2004 A1
20040235352 Takemasa Nov 2004 A1
20040259419 Payne et al. Dec 2004 A1
20050006119 Cunningham et al. Jan 2005 A1
20050020135 Whiteman et al. Jan 2005 A1
20050039331 Smith Feb 2005 A1
20050048838 Korsunsky et al. Mar 2005 A1
20050048842 Benham et al. Mar 2005 A1
20050070160 Cohen et al. Mar 2005 A1
20050090299 Tsao et al. Apr 2005 A1
20050133245 Katsuyama et al. Jun 2005 A1
20050148239 Hull et al. Jul 2005 A1
20050176300 Hsu et al. Aug 2005 A1
20050176835 Kobayashi et al. Aug 2005 A1
20050215121 Tokunaga Sep 2005 A1
20050233610 Tutt et al. Oct 2005 A1
20050277315 Mongold et al. Dec 2005 A1
20050283974 Richard et al. Dec 2005 A1
20050287869 Kenny et al. Dec 2005 A1
20060009080 Regnier et al. Jan 2006 A1
20060019517 Raistrick et al. Jan 2006 A1
20060019538 Davis et al. Jan 2006 A1
20060024983 Cohen et al. Feb 2006 A1
20060024984 Cohen et al. Feb 2006 A1
20060068640 Gailus Mar 2006 A1
20060073709 Reid Apr 2006 A1
20060104010 Donazzi et al. May 2006 A1
20060110977 Matthews May 2006 A1
20060141866 Shiu Jun 2006 A1
20060166551 Korsunsky et al. Jul 2006 A1
20060216969 Bright et al. Sep 2006 A1
20060255876 Kushta et al. Nov 2006 A1
20060292932 Benham et al. Dec 2006 A1
20070004282 Cohen et al. Jan 2007 A1
20070004828 Khabbaz Jan 2007 A1
20070021000 Laurx Jan 2007 A1
20070021001 Laurx et al. Jan 2007 A1
20070021002 Laurx et al. Jan 2007 A1
20070021003 Laurx et al. Jan 2007 A1
20070021004 Laurx et al. Jan 2007 A1
20070037419 Sparrowhawk Feb 2007 A1
20070042639 Manter et al. Feb 2007 A1
20070054554 Do et al. Mar 2007 A1
20070059961 Cartier et al. Mar 2007 A1
20070111597 Kondou et al. May 2007 A1
20070141872 Szczesny et al. Jun 2007 A1
20070155241 Lappohn Jul 2007 A1
20070218765 Cohen et al. Sep 2007 A1
20070275583 McNutt et al. Nov 2007 A1
20080050968 Chang Feb 2008 A1
20080194146 Gailus Aug 2008 A1
20080246555 Kirk et al. Oct 2008 A1
20080248658 Cohen et al. Oct 2008 A1
20080248659 Cohen et al. Oct 2008 A1
20080248660 Kirk et al. Oct 2008 A1
20080318455 Beaman et al. Dec 2008 A1
20090011641 Cohen et al. Jan 2009 A1
20090011643 Amleshi et al. Jan 2009 A1
20090011645 Laurx et al. Jan 2009 A1
20090029602 Cohen et al. Jan 2009 A1
20090035955 McNamara Feb 2009 A1
20090061661 Shuey et al. Mar 2009 A1
20090117386 Vacanti et al. May 2009 A1
20090124101 Minich et al. May 2009 A1
20090149045 Chen et al. Jun 2009 A1
20090203259 Nguyen et al. Aug 2009 A1
20090239395 Cohen et al. Sep 2009 A1
20090258516 Hiew et al. Oct 2009 A1
20090291593 Atkinson et al. Nov 2009 A1
20090305530 Ito et al. Dec 2009 A1
20090305533 Feldman et al. Dec 2009 A1
20090305553 Thomas et al. Dec 2009 A1
20100048058 Morgan et al. Feb 2010 A1
20100081302 Atkinson et al. Apr 2010 A1
20100099299 Moriyama et al. Apr 2010 A1
20100144167 Fedder et al. Jun 2010 A1
20100273359 Walker et al. Oct 2010 A1
20100291806 Minich et al. Nov 2010 A1
20100294530 Atkinson et al. Nov 2010 A1
20110003509 Gailus Jan 2011 A1
20110067237 Cohen et al. Mar 2011 A1
20110104948 Girard, Jr. et al. May 2011 A1
20110130038 Cohen et al. Jun 2011 A1
20110212649 Stokoe et al. Sep 2011 A1
20110212650 Amleshi et al. Sep 2011 A1
20110230095 Atkinson et al. Sep 2011 A1
20110230096 Atkinson et al. Sep 2011 A1
20110256739 Toshiyuki et al. Oct 2011 A1
20110287663 Gailus et al. Nov 2011 A1
20120077380 Minich et al. Mar 2012 A1
20120094536 Khilchenko et al. Apr 2012 A1
20120115371 Chuang et al. May 2012 A1
20120156929 Manter et al. Jun 2012 A1
20120184154 Frank et al. Jul 2012 A1
20120202363 McNamara et al. Aug 2012 A1
20120202386 McNamara et al. Aug 2012 A1
20120202387 McNamara Aug 2012 A1
20120214343 Buck et al. Aug 2012 A1
20120214344 Cohen et al. Aug 2012 A1
20130012038 Kirk et al. Jan 2013 A1
