This application claims the benefit of U.S. patent application Ser. No. 12/229,365, filed Aug. 22, 2008, now U.S. Pat. No. 8,152,340, which is incorporated by reference in its entirety.
Loupe lights are lights attached to dental loupes or other eyewear to illuminate an area of interest. Some loupe lights may use a fiber optic cable that transmits light from a light source.
Loupe lights are often bulky and heavy and uncomfortable to wear for prolonged periods of time. Loupe lights may restrict movement, or cause the loupe to move or become dislodged when the user turns or moves. Loupe lights may generate large amounts of heat and become very warm with prolonged use.
Other loupe lights use a self-contained light source and draw power from a remote power supply. These loupe lights are powered by a wire. Wire protection is designed to prevent the wire from being detached from the loupe light when the wire is pulled on, either through use or by accident. Wire protection may be afforded by a knot in the wire, or a crimp or screw securing the wire.
What is needed is a loupe light that is lightweight and compact. What is also needed is a loupe light that has good wire protection.
A compact loupe light is described. The compact loupe light includes a body, a lens coupled to an end of the body, and an end piece coupled to an other end of the body. The end piece has a hole and an open channel on an inside of the end piece. The hole is positioned within the channel. The compact loupe light also includes an adhesive at least partially filling the channel, and a wire having a size substantially the same as the hole, the wire having a width substantially the same as the channel, the wire passing through the hole and making a bend before passing through at least a portion of the channel, the wire being held in the channel at least partially by the adhesive. The compact loupe light also includes a light source coupled to wire.
Lens 110 may be any suitable shape or configuration, and may be manufactured out of glass, plastic, or any other suitable material. In the embodiment shown, lens 110 is a biconvex singlet lens. Lens 110 may be coupled to body 120 by a press fit, threading, adhesive, or any other suitable method of coupling. In the embodiment shown, lens 110 is press fit to a front end of body 120.
End piece 130 may be any suitable shape or configuration, and may be manufactured out of metal, plastic, or any other suitable material. In the embodiment shown, end piece 130 is substantially cylindrical and is manufactured out of 6061 aluminum alloy. End piece 130 may be coupled to body 120 by press fit, threading, adhesive, or any other suitable method of coupling. In the embodiment shown, end piece 130 is threaded and configured to be coupled to the rear end of body 120, which is also threaded.
End piece 130 includes a hole 131 and an open channel 132 formed in end piece 130. Hole 131 is positioned within channel 132. In the embodiment shown, hole 131 is substantially circular and has a size substantially similar to that of wire 150. In the embodiment shown, channel 132 has a width substantially similar to that of wire 150. Channel 132 is also sufficiently deep to accommodate wire 150. Channel 132 is formed by channel walls 133. End piece 130 may have portions 134 removed to save weight.
Channel 132 may include other features which allow wire 150 to be held more securely in channel 132. For example, channel 132 may have ribs which extend partially into channel 132 and allows wire 150 to be held more securely in channel 132. As another example, channel 132 may have a surface treatment which allows wore 150 to be held more securely in channel 132.
Channel 132 may also have a cross-section which allows wire 150 to be held more securely in channel 132. Channel 132 may have cross-section that is wider at a top of channel 132 than at a bottom of channel 132. Channel 132 with this “wedge” cross-section allows wire 150 to be held more securely in channel 132 as wire 150 is pressed down into channel 132.
Channel walls 133 may be configured to be coupled to light source 140. In the embodiment shown, channel walls 133 include indentations 135 configured to assist in properly positioning or securing light source 140.
End piece 130 may have a mounting tab 139 which facilitates the coupling of compact loupe light 100 to a loupe. Mounting tab 139 may be used with different adapters in order to adapt compact loupe light 100 for use with different types of loupes.
Light source 140 may be any suitable source of light. In the embodiment shown, light source is an LED light mounted on a circuit board. Light source 140 may be a Cree XLamp 7090 XREWHT-L1-0000-X0D01 or a Cree XLamp 7090 XREWHT-L1-WH-R2-0-01.
Wire 150 may be of any suitable shape or configuration. In the embodiment shown, wire 150 is substantially cylindrical and includes two conductors and an insulating cover. Wire 150 may be coupled to light source 140 by soldering or any other suitable method of coupling. Wire 150 may be configured for connection to a power source.
Wire 150 passes through hole 131 and makes a bend before passing through at least portion of channel 132. The bend may be at least 75 degrees, but is preferably 90 degrees or greater.
Adhesive 160 at least partially fills channel 132. Adhesive 160 allows wire 150 to be held more securely in channel 132. Adhesive 160 fills channel 132 sufficiently to contact light source 140. Adhesive 160 allows light source 140 to be coupled more securely to end piece 130. Adhesive 160 may be Arctic Silver Arctic Alumina.
Adhesive 160 is electrically insulating. Electrical current from wire 150 will not conducted by adhesive 160. Adhesive 160 is also thermally conducting. Thus, waste heat from light source 140 is carried away by adhesive 160 and into end piece 130 and body 120. Adhesive 160, end piece 130, and body 120 thus act as a heat sink for light source 140.
Wire 150 is thus held in place by a combination of hole 131, channel 132, the bend created as wire passes through hole 131 and into channel 132, adhesive 160, and light source 140. This provides wire protection to wire 150 and strain relief to light source 140 in an effective and compact manner.
Hole 131 is positioned on a side of end piece 130. Wire 150 passes through hole 131 and at least a portion of channel 132, bends around a pin 136, and passes through another portion of channel 132.
Compact loupe light 100 can thus be made lightweight and compact. For example, compact loupe light 100 can be made to have a diameter of 0.65 inches or less, which is about the same as a dime, and a length of 0.76 inches or less. The compact loupe light 100 can be made to have a weight of 0.18 ounces or less, which is approximately the weight of a nickel.
While the invention has been described in terms of some specific examples and in some specific embodiments, it will be clear that this invention is not limited to these specific examples and embodiments and that many changes and modified embodiments will be obvious to those skilled in the art without departing from the true spirit and scope of the invention as defined in the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
1705465 | Cameron | Mar 1929 | A |
3285242 | Wallace | Nov 1966 | A |
3739464 | Eilenberger | Jun 1973 | A |
4125238 | Tanaka | Nov 1978 | A |
4186429 | Johnston | Jan 1980 | A |
4523259 | Dorsett et al. | Jun 1985 | A |
4797736 | Kloots et al. | Jan 1989 | A |
4920672 | Scott et al. | May 1990 | A |
4967330 | Bell et al. | Oct 1990 | A |
5506763 | Carley | Apr 1996 | A |
5651606 | Krogman | Jul 1997 | A |
5667291 | Caplan et al. | Sep 1997 | A |
6039461 | Cummings et al. | Mar 2000 | A |
6078439 | Silhengst et al. | Jun 2000 | A |
6322226 | Dickson | Nov 2001 | B1 |
6457246 | Frazer et al. | Oct 2002 | B1 |
6594204 | Yamamoto et al. | Jul 2003 | B1 |
D491684 | McInnis | Jun 2004 | S |
6742913 | Deutsch | Jun 2004 | B2 |
6942363 | LeVasseur | Sep 2005 | B1 |
7658511 | Sugiyama et al. | Feb 2010 | B2 |
8047684 | Chang | Nov 2011 | B2 |
8152340 | Nguyen | Apr 2012 | B1 |
20040090785 | McInnis | May 2004 | A1 |
20050286243 | Ranish et al. | Dec 2005 | A1 |
20080252893 | Zuluaga | Oct 2008 | A1 |
Entry |
---|
Wikipedia entry, Interference fit, http://en.wikipedia.org/Interference—fit, retrieved Oct. 21, 2014. |
Bussard, Tolerancing, http://www.maelabs.ucsd.edu/mae-guides/Tolerance/Tolerancing.htm, retrieved Oct. 21, 2014. |
Number | Date | Country | |
---|---|---|---|
20130094217 A1 | Apr 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12229365 | Aug 2008 | US |
Child | 13442365 | US |