The invention relates to electrical connectors, and more particularly, to latching systems for mid-power electrical connectors.
Single-contact and multiple-contact electrical connector systems are widely used for many household and industrial applications. Typically, such connector systems include a plug and a compatible receptacle, each of which includes one or more electrical contacts which are interconnected when the plug is mated with the receptacle. Plug and receptacle housings or “shells” are provided which position the contacts in alignment with each other, maintain the contacts in secure connection with each other, and protect the electrical contacts from the environment when the connectors are mated. Typically, the housings at least partly overlap when the connectors are mated, with the outer housing being referred to as the “receptacle” and the inner housing being referred to as the “plug.” Often, a latching mechanism is included with the housings so as to avoid inadvertent separation of the plug from the receptacle.
Mid-power connector systems typically must be able to support and protect one or more high current connections and/or a plurality of densely packed connections under conditions that may be environmentally and/or physically challenging. For example, connectors used in solar or wind-power installations are often required to support high currents and to withstand exposure to sun, wind, and rain. Mid-power connectors used in a marine environment such as on a drilling platform or on a yacht may be exposed to prolonged salt spray. Connectors used in industrial environments, such as in food processing plants, may be exposed to periodic impact by pressurized water during cleaning operations.
In some applications, it is desirable for mid-power connectors to be as compact as possible. For example, in solar power installations and in yachts it is often necessary for a plurality of mid-power connectors to be co-located in a limited space, either as separate pairs of connectors or as a plurality of closely-spaced connectors attached to a panel. In addition, it is often desirable for mid-power connectors to be easily and quickly connected and disconnected. And in some applications, mid-power connectors are required by applicable codes to be releasable only through use of a tool.
While the prior art connector of
In addition, under typical conditions of use, installation and release of the connectors can require application of a significant amount of twisting force to the rotatable collar 118, possibly while holding the plug stationary with the other hand. Depending on the physical strength of the user, this can lead to strains or other injuries. And under conditions where the connectors are packed closely together or are otherwise located in cramped spaces, it can be difficult for a user to surround the collar 118 with his or her fingers and apply the required torque, especially if it is also necessary to hold the plug housing 106 with the other hand.
What is needed, therefore, is a latching mechanism for a mid-power connector system that is comfortable, easy, and safe to engage and release, even under cramped conditions, highly compact, durable, and inexpensive to manufacture.
The present invention is a latching mechanism for a mid-power electrical connector that is comfortable, easy, and safe to engage and release, even under cramped conditions, highly compact, durable, and inexpensive to manufacture. The latching mechanism includes a plug housing and a receptacle housing, each of which is molded from plastic as a single piece, thereby minimizing the cost. At least one metal latching tab is inserted and retained on a side of the plug housing. In embodiments, a pair of metal latching tabs are inserted and retained on opposing sides of the plug housing. During insertion of the plug into the receptacle, the latching tabs flex inwardly on living hinges as they enter latching channels in the receptacle housing. When the housings are fully mated, the latching tabs spring outward to engage with corresponding latching features provided on opposing sides of the receptacle housing.
The latching tabs are metal inserts that are mainly flat and relatively simple in shape, thereby providing the durability and holding strength of metal at a minimal cost of manufacture. Unlike latching mechanisms of the prior art, no additional pins or other parts are needed. Manufacture of the complete housing and latching system therefore requires only molding of the two plastic housings, stamping out of the one or more metal latching tabs, and pushing of the latching tabs into retaining slots in the plug housing. Joining of the housings requires only aligning and pushing them together until the latching tabs snap into engagement with the latching features. Unlatching requires only that the two latching tabs be pressed gently inward until they disengage from the latching features, after which the two housings can be pulled apart.
In embodiments, the latching features are openings in the receptacle housing into which protrusions formed in the latching tabs are inserted when the two housings are joined. In other embodiments, the latching features are inward protrusions formed from the plastic of the receptacle housing that are inserted into openings in the latching tabs when the two housings are joined.
In some embodiments, the latching tabs are at least partly covered by plastic pressing tabs that are formed as part of one of the housings and can be pressed inward on living hinges so as to press upon and release the latching tabs. The pressing tabs thereby provide pressing targets which can be easily located by touch even if they are not directly visible, and which are comfortable to press on, since they are molded from plastic and lack any sharp edges that might be associated with the metal latching tabs.
In other embodiments, the latching tabs are covered by fixed portions of the plug housing, and are not accessible to the fingers of a user, so that a tool must be inserted through release openings provided in the plug or receptacle housing so as to press upon and release the underlying latching tabs.
The present invention is an electrical connector housing and latching system that includes a receptacle housing molded as a unitary plastic article, at least one latching channel formed on a side of the receptacle housing, each of the latching channels including a receptacle latching feature, a plug housing molded as a unitary plastic article, the plug housing being configured for mating with the receptacle housing by inserting at least a portion of the plug housing into the receptacle housing, and at least one metal latching tab inserted into a retaining channel formed on a side of the plug housing, the latching tab extending beyond the retaining channel so that a distal end of the latching tab can flex inward when pressed upon, the latching tab including a plug latching feature proximal to the distal end of the latching tab. The latching tabs, the retaining channels, and the latching channels are configured to cause the latching tabs to enter the latching channels and the plug latching features to engage with the receptacle latching features when the plug housing is fully mated with the receptacle housing, the plug latching features being disengagable from the receptacle latching features by pressing the distal ends of the latching tabs inward.
In embodiments, a tool is required to disengage the plug latching features from the receptacle latching features. In some embodiments, a pair of latching tabs are inserted into a pair of retaining channels formed on opposing sides of the plug housing, and a pair latching channels are formed on opposing sides of the receptacle housing.
In some embodiments, the receptacle latching features are inwardly extending protrusions formed from plastic of the receptacle housing, and the plug latching features are openings proximal to the distal ends of the latching tabs into which the receptacle latching protrusions extend when the plug housing is fully mated with the receptacle housing.
In other embodiments the plug latching features are outwardly extending latching hooks proximal to the distal ends of the latching tabs, and the receptacle latching features are openings in the latching channels into which the latching hooks extend when the plug housing is fully mated with the receptacle housing.
In some embodiments the plug housing includes pressing tabs attached to the plug housing by living hinges and at least partly covering the latching tabs, the pressing tabs being configured to flex the distal ends of the latching tabs inward and to disengage the plug latching features from the receptacle latching features when the plug housing is fully mated with the receptacle housing and the pressing tabs are pressed inward by fingers of a user.
In other embodiments the receptacle housing includes pressing tabs attached to the receptacle housing by living hinges and at least partly covering the latching tabs, the pressing tabs being configured to flex the distal ends of the latching tabs inward and to disengage the plug latching features from the receptacle latching features when the plug housing is fully mated with the receptacle housing and the pressing tabs are pressed inward by fingers of a user.
In various embodiments the receptacle housing and/or the plug housing includes latching tab covers that partly cover the latching tabs and prevent disengagement by a user's fingers of the plug latching features from the receptacle latching features, and the receptacle housing and/or the plug housing includes release openings into which a tool can be inserted to press on the latching tabs and release the plug latching features from the receptacle latching features. Some of these embodiments further include a tool for releasing the plug latching features from the receptacle latching features.
In certain embodiments at least one of the plug housing and the receptacle housing is configured for direct attachment to an electrical cable. In various embodiments at least one of the plug housing and the receptacle housing is configured for mounting to a panel.
And in some embodiments at least one of the plug housing and the receptacle housing includes an O-ring seat configured to accept an O-ring that inhibits entry of water into an interior of the system when the plug housing is fully mated with the receptacle housing.
The features and advantages described herein are not all-inclusive and, in particular, many additional features and advantages will be apparent to one of ordinary skill in the art in view of the drawings, specification, and claims. Moreover, it should be noted that the language used in the specification has been principally selected for readability and instructional purposes, and not to limit the scope of the inventive subject matter.
The present invention is a latching mechanism for a mid-power electrical connector system that is comfortable, easy, and safe to engage and release, even under cramped conditions, highly compact, durable, and inexpensive to manufacture. With reference to
In the embodiment of
With reference to
For some applications, applicable codes require that a tool must be necessary for releasing the latching mechanisms and separate the housings.
The foregoing description of the embodiments of the invention has been presented for the purposes of illustration and description. It is not intended to be exhaustive or to limit the invention to the precise form disclosed. Many modifications and variations are possible in light of this disclosure. It is intended that the scope of the invention be limited not by this detailed description, but rather by the claims appended hereto.