20130017733 Kirk et al. Jan 2013 A1
20130065454 Milbrand Jr. Mar 2013 A1
20130078870 Milbrand, Jr. Mar 2013 A1
20130078871 Milbrand, Jr. Mar 2013 A1
20130090001 Kagotani Apr 2013 A1
20130109232 Paniaqua May 2013 A1
20130143442 Cohen et al. Jun 2013 A1
20130196553 Gailus Aug 2013 A1
20130217263 Pan Aug 2013 A1
20130225006 Khilchenko et al. Aug 2013 A1
20130237092 Rubens Sep 2013 A1
20130273781 Buck et al. Oct 2013 A1
20130288513 Masubuchi et al. Oct 2013 A1
20130316590 Hon Nov 2013 A1
20130340251 Regnier et al. Dec 2013 A1
20140004724 Cartier, Jr. et al. Jan 2014 A1
20140004726 Cartier, Jr. et al. Jan 2014 A1
20140004746 Cartier, Jr. et al. Jan 2014 A1
20140057498 Cohen Feb 2014 A1
20140273557 Cartier, Jr. et al. Sep 2014 A1
20140273627 Cartier, Jr. et al. Sep 2014 A1
20150056856 Atkinson et al. Feb 2015 A1
20150111427 Foxconn Apr 2015 A1
20150188250 Liu Jul 2015 A1
20150236451 Cartier, Jr. et al. Aug 2015 A1
20150236452 Cartier, Jr. et al. Aug 2015 A1
20150255926 Paniagua Sep 2015 A1
20150380868 Chen et al. Dec 2015 A1
20160000616 Lavoie Jan 2016 A1
20160134057 Buck et al. May 2016 A1
20160149343 Atkinson et al. May 2016 A1
20160156133 Masubuchi et al. Jun 2016 A1
20160172794 Sparrowhawk et al. Jun 2016 A1
20160211618 Gailus Jul 2016 A1
20170352970 Liang et al. Dec 2017 A1
20180062323 Kirk et al. Mar 2018 A1
20180109043 Provencher et al. Apr 2018 A1
20180145438 Cohen May 2018 A1
20180166828 Gailus Jun 2018 A1
20180198220 Sasame et al. Jul 2018 A1
20180205177 Zhou et al. Jul 2018 A1
20180212376 Wang et al. Jul 2018 A1
20180219331 Cartier, Jr. et al. Aug 2018 A1
20180269607 Wu et al. Sep 2018 A1
20190036256 Martens et al. Jan 2019 A1
20190052019 Huang et al. Feb 2019 A1
20190067854 Ju et al. Feb 2019 A1
20190131743 Hsu May 2019 A1
20190173209 Lu et al. Jun 2019 A1
20190173232 Lu et al. Jun 2019 A1
20190312389 Little Oct 2019 A1
20190334292 Cartier, Jr. et al. Oct 2019 A1
20200021052 Milbrand, Jr. et al. Jan 2020 A1
20200076132 Yang et al. Mar 2020 A1
20200161811 Lu May 2020 A1
20200194940 Cohen et al. Jun 2020 A1
20200220289 Scholeno et al. Jul 2020 A1
20200235529 Kirk et al. Jul 2020 A1
20200251841 Stokoe et al. Aug 2020 A1
20200259294 Lu Aug 2020 A1
20200266584 Lu Aug 2020 A1
20200266585 Paniagua et al. Aug 2020 A1
20200315027 Muronoi Oct 2020 A1
20200395698 Hou et al. Dec 2020 A1
20200403350 Hsu Dec 2020 A1
20200412060 Hsieh Dec 2020 A1
20210036465 Tang Feb 2021 A1
20210050683 Sasame et al. Feb 2021 A1
20210159643 Kirk et al. May 2021 A1
20210175670 Cartier, Jr. et al. Jun 2021 A1
20210194187 Chen Jun 2021 A1
20210203096 Cohen Jul 2021 A1
20210234314 Johnescu et al. Jul 2021 A1
20210234315 Ellison et al. Jul 2021 A1
20210242632 Trout et al. Aug 2021 A1
20210320461 Buck Oct 2021 A1
20220094099 Liu et al. Mar 2022 A1
20220399663 Chang Dec 2022 A1
Foreign Referenced Citations (198)
Number Date Country
1075390 Aug 1993 CN
1098549 Feb 1995 CN
1237652 Dec 1999 CN
1265470 Sep 2000 CN
2400938 Oct 2000 CN
1276597 Dec 2000 CN
1280405 Jan 2001 CN
1299524 Jun 2001 CN
2513247 Sep 2002 CN
2519434 Oct 2002 CN
2519458 Oct 2002 CN
2519592 Oct 2002 CN
1394829 Feb 2003 CN
1398446 Feb 2003 CN
1401147 Mar 2003 CN
1471749 Jan 2004 CN
1489810 Apr 2004 CN
1491465 Apr 2004 CN
1502151 Jun 2004 CN
1516723 Jul 2004 CN
1179448 Dec 2004 CN
1561565 Jan 2005 CN
1203341 May 2005 CN
1639866 Jul 2005 CN
1650479 Aug 2005 CN
1764020 Apr 2006 CN
1799290 Jul 2006 CN
2798361 Jul 2006 CN
2865050 Jan 2007 CN
1985199 Jun 2007 CN
101032060 Sep 2007 CN
201000949 Jan 2008 CN
101124697 Feb 2008 CN
101176389 May 2008 CN
101208837 Jun 2008 CN
101273501 Sep 2008 CN
201112782 Sep 2008 CN
101312275 Nov 2008 CN
101316012 Dec 2008 CN
201222548 Apr 2009 CN
201252183 Jun 2009 CN
101552410 Oct 2009 CN
101600293 Dec 2009 CN
201374433 Dec 2009 CN
101752700 Jun 2010 CN
101790818 Jul 2010 CN
101120490 Nov 2010 CN
101964463 Feb 2011 CN
101124697 Mar 2011 CN
201846527 May 2011 CN
102106041 Jun 2011 CN
102195173 Sep 2011 CN
102232259 Nov 2011 CN
102239605 Nov 2011 CN
102282731 Dec 2011 CN
102292881 Dec 2011 CN
101600293 May 2012 CN
102570100 Jul 2012 CN
102598430 Jul 2012 CN
101258649 Sep 2012 CN
102738621 Oct 2012 CN
102176586 Nov 2012 CN
102859805 Jan 2013 CN
202695788 Jan 2013 CN
202695861 Jan 2013 CN
102986091 Mar 2013 CN
103036081 Apr 2013 CN
103594871 Feb 2014 CN
204190038 Mar 2015 CN
104577577 Apr 2015 CN
205212085 May 2016 CN
102820589 Aug 2016 CN
106099546 Nov 2016 CN
107069274 Aug 2017 CN
304240766 Aug 2017 CN
304245430 Aug 2017 CN
206712089 Dec 2017 CN
207677189 Jul 2018 CN
108832338 Nov 2018 CN
109994892 Jul 2019 CN
111555069 Aug 2020 CN
112134095 Dec 2020 CN
213636403 Jul 2021 CN
4109863 Oct 1992 DE
4238777 May 1993 DE
19853837 Feb 2000 DE
102006044479 May 2007 DE
60216728 Nov 2007 DE
0560551 Sep 1993 EP
0 774 807 May 1997 EP
0 903 816 Mar 1999 EP
1018784 Jul 2000 EP
1 779 472 May 2007 EP
1794845 Jun 2007 EP
2 169 770 Mar 2010 EP
2262061 Dec 2010 EP
2388867 Nov 2011 EP
2405537 Jan 2012 EP
1794845 Mar 2013 EP
1272347 Apr 1972 GB
2161658 Jan 1986 GB
2283620 May 1995 GB
1043254 Sep 2002 HK
H05-54201 Mar 1993 JP
H05-234642 Sep 1993 JP
H07-57813 Mar 1995 JP
H07-302649 Nov 1995 JP
H09-63703 Mar 1997 JP
H09-274969 Oct 1997 JP
2711601 Feb 1998 JP
H11-67367 Mar 1999 JP
2896836 May 1999 JP
H11-233200 Aug 1999 JP
H11-260497 Sep 1999 JP
2000-013081 Jan 2000 JP
2000-311749 Nov 2000 JP
2001-068888 Mar 2001 JP
2001-510627 Jul 2001 JP
2001-217052 Aug 2001 JP
2002-042977 Feb 2002 JP
2002-053757 Feb 2002 JP
2002-075052 Mar 2002 JP
2002-075544 Mar 2002 JP
2002-117938 Apr 2002 JP
2002-246107 Aug 2002 JP
2003-017193 Jan 2003 JP
2003-309395 Oct 2003 JP
2004-192939 Jul 2004 JP
2004-259621 Sep 2004 JP
3679470 Aug 2005 JP
2006-344524 Dec 2006 JP
2008-515167 May 2008 JP
2009-043717 Feb 2009 JP
2009-110956 May 2009 JP
9907324 Aug 2000 MX
466650 Dec 2001 TW
517002 Jan 2003 TW
534494 May 2003 TW
200501874 Jan 2005 TW
200515773 May 2005 TW
M274675 Sep 2005 TW
M329891 Apr 2008 TW
M357771 May 2009 TW
200926536 Jun 2009 TW
M403141 May 2011 TW
M494411 Jan 2015 TW
I475770 Mar 2015 TW
M518837 Mar 2016 TW
M558481 Apr 2018 TW
M558482 Apr 2018 TW
M558483 Apr 2018 TW
M559006 Apr 2018 TW
M559007 Apr 2018 TW
M560138 May 2018 TW
M562507 Jun 2018 TW
M565894 Aug 2018 TW
M565895 Aug 2018 TW
M565899 Aug 2018 TW
M565900 Aug 2018 TW
M565901 Aug 2018 TW
M623128 Nov 2022 TW
WO 8502265 May 1985 WO
WO 8805218 Jul 1988 WO
WO 9835409 Aug 1998 WO
WO 0139332 May 2001 WO
WO 0157963 Aug 2001 WO
WO 2002061892 Aug 2002 WO
WO 03013199 Feb 2003 WO
WO 03047049 Jun 2003 WO
WO 2004034539 Apr 2004 WO
WO 2004051809 Jun 2004 WO
WO 2004059794 Jul 2004 WO
WO 2004059801 Jul 2004 WO
WO 2004114465 Dec 2004 WO
WO 2005011062 Feb 2005 WO
WO 2005114274 Dec 2005 WO
WO 2006039277 Apr 2006 WO
WO 2007005597 Jan 2007 WO
WO 2007005598 Jan 2007 WO
WO 2007005599 Jan 2007 WO
WO 2008124052 Oct 2008 WO
WO 2008124054 Oct 2008 WO
WO 2008124057 Oct 2008 WO
WO 2008124101 Oct 2008 WO
WO 2009111283 Sep 2009 WO
WO 2010030622 Mar 2010 WO
WO 2010039188 Apr 2010 WO
WO 2011060236 May 2011 WO
WO 2011100740 Aug 2011 WO
WO 2011106572 Sep 2011 WO
WO 2011139946 Nov 2011 WO
WO 2011140438 Nov 2011 WO
WO 2011140438 Dec 2011 WO
WO 2012160554 Aug 2012 WO
WO 2013059317 Apr 2013 WO
WO 2015112717 Jul 2015 WO
WO 2016008473 Jan 2016 WO
WO 2018039164 Mar 2018 WO
Non-Patent Literature Citations (207)
Entry
Chinese Invalidation Request dated Aug. 17, 2021 in connection with Chinese Application No. 200580040906.5.
Chinese Invalidation Request dated Jun. 1, 2021 in connection with Chinese Application No. 200680023997.6.
Chinese Invalidation Request dated Sep. 9, 2021 in connection with Chinese Application No. 201110008089.2.
Chinese Invalidation Request dated Jun. 15, 2021 in connection with Chinese Application No. 201180033750.3.
Chinese Supplemental Observations dated Jun. 17, 2021 in connection with Chinese Application No. 201210249710.9.
Chinese communication for Chinese Application No. 201580014851.4, dated Jun. 1, 2020.
Chinese Office Action for Chinese Application No. 201580014851.4 dated Sep. 4, 2019.
Chinese Invalidation Request dated Mar. 17, 2021 in connection with Chinese Application No. 201610952606.4.
Chinese Office Action for Chinese Application No. 201780064531.9 dated Jan. 2, 2020.
Chinese Office Action for Chinese Application No. 202010467444.1 dated Apr. 2, 2021.
Chinese Office Action for Chinese Application No. 202010825662.8 dated Sep. 3, 2021.
Chinese Office Action for Chinese Application No. 202010922401.8 dated Aug. 6, 2021.
Extended European Search Report for European Application No. EP 11166820.8 dated Jan. 24, 2012.
International Search Report and Written Opinion dated Dec. 28, 2021 in connection with International Application No. PCT/CN2021/119849.
International Preliminary Report on Patentability for International Application No. PCT/US2005/034605 dated Apr. 3, 2007.
International Search Report and Written Opinion for International Application No. PCT/US2005/034605 dated Jan. 26, 2006.
International Preliminary Report on Patentability for International Application No. PCT/US2006/025562 dated Jan. 9, 2008.
International Search Report with Written Opinion for International Application No. PCT/US2006/025562 dated Oct. 31, 2007.
International Preliminary Report on Patentability for International Application No. PCT/US2010/056482 dated May 24, 2012.
International Search Report and Written Opinion for International Application No. PCT/US2010/056482 dated Mar. 14, 2011.
International Preliminary Report on Patentability for International Application No. PCT/US2011/026139 dated Sep. 7, 2012.
International Search Report and Written Opinion for International Application No. PCT/US2011/026139 dated Nov. 22, 2011.
International Search Report and Written Opinion for International Application No. PCT/US2011/034747 dated Jul. 28, 2011.
International Preliminary Report on Patentability for International Application No. PCT/US2012/023689 dated Aug. 15, 2013.
International Search Report and Written Opinion for International Application No. PCT/US2012/023689 dated Sep. 12, 2012.
International Preliminary Report on Patentability for International Application No. PCT/US2012/060610 dated May 1, 2014.
International Search Report and Written Opinion for International Application No. PCT/US2012/060610 dated Mar. 29, 2013.
International Preliminary Report on Patentability for International Application No. PCT/US2015/012463 dated Aug. 4, 2016.
International Search Report and Written Opinion for International Application No. PCT/US2015/012463 dated May 13, 2015.
International Preliminary Report on Patentability for International Application No. PCT/US2017/047905, dated Mar. 7, 2019.
International Search Report and Written Opinion for International Application No. PCT/US2017/047905 dated Dec. 4, 2017.
International Preliminary Report on Patentability Chapter II dated Apr. 5, 2022 in connection with International Application No. PCT/US2021/015048.
International Search Report and Written Opinion dated Jul. 1, 2021 in connection with International Application No. PCT/US2021/015048.
International Preliminary Report on Patentability Chapter II dated Apr. 1, 2022 in connection with International Application No. PCT/US2021/015073.
International Search Report and Written Opinion dated May 17, 2021 in connection with International Application No. PCT/US2021/015073.
Taiwanese Office Action dated Mar. 5, 2021 in connection with Taiwanese Application No. 106128439.
Taiwanese Office Action dated Mar. 15, 2022 in connection with Taiwanese Application No. 110140608.
Decision Invalidating CN Patent Application No. 201610952606.4, which issued as CN Utility Model Patent No. 107069274B, and Certified Translation.
In re Certain Electrical Connectors and Cages, Components Thereof, and Prods. Containing the Same, Inv. No. 337-TA-1241, Order No. 31 (Oct. 19, 2021): Construing Certain Terms of the Asserted Claims of the Patents at Issue.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Complainant Amphenol Corporation's Corrected Initial Post-Hearing Brief. Public Version. Jan. 5, 2022. 451 pages.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Complainant Amphenol Corporation's Post-Hearing Reply Brief. Public Version. Dec. 6, 2021. 159 pages.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Luxshare Respondents' Initial Post-Hearing Brief. Public Version. Nov. 23, 2021. 348 pages.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Luxshare Respondents' Reply Post-Hearing Brief. Public Version. Dec. 6, 2021. 165 pages.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Notice of Prior Art. Jun. 3, 2021. 319 pages.
In re Matter of Certain Electrical Connectors and Cages, Components Thereof, and Products Containing the Same, Inv. No. 337-TA-1241, Respondents' Pre-Hearing Brief. Redacted. Oct. 21, 2021. 219 pages.
Invalidity Claim Charts Based on CN 201112782Y (“Cai”). Luxshare Respondents' Supplemental Responses to Interrogatories Nos. 13 and 14, Exhibit 25. May 7, 2021. 147 pages.
Invalidity Claim Charts Based on U.S. Pat. No. 6,179,651 (“Huang”). Luxshare Respondents' Supplemental Responses to Interrogatories Nos. 13 and 14, Exhibit 26. May 7, 2021. 153 pages.
Invalidity Claim Charts Based on U.S. Pat. No. 7,261,591 (“Korsunsky”). Luxshare Respondents' Supplemental Responses to Interrogatories Nos. 13 and 14, Exhibit 27. May 7, 2021. 150 pages.
Petition for Inter Partes Review. Luxshare Precision Industry Co., Ltd v. Amphenol Corp. U.S. Pat. No. 10,381,767. IPR2022-00132. Nov. 4, 2021. 112 pages.
[No Author Listed], SFF-8672 Specification for QSFP+ 4x 28 GB/s Connector (Style B). Revision 1.2. SNIA. Jun. 8, 2018. 21 pages.
[No Author Listed], All About ESD Plastics. Evaluation Engineering. Jul. 1, 1998. 8 pages. https://www.evaluationengineering.com/home/article/13001136/all-about-esdplastics [last accessed Mar. 14, 2021].
[No Author Listed], Amp Incorporated Schematic, Cable Assay, 2 Pair, HMZD. Oct. 3, 2002. 1 page.
[No Author Listed], Board to Backplane Electrical Connector. The Engineer. Mar. 13, 2001, [last accessed Apr. 30, 2021]. 2 pages.
[No Author Listed], Borosil Vision Mezzo Mug Set of 2. Zola. 3 pages. https://www.zola.com/shop/product/borosil_vision_mezzao_mug_setof2_3.25. [date retrieved May 4, 2021].
[No Author Listed], Cable Systems. Samtec. Aug. 2010. 148 pages.
[No Author Listed], Carbon Nanotubes For Electromagnetic Interference Shielding. SBIR/STTR. Award Information. Program Year 2001. Fiscal Year 2001. Materials Research Institute, LLC. Chu et al. Available at http://sbir.gov/sbirsearch/detail/225895. Last accessed Sep. 19, 2013.
[No Author Listed], Coating Electrical Contacts. Brush Wellman Engineered Materials. Jan. 2002;4(1). 2 pages.
[No Author Listed], Common Management Interface Specification. Rev 4.0. MSA Group. May 8, 2019. 265 pages.
[No Author Listed], Electronics Connector Overview. FCI. Sep. 23, 2009. 78 pages.
[No Author Listed], EMIi Shielding Compounds Instead of Metal. RTP Company. Last Accessed Apr. 30, 2021. 2 pages.
[No Author Listed], EMI Shielding Solutions and EMC Testing Services from Laird Technologies. Laird Technologies. Last acessed Apr. 30, 2021. 1 page.
[No Author Listed], EMI Shielding, Dramatic Cost Reductions for Electronic Device Protection. RTP. Jan. 2000. 10 pages.
[No Author Listed], Excerpt from The Concise Oxford Dictionary, Tenth Edition. 1999. 3 pages.
[No Author Listed], Excerpt from The Merriam-Webster Dictionary, Between. 2005. 4 pages.
[No Author Listed], Excerpt from Webster's Third New International Dictionary, Contact. 1986. 3 pages.
[No Author Listed], FCI—High Speed Interconnect Solutions, Backpanel Connectors. FCI. [last accessed Apr. 30, 2021). 2 pages.
[No Author Listed], General Product Specification for GbX Backplane and Daughtercard Interconnect System. Revision “B”. Teradyne. Aug. 23, 2005. 12 pages.
[No Author Listed], High Speed Backplane Connectors. Tyco Electronics. Product Catalog No. 1773095. Revised Dec. 2008. 1-40 pages.
[No Author Listed], HOZOX EMI Absorption Sheet and Tape. Molex. Laird Technologies. 2013. 2 pages.
[No Author Listed], INF-8074i Specification for SFP (Small Formfactor Pluggable) Transceiver. SFF Committee. Revision 1.0. May 12, 2001. 39 pages.
[No Author Listed], INF-8438i Specification for QSFP (Quad Small Formfactor Pluggable) Transceiver. Rev 1.0 Nov. 2006. SFF Committee. 76 pages.
[No Author Listed], Interconnect Signal Integrity Handbook. Samtec. Aug. 2007. 21 pages.
[No Author Listed], Metallized Conductive Products: Fabric-Over-Foam, Conductive Foam, Fabric, Tape. Laird Technologies. 2003. 32 pages.
[No Author Listed], Metral® 2000 Series. FCI. 2001. 2 pages.
[No Author Listed], Metral® 2mm High-Speed Connectors 1000, 2000, 3000 Series. FCI. 2000. 119 pages.
[No Author Listed], Metral® 3000 Series. FCI. 2001. 2 pages.
[No Author Listed], Metral® 4000 Series. FCI. 2002. 2 pages.
[No Author Listed], Metral® 4000 Series: High-Speed Backplane Connectors. FCI, Rev. 3. Nov. 30, 2001. 21 pages.
[No Author Listed], Military Fibre Channel High Speed Cable Assembly. www.gore.com. 2008. [last accessed Aug. 2, 2012 via Internet Archive: Wayback Machine http://web.archive.org] Link archived: http://www.gore.com/en.sub.--xx/products/cables/copper/networking/militar-y/military.sub.-- fibre . . . Last archive date Apr. 6, 2008.
[No Author Listed], Molex Connectors as InfiniBand Solutions. Design World. Nov. 19, 2008. 7 pages. https://www.designworldonline.com/molex-connectors-as-infiniband-solutions/. [last accessed May 3, 2021].
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 1.11. OSFP MSA. Jun. 26, 2017. 53 pages.
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 1.12. OSFP MSA. Aug. 1, 2017. 53 pages.
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 2.0 OSFP MSA. Jan. 14, 2019. 80 pages.
[No Author Listed], OSFP MSA Specification for OSFP Octal Small Form Factor Pluggable Module. Revision 3.0 OSFP MSA. Mar. 14, 2020. 99 pages.
[No Author Listed], Photograph of Molex Connector. Oct. 2021. 1 page.
[No Author Listed], Photograph of TE Connector. Oct. 2021. 1 page.
[No Author Listed], Pluggable Form Products. Tyco Electronics. Mar. 5, 2006. 1 page.
[No Author Listed], Pluggable Input/Output Solutions. Tyco Electronics Catalog 1773408-1. Revised Feb. 2009. 40 pages.
[No Author Listed], QSFP Market Evolves, First Products Emerge. Lightwave. Jan. 22, 2008. pp. 1-8. https://www.lightwaveonline.com/home/article/16662662.
[No Author Listed], QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiver, Rev 3.0. QSFP-DD MSA. Sep. 19, 2017. 69 pages.
[No Author Listed], QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiver, Rev 4.0. QSFP-DD MSA. Sep. 18, 2018. 68 pages.
[No Author Listed], QSFP-DD MSA QSFP-DA Hardware Specification for QSFP Double Density 8X Pluggable Transceiever. Revision 5.0. QSFP-DD-MSA. Jul. 9, 2019. 82 pages.
[No Author Listed], QSFP-DD MSA QSFP-DD Hardware Specification for QSFP Double Density 8X Pluggable Transceiver. Revision 5.1. QSFP-DD MSA. Aug. 7, 2020. 84 pages.
[No. Author Listed], Qsfp-Dd Msa Qsfp-Dd Specification for QSFP Double Density 8X Pluggable Transceiver. Revision 1.0. QSFP-DD-MSA. Sep. 15, 2016. 69 pages.
[No Author Listed], QSFP-DD Specification for QSFP Double Density 8X Pluggable Transceiver Specification, Rev. 2.0. QSFP-DD MSA. Mar. 13, 2017. 106 pages.
[No Author Listed], RTP Company Introduces “Smart” Plastics for Bluetooth Standard. Press Release. RTP. Jun. 4, 2001. 2 pages.
[No Author Listed], RTP Company Specialty Compounds. RTP. Mar. 2002. 2 pages.
[No Author Listed], RTP Company-EMI/RFI Shielding Compounds (Conductive) Data Sheets. RTP Company. Last accessed Apr. 30, 2021. 4 pages.
[No Author Listed], Samtec Board Interface Guide. Oct. 2002. 253 pages.
[No Author Listed], SFF Committee SFF-8079 Specification for SFP Rate and Application Selection. Revision 1.7. SFF Committee. Feb. 2, 2005. 21 pages.
[No Author Listed], SFF Committee SFF-8089 Specification for SFP (Small Formfactor Pluggable) Rate and Application Codes. Revision 1.3. SFF Committee. Feb. 3, 2005. 18 pages.
[No Author Listed], SFF Committee SFF-8436 Specification for QSFP+ 4X 10 GB/s Pluggable Transceiver. Revision 4.9. SFF Committee. Aug. 31, 2018. 88 pages.
[No Author Listed], SFF Committee SFF-8665 Specification for QSFP+ 28 GB/s 4X Pluggable Transceiver Solution (QSFP28). Revision 1.9. SFF Committee. Jun. 29, 2015. 14 pages.
[No Author Listed], SFF-8075 Specification for PCI Card Version of SFP Cage. Rev 1.0. SFF Committee. Jul. 3, 2001. 11 pages.
[No Author Listed], SFF-8431 Specifications for Enhanced Small Form Factor Pluggable Module SFP+. Revision 4.1. SFF Committee. Jul. 6, 2009. 132 pages.
[No Author Listed], SFF-8432 Specification for SFP+ Module and Cage. Rev 5.1. SFF Committee. Aug. 8, 2012. 18 pages.
[No Author Listed], SFF-8433 Specification for SFP+ Ganged Cage Footprints and Bezel Openings. Rev 0.7. SFF Committee. Jun. 5, 2009. 15 pages.
[No Author Listed], SFF-8477 Specification for Tunable XFP for ITU Frequency Grid Applications. Rev 1.4. SFF Committee. Dec. 4, 2009. 13 pages.
[No Author Listed], SFF-8679 Specification for QSFP+4X Base Electrical Specification. Rev 1.7. SFF Committee. Aug. 12, 2014. 31 pages.
[No Author Listed], SFF-8682 Specification for QSFP+ 4X Connector. Rev 1.1. SNIA SFF TWG Technology Affiliate. Jun. 8, 2018. 19 pages.
[No Author Listed], Shielding Theory and Design. Laird Technologies. Last accessed Apr. 30, 2021. 1 page.
[No Author Listed], Shielding Theory and Design. Laird Technologies. Last accessed Apr. 30, 2021. 2 pages. URL:web.archive.org/web/20030226182710/http://www.lairdtech.com/catalog/staticdata/shieldingtheorydesign/std_3.htm.
[No Author Listed], Shielding Theory and Design. Laird Technologies. Last accessed Apr. 30, 2021. 2 pages. URL:web.archive.org/web/20021223144443/http://www.lairdtech.com/catalog/staticdata/shieldingtheorydesign/std_2.htm.
[No Author Listed], Signal Integrity—Multi-Gigabit Transmission Over Backplane Systems. International Engineering Consortium. 2003;1-8.
[No Author Listed], Signal Integrity Considerations for 10Gbps Transmission over Backplane Systems. DesignCon2001. Teradyne Connections Systems, Inc. 2001. 47 pages.
[No Author Listed], Specification for OSFP Octal Small Form Factor Pluggable Module. Rev 1.0. OSFP MSA. Mar. 17, 2017. 53 pages.
[No Author Listed], TB-2092 GbX Backplane Signal and Power Connector Press-Fit Installation Process. Teradyne. Aug. 8, 2002;1-9.
[No Author Listed], Teradyne Beefs Up High-Speed GbX Connector Platform. EE Times. 2Sep. 20, 2005. 3 pages.
[No Author Listed], Teradyne Connection Systems Introduces the GbX L-Series Connector. Press Release. Teradyne. Mar. 22, 2004. 5 pages.
[No Author Listed], Teradyne Schematic, Daughtercard Connector Assembly 5 Pair GbX, Drawing No. C-163-5101-500. Nov. 6, 2002. 1 page.
[No Author Listed], Tin as a Coating Material. Brush Wellman Engineered Materials. Jan. 2002;4(2). 2 pages.
[No Author Listed], Two and Four Pair HM-Zd Connectors. Tyco Electronics. Oct. 14, 2003;1-8.
[No Author Listed], Tyco Electronics Schematic, Header Assembly, Right Angle, 4 Pair HMZd, Drawing No. C-1469048. Jan. 10, 2002. 1 page.
[No Author Listed], Tyco Electronics Schematic, Receptacle Assembly, 2 Pair 25mm HMZd, Drawing No. C-1469028. Apr. 24, 2002. 1 page.
[No Author Listed], Tyco Electronics Schematic, Receptacle Assembly, 3 Pair 25mm HMZd, Drawing No. C1469081. May 13, 2002. 1 page.
[No Author Listed], Tyco Electronics Schematic, Receptacle Assembly, 4 Pair HMZd, Drawing No. C1469001. Apr. 23, 2002. 1 page.
[No Author Listed], Tyco Electronics Z-Dok+ Connector. May 23, 2003. pp. 1-15. http://zdok.tycoelectronics.com.
[No Author Listed], Tyco Electronics, SFP System. Small Form-Factor Pluggable (SFP) System. Feb. 2001. 1 page.
[No Author Listed], Typical conductive additives—Conductive Compounds. RTP Company. https://www.rtpcompany.com/products/conductive/additives.htm. Last accessed Apr. 30, 2021. 2 pages.
[No Author Listed], Z-Pack HM-Zd Connector, High Speed Backplane Connectors. Tyco Electronics. Catalog 1773095. 2009;5-44.
[No Author Listed], Z-Pack HM-Zd: Connector Noise Analysis for XAUI Applications. Tyco Electronics. Jul. 9, 2001. 19 pages.
Atkinson et al., High Frequency Electrical Connector, U.S. Appl. No. 15/645,931, filed Jul. 10, 2017.
Beaman, High Performance Mainframe Computer Cables. 1997 Electronic Components and Technology Conference. 1997;911-7.
Chung, Electrical applications of carbon materials. J. of Materials Science. 2004;39:2645-61.
Dahman, Recent Innovations of Inherently Conducting Polymers for Optimal (106-109 Ohm/Sq) ESD Protection Materials. RTD Company. 2001. 8 pages.
Do et al., A Novel Concept Utilizing Conductive Polymers on Power Connectors During Hot Swapping in Live Modular Electronic Systems. IEEE Xplore 2005; downloaded Feb. 18, 2021;340-345.
Eckardt, Co-Injection Charting New Territory and Opening New Markets. Battenfeld GmbH. Journal of Cellular Plastics. 1987;23:555-92.
Elco, Metral® High Bandwidth—A Differential Pair Connector for Applications up to 6 GHz. FCI. Apr. 26, 1999;1-5.
Feller et al., Conductive polymer composites: comparative study of poly(ester)-short carbon fibres and poly(epoxy)-short carbon fibres mechanical and electrical properties. Materials Letters. Feb. 21, 2002;57:64-71.
Getz et al., Understanding and Eliminating EMI in Microcontroller Applications. National Semiconductor Corporation. Aug. 1996. 30 pages.
Grimes et al., A Brief Discussion of EMI Shielding Materials. IEEE. 1993:217-26.
Housden et al., Moulded Interconnect Devices. Prime Faraday Technology Watch. Feb. 2002. 34 pages.
McAlexander, CV of Joseph C. McAlexander III . Exhibit 1009. 2021. 31 pages.
McAlexander, Declaration of Joseph C. McAlexander III in Support of Petition for Inter Partes Review of U.S. Pat. No. 10,381,767. Exhibit 1002. Nov. 4, 2021. 85 pages.
Nadolny et al., Optimizing Connector Selection for Gigabit Signal Speeds. Sep. 2000. 5 pages.
Neelakanta, Handbook of Electromagnetic Materials: Monolithic and Composite Versions and Their Applications. CRC. 1995. 246 pages.
Okinaka, Significance of Inclusions in Electroplated Gold Films for Electronics Applications. Gold Bulletin. Aug. 2000;33(4):117-127.
Ott, Noise Reduction Techniques In Electronic Systems. Wiley. Second Edition. 1988. 124 pages.
Patel et al., Designing 3.125 Gbps Backplane System. Teradyne. 2002. 58 pages.
Preusse, Insert Molding vs. Post Molding Assembly Operations. Society of Manufacturing Engineers. 1998. 8 pages.
Reich et al., Microwave Theory and Techniques. Boston Technical Publishers, Inc. 1965;182-91.
Ross, Focus on Interconnect: Backplanes Get Reference Designs. EE Times. Oct. 27, 2003 [last accessed Apr. 30, 2021]. 4 pages.
Ross, GbX Backplane Demonstrator Helps System Designers Test High-Speed Backplanes. EE Times. Jan. 27, 2004 [last accessed May 5, 2021]. 3 pages.
Shi et al. Improving Signal Integrity in Circuit Boards by Incorporating Absorbing Materials. 2001 Proceedings. 51st Electronic Components and Technology Conference, Orlando FL. 2001:1451-56.
Silva et al., Conducting Materials Based on Epoxy/Graphene Nanoplatelet Composites With Microwave Absorbing Properties: Effect of the Processing Conditions and Ionic Liquid. Frontiers in Materials. Jul. 2019;6(156):1-9. doi: 10.3389/fmats.2019.00156.
Tracy, Rev. 3.0 Specification IP (Intellectual Property). Mar. 20, 2020. 8 pages.
Violette et al., Electromagnetic Compatibility Handbook. Van Nostrand Reinhold Company Inc. 1987. 229 pages.
Wagner et al., Recommended Engineering Practice to Enhance the EMI/EMP Immunity of Electric Power Systems. Electric Research and Management, Inc. Dec. 1992. 209 pages.
Weishalla, Smart Plastic for Bluetooth. RTP Imagineering Plastics. Apr. 2001. 7 pages.
White, A Handbook on Electromagnetic Shielding Materials and Performance. Don Whie Consultants. 1998. Second Edition. 77 pages.
White, EMI Control Methodology and Procedures. Don White Consultants, Inc. Third Edition 1982. 22 pages.
Williams et al., Measurement of Transmission and Reflection of Conductive Lossy Polymers at Millimeter-Wave Frequencies. IEEE Transactions on Electromagnetic Compatibility. Aug. 1990;32(3):236-240.
U.S. Appl. No. 16/518,362, filed Jan. 16, 2020, Milbrand, Jr. et al.
U.S. Appl. No. 16/795,398, filed Feb. 19, 2020, Paniagua et al.
U.S. Appl. No. 17/102,133, filed Nov. 23, 2020, Cartier et al.
U.S. Appl. No. 17/158,214, filed Jan. 26, 2021, Johnescu et al.
U.S. Appl. No. 17/158,543, filed Jan. 26, 2021, Ellison et al.
U.S. Appl. No. 17/164,400, filed Feb. 1, 2021, Kirk et al.
U.S. Appl. No. 17/181,639, filed Feb. 22, 2021, Cohen.
U.S. Appl. No. 17/477,391, filed Sep. 16, 2021, Liu et al.
CN 200580040906.5, Aug. 17, 2021, Chinese Invalidation Request.
CN 200680023997.6, Jun. 1, 2021, Chinese Invalidation Request.
CN 201110008089.2, Sep. 9, 2021, Chinese Invalidation Request.
CN 201180033750.3, Jun. 15, 2021, Chinese Invalidation Request.
CN 201210249710.9, Jun. 17, 2021, Chinese Supplemental Observations.
CN 201580014851.4, Jun. 1, 2020, Chinese communication.
CN 201580014851.4, Sep. 4, 2019, Chinese Office Action.
CN 201610952606.4, Mar. 17, 2021, Chinese Invalidation Request.
CN 201780064531.9, Jan. 2, 2020, Chinese Office Action.
CN 202010467444.1, Apr. 2, 2021, Chinese Office Action.
CN 202010825662.8, Sep. 3, 2021, Chinese Office Action.
CN 202010922401.8, Aug. 6, 2021, Chinese Office Action.
EP 11166820.8, Jan. 24, 2012, Extended European Search Report.
PCT/CN2021/119849, Dec. 28, 2021, International Search Report and Written Opinion.
PCT/US2005/034605, Apr. 3, 2007, International Preliminary Report on Patentability.
PCT/US2005/034605, Jan. 26, 2006, International Search Report and Written Opinion.
PCT/US2006/025562, Jan. 9, 2008, International Preliminary Report on Patentability.
PCT/US2006/025562, Oct. 31, 2007, International Search Report with Written Opinion.
PCT/US2010/056482, May 24, 2012, International Preliminary Report on Patentability.
PCT/US2010/056482, Mar. 14, 2011, International Search Report and Written Opinion.
PCT/US2011/026139, Sep. 7, 2012, International Preliminary Report on Patentability.
PCT/US2011/026139, Nov. 22, 2011, International Search Report and Written Opinion.
PCT/US2011/034747, Jul. 28, 2011, International Search Report and Written Opinion.
PCT/US2012/023689, Aug. 15, 2013, International Preliminary Report on Patentability.
PCT/US2012/023689, Sep. 12, 2012, International Search Report and Written Opinion.
PCT/US2012/060610, May 1, 2014, International Preliminary Report on Patentability.
PCT/US2012/060610, Mar. 29, 2013, International Search Report and Written Opinion.
PCT/US2015/012463, Aug. 4, 2016, International Preliminary Report on Patentability.
PCT/US2015/012463, May 13, 2015, International Search Report and Written Opinion.
PCT/US2017/047905, Mar. 7, 2019, International Preliminary Report on Patentability.
PCT/US2017/047905, Dec. 4, 2017, International Search Report and Written Opinion.
PCT/US2021/015048, Apr. 5, 2022, International Preliminary Report on Patentability Chapter II.
PCT/US2021/015048, Jul. 1, 2021, International Search Report and Written Opinion.
PCT/US2021/015073, Apr. 1, 2022, International Preliminary Report on Patentability Chapter II.
PCT/US2021/015073, May 17, 2021, International Search Report and Written Opinion.
TW 106128439, Mar. 5, 2021, Taiwanese Office Action.
TW 110140608, Mar. 15, 2022, Taiwanese Office Action.
Related Publications (1)
Number Date Country
20220102916 A1 Mar 2022 US