1. Field of the Invention
This invention relates to a molecular-drag vacuum pump. More particularly, the invention relates to a compact, portable, molecular-drag vacuum pump.
2. State of the Art
In recent years, smaller and more portable chemical and biological sensors have been developed. These sensors have many potential applications, such as in hand-held chemical analyzers, biological detection systems, and other portable sensory instruments. Such instruments may find advantageous use, for example, by soldiers or others to detect the presence of chemical and biological warfare agents; or by inspectors as a simple and rapid means of on-site testing of environmental contaminants; or by law-enforcement personnel testing unknown substances found at a particular location.
However, to fully realize the benefit of these new smaller and more portable sensor systems, relatively compact, low-power vacuum pumps are desirable. Conventional vacuum pumps capable of achieving the desired pumping characteristics are typically too large, and consume too much power, for compatibility with portable sensor systems. Similarly, conventional pumps that are small enough for such applications generally cannot provide the high vacuum typically required for highly accurate sensing and testing of substances at low concentrations. Such conventional pumps are generally ineffective in the Knudsen range, where the concentration of remaining gas molecules is too small for the pump to operate effectively, and yet is the vacuum level where many sensors' effectiveness is enhanced by its provision. Several other solutions to the problem of getting higher vacuum in a small device have been tried, including using cryogenics, absorption of remaining gas molecules by some means, and diaphragm pumps, but, to applicant's knowledge, these have not provided a satisfactory vacuum from a small-enough device. The molecular-drag pump is promising for application in this area.
The concept of the molecular-drag pump was first introduced early in the 20th century, see, e.g. W. Gaede, Annals of Physics, vol. 41, 337 (1913), and was later applied in a disk-shaped version see, e.g. M. Siegbahn, Archives of Mathematics, Astronomy, and Physics, vol. B30, 2 (1944). The basic principle of operation of the molecular-drag pump is to transfer momentum from a high-speed moving surface, such as a rotating rotor, disk or drum, to molecules of a gas, to thereby compress and direct the gas toward an outlet port. One or more wipers are provided to sweep molecules from the rotor toward the outlet, or toward another portion of the rotor in a multi-stage pump, as set forth below. Drag interaction between the moving surface and the gas causes the average kinetic energy of the gas molecules to increase along a pumping path through the pump in contact with the moving surface in a pumping direction; and imparts a net momentum toward the outlet along the path, making the gas as a whole more prone to evacuate the pump through the outlet. In a very low pressure range, this type of pump action causes a larger number of molecules to evacuate a space than other pump types, resulting in a more complete vacuum.
Some pumps of this type have more than one stage. The pumping path contacts a plurality of rotors sequentially, or contacts the same rotor sequentially at a plurality of places. A housing, and/or a housing in combination with wipers, conventionally redirects the gas molecules sequentially to different locations, or stages, in a multi-stage pump.
Some Design goals regarding small molecular-drag pumps are to make efficient use of the space available for pumping, and to minimize power losses in bearings, in order to achieve a desired performance. In addition, in conventional molecular-drag pumps, the performance can be greatly effected by the tolerance between a wiper and a spinning rotor. Toward these goals, it would be desirable to have a compact molecular-drag pump that eases the fabrication tolerances of the pump parts, yet provides the desired performance. It would also be desirable to have a compact molecular-drag pump that makes use of efficient compact bearings. It is also desirable to have a compact molecular drag pump which compresses the gas in a series of stages in order to sequentially increase the pressure. Finally, it would be desirable to have a multiple-stage molecular-drag pump which accommodates a leakage between pumping stages by directing leakage gas from a later stage into a prior stage to combine with the incoming stream from the prior stage in a pumping direction along the pumping path back into the later stage.
The invention advantageously provides a molecular drag vacuum pump configured for pumping a gas stream from an inlet to an outlet, the pump including a high-speed spinning disk or rotor disposed within a housing. A plurality of passageways are formed inside the housing adjacent the disk, and gas is compressed by contact with surfaces of the spinning disk in successive stages. Conformable wipers are disposed adjacent the spinning disk to direct the gas stream to the successive stages.
In accordance with one aspect of the invention, the disk is powered by an integrated slotless, brushless, permanent magnet motor, comprising permanent magnets disposed in the disk, and cooperating coils in the housing. The magnets are arranged to emulate a two-pole pair permanent magnet. An external circuit electronically controls switching in the coils to power the rotation of the rotor.
In accordance with another more detailed aspect of the invention, soft ferrite rings are disposed adjacent the coils to provide a flux return path. The flux return path increases the field density adjacent the permanent magnets so as to enhance torque, and the soft ferrite material provides a relatively high resistivity so as to minimize eddy current-related power losses.
In accordance with yet another more detailed aspect of the invention, the wipers are provided with parallel ridges on a contacting face, to facilitate creation of a conformable fit with the rotor.
In accordance with another more detailed aspect of the invention, seal rings may be disposed against the disk between gas passageways to reduce leakage therebetween.
In accordance with still another more detailed aspect of the invention, the pump may include regenerative pumping pockets to help prevent backflow on the high pressure end of the pump.
In accordance with yet another more detailed aspect of the invention, the housing may have a modular configuration to allow two or more pump modules to be connected and operate in series. Successive stages may be independently or commonly powered, and may counter-rotate.
Other advantages and features of the present invention will be apparent to those skilled in the art from the following description, taken in combination with the accompanying drawings, which are given by way of examples, and not by way of limitation.
Reference will now be made to the drawings in which the various elements of exemplary embodiments will be given numeral designations and discussed. It is to be understood that the following description is only exemplary of the principles of the present invention, and should not be viewed as narrowing the scope of the invention set forth in the claims.
A series of permanent magnets 18 are disposed in a circle about a center axis of the rotor 10. They are integral with the rotor, being embedded therein, and intersect the top surface 12, and/or the bottom surface 14 (not visible in FIG. 1). The permanent magnets 18 comprise a part of the motor drive system of the molecular-drag pump, which is described in more detail below. A rotor shaft 56 is disposed in the center of the rotor 10, and serves to carry the rotor and provides for rotation about the center axis, cooperating with bearings carried by the housing, as described in more detail below.
Abutting the top surface 12 of the rotor 10 is a first wiper plate 20 which directs the flow from a first passageway located above and adjacent to top surface 12 of the rotor, into a second passageway enclosed within channel 16, as will be described in more detail below. Disposed within the channel 16 and abutting the top surface 44, bottom surface 46, and back surface 48 of the channel 16 is a second wiper plate 22 which directs the flow from the second passageway (in channel 16) into a third passageway located below and adjacent to the bottom surface 14 of the rotor.
The rotor 10 is contained within a housing 24 (
As the gas stream 32 continues around the first passageway 36, it approaches the first wiper plate 20, which directs the flow radially outwardly past the edge of the rotor 10, and into a first vertical tube 38, and downward to a second passageway 40. The circuit of the gas from the inlet to the first wiper plate is the first stage of compression. Shown in
Advantageously, the embodiment of
The provision of the auxiliary channel 37 provides at least two distinct advantages. First, leakage is not lost, but is returned to the gas stream 32 via the auxiliary channel. This allows leakage gas to be captured and compressed. Second, any gas leakage which is not initially redirected by the first wiper plate 20 will nevertheless be compressed some amount more than the gas which enters the inlet 34. Thus, when the gas stream within the auxiliary channel exits that channel and merges with the primary gas stream near the wiper plate, it will complement the total stream, creating a higher average pressure at the end of the first stage.
The molecular drag pump of the present invention can also operate without the auxiliary passageway. Viewing
Referring back to
Like the first passageway 36, the second passageway 40 is also annular in configuration, and directs the gas stream against the inside wall 42 of the spacer 28, around the perimeter of the rotor 10 toward the second wiper plate 22. The circuit of the gas from the first vertical tube 38, around the channel 16 to the second wiper plate is the second stage of compression.
As with the first wiper plate 20, the second wiper plate 22 directs the gas stream radially outwardly past the edge of the rotor 10, into a second vertical tube 50, and into the third passageway 52 formed in the outlet cover 30. Shown in
The third passageway 52, similar to the first passageway 36, is formed to be adjacent to the bottom surface 14 of the rotor, thereby providing a third stage of compression of the gas stream 32. However, unlike the first or second passageways, the third passageway does not merely describe one circuit of the rotor, but is preferably formed in a spiral configuration as shown in
By virtue of its three-stage design, the present molecular-drag pump imparts more kinetic energy to the gas stream for a given rotational speed than conventional disk-type molecular-drag pumps, and is thus able to obtain higher compression of the gas stream with less energy. Compression is also enhanced by the slotted rotor design, which provides more surface area of contact between the rotor and the gas stream. Though shown with only one channel 16, it will be apparent that the rotor 10 could be provided with more than one channel to provide additional compression stages. Additionally, a drag pump could be configured with more than one rotor, possibly rotating at different speeds, to provide for more stages of compression as another modification.
Several other advantageous design features also contribute to the effective functioning of this invention. As shown in
Also of great value to the present invention is the motor design. It will be apparent to one skilled in the art that many drive motor configurations could be provided to impart the necessary rotation to rotor 10. For example, a high speed electrical motor could be connected to the bearing hub 56 to cause the rotor to spin. However, the molecular drag pump of the present invention is intended to be ambulatory, such as for carrying by a combat soldier for periodic atmospheric sampling to check for the presence of dangerous chemical or biological agents. Consequently, the pump and its power source are preferably very small and lightweight. Additionally, to operate at the very high rotational speeds indicated above, the pump must be very well balanced and free of vibration. The motor design associated with the pump of the present invention is intended to provide these advantages. It provides a very lightweight, compact, pancake-shape pump with minimum vibration and power consumption.
The compact molecular-drag pump disclosed herein advantageously comprises an integrated slotless, brushless, permanent magnet motor. One embodiment of this motor is depicted in connection with the pump of
To further reduce the likelihood of outgassing, the aluminum rotor and housing can be baked to help release as much trace gas as possible before the pump is used for a given application. Before the pump is first used, and after subsequent uses, the pump should be baked for about 5-10 hours (with the pump running) to eliminate the effects of previous exposure to atmospheric gasses and vapor. Small quantities of gas and vapor can be trapped on the metal surfaces, and then later contaminate the gas stream when the pump is used for sampling, testing, etc. Advantageously, aluminum can be effectively baked at a temperature at or below about 100° C. Other materials require much higher temperatures to effictively reduce outgassing. For example, stainless steel requires a baking temperature of 500-600° C.
In one embodiment of the motor, the permanent magnets are arranged to lie opposite a circle of electric coils 62 and 64, disposed about the center of the inside of the inlet cover 26, and outlet cover 30, respectively. Electric current provided to the coils 62 and 64 interacts with the permanent magnets, causing the rotor to turn in the same manner as the rotor of a brushless permanent magnet motor. The inventors have found that the pump and motor configured in this manner are capable of pumping 500 cc/sec., with a compression ratio of 1000, while consuming only 5 watts of power.
Though two sets of magnets 18 and coils 62 and 64 are shown and/or described, it will be apparent that the pump could be provided with a single set of magnets and coils and still meet the requirements of this invention. Nevertheless, the inventors prefer to have two sets of coils for reasons explained below. Control and switching for the integrated motor components are provided by external circuitry, rather than mechanically through contact with the rotor. This helps reduce friction with the rotor, thereby further reducing power consumption and contributing to longer operating life for the system. Those skilled in the art of electric motors will recognize that there are many ways a motor of this design can be electronically controlled to provide the desired rotation.
Another embodiment of a molecular drag pump 100 and integrated motor is illustrated in
Advantageously, the inventors have developed a compact integrated axial flux motor which provides the desired flat shape, provides high starting torque, low power losses, low vibrations, and low rotor bearing loads. In the embodiment of
It will be apparent that where rotational speeds of 100,000 to 200,000 rpm are contemplated, switching losses can become very significant. As is well known, transients in electric coils must dissipate each time the direction of current is switched. Thus, reduction in the frequency of current switching can significantly reduce the power lost through these transients, and also reduce resistive losses associated with field collapse in the drive coils when current is switched. The motor design depicted in
The D-shaped coil configuration is particularly advantageous. As shown in
The use of three electric coils 162, 164, provides a three-phase motor. The combination of the two-pole pair permanent magnet configuration (shown in
Providing drive coils 162, 164 on both sides of the rotor 110 helps reduce power dissipation losses. As is well known to those skilled in the art, resistive losses are proportional to the square of the current. Thus, one coil with a given current will experience twice the power dissipation than two coils each with half the current. However, the same torque will be developed. Thus, two sets of coils will produce approximately half the power dissipation losses for a given total operating torque.
Disposed between adjacent coils 162 are Hall Effect sensors 204 that detect the change in magnetic field due to the permanent magnets 118, and provide this information to the electronic control and commutator circuit. This allows detection of the position of the permanent magnets relative to the drive coils, and provides sensing required to control the direction and speed of rotation of the rotor 110. At start-up, the motor initially turns the rotor slightly to allow the Hall Effect sensors to detect its position and direction of rotation. Based on this information, the controller can then initiate current flow in the proper coils in the proper direction to turn the rotor in the desired direction. Obviously, the pump will not function if the rotor turns in the wrong direction.
Other sensors could also be provided within the motor. For example, a temperature sensor 206 could be provided near the coils 162 to sense motor temperature and allow shut-down if the motor becomes too hot. One or more pressure sensors (not shown) could also be placed in various locations within the gas passageways of the pump to allow monitoring of its operation.
The integrated motor of
In the present drive motor, in contrast, the coils 162, 164 do not rest in slots fabricated in the magnetic flux return path core material, though they may be encased in a non-ferromagnetic, low-outgassing material. Instead, the motor is provided with soft ferrite rings 208 disposed adjacent to each set of coils. The ferrite rings are shown in plan view (in dashed lines) in
The ferrite rings 208 provide a flux return path for the magnetic flux created by the permanent magnets 118 and the drive coils 162, 164. Magnetic flux will naturally tend to flow through nearby materials that have high magnetic permeability, such as the ferrite rings, rather than flowing in the aluminum housing or free space. It is well known that the provision of soft magnetic material with large magnetic permeability in the proper geometric configuration adjacent to electric coils and permanent magnets can direct and channel the magnetic flux in a desired way. Iron and other ferromagnetic materials can also be used as a magnetic flux return path. In a conventional brushless permanent magnet motor, the common iron core materials provide a flux return path that directs magnetic flux more directly to the opposite pole. This has the effect of increasing the magnetic field density in the air gap (230 in
The soft ferrite rings 208 of the present invention provide the flux return path for the present motor. The inventors have found that this design is very efficient. Through experimentation and measurement, the inventors have found that only a very small fraction of the magnetic field extends beyond the ferrite rings. Consequently, a greater portion of magnetic field is directed toward production of torque by the motor, rather than being wasted in space.
Eddy current-related power losses are also a significant factor in this type of motor. Motion of the permanent magnets 118 induces a voltage in the soft magnetic material core (or in the ferrite rings 208) because of the time-varying magnetic field. This voltage creates eddy currents that consume power in proportion to the square of the induced voltage, and inversely proportional to the electrical resistivity of the core material. Soft iron core materials experience relatively high power losses due to eddy currents when the magnetic field changes at a high rate. Iron has relatively low electrical resistivity, which results in relatively large induced eddy current losses. One well known technique for minimizing eddy current-related power losses is to construct the core in a laminated configuration, with alternating layers of iron separated by a thin electrical insulating material. The reduced thickness of any one layer of iron reduces the power lost to eddy currents. However, the inventors have found it impractical to use a laminated material for the flux return path of the present motor. A laminated core would have eddy current losses that are too large for practical use in a pump of this configuration where the rotor must spin at approximately 100,000 to 200,000 rpm, and where power consumption must be minimized.
Instead, because eddy current-related power losses are inversely proportional to the electrical resistivity of the material, another approach to reducing power losses is to use a material with a higher resistivity. In the present invention, soft ferrite is used for the flux return rings 208 because it has a much higher resistivity than iron. The soft ferrite material also has low magnetization losses (having a narrow hysteresis loop), and exhibits high magnetic permeability, as well as a relatively large saturation magnetization. Consequently, the soft ferrite rings provide an effective flux return path that increases the magnetic field density between the coils and the rotor, and also reduces eddy current and magnetization reversal-related power losses. This configuration also has the benefit of reducing heating of the coils, which improves the operation and longevity of the motor.
The motor depicted in
The molecular-drag pump of the present invention is highly modular. Viewing
If two motorized pumps 100 are connected in series, they may be configured to counter-rotate under their own power, thus reducing gyroscopic loads on the operator. Gyroscopic loading on the operator is minimized because the rotor of the first pump spins in one direction, while that of the second pump spins at substantially the same speed in the opposite direction, about a common rotational axis. When used in compact ambulatory systems, such as a portable mass spectrograph-based chemical and biological detector, it is desirable that low load be applied on the operator while manipulating and moving the instrument. The compact size and modularity of the molecular-drag pump assembly of the present invention is very useful for this purpose.
Alternatively, serial pumps may share a common motor, as depicted in FIG. 9. In the embodiment a self aligning low friction mechanical coupling 212 is used to connect a powered pump module 100 to an unpowered module 214. The two modules are thus powered by the motor of the first module. A self-aligning (laterally and vertically sliding) magnetic coupling (not shown) may also be used, rather than the direct mechanical coupling shown in FIG. 9. The first unpowered stage pump 214 includes only the rotor 110 and housing 124 with pumping passageways 218, and includes no motor components. As shown, the unpowered module may have pumping passageways that are configured differently from those of the powered module, though still operating under the same principles.
Referring to FIGS. 8 and 11-12 backflow in the spiral or high pressure channel 152 near the outlet of the pump may be reduced by employing the general concept of the regenerative pump (see, e.g. German Patent No. 3,919,529, Jan. 18, 1990). Referring to
Regardless of the configuration of the motor, it is desirable to reduce or eliminate gas leaks between pumping paths in the molecular drag pump. Furthermore it is desirable to reduce or eliminate virtual leaks (gas traps), particularly in the high vacuum part of the pump. The present invention employs several techniques for reducing gas leaks between pumping paths.
One feature of the compact molucular drag pump that reduces gas leaks is the configuration of the wiper plates. In order to achieve the desired compression ratios in a compact package, the seal between the wiper plates 20, 22, 120 and the rotor 10, 110 needs to be very good, and passive leaks between adjacent channels or passageways must also be minimized. The first and second wiper plates are configured as a self-sealing vane, formed of a conformable plastic material such as Ultem plastic, manufactured by A. L. Hyde Company, Inc. of Greenloch, N.J. When the pump is first assembled, the wiper plates directly contact the surface of the rotor. As the rotor rotates in its early operation, the plastic material of the wiper plates naturally abrades and conforms to match the exact size and shape of the opening it is to fill. Once deformed as required, the wiper will form a tight seal against the rotor, while creating very little friction. So long as the wiper plate adequately fills the space against the rotor and within the respective passageway, it will redirect the flow of gas as needed with very little leakage. However, there will still be a slight gap between the wiper plate and the rotor. As noted, the present invention advantageously directs any leakage which may occur around the wiper plates, back into other passageways, thereby imparting its kinetic energy to the incoming stream to “prime” the incoming gas flow.
Where an integrated motor is used, however, the process of matching the parts through abrasion may not be very practical because of the small torque developed by the motor. Furthermore if the rotor 10, 110 touches the housing 24, 124 during operation (especially in ambulatory or portable systems) it slows down rapidly, and may even stall.
Referring to
The ridges 222 on the wiper plates may comprise sharp triangular ridges as shown, or other shapes, such as rounded ridges (similar to a corrugated shape), squared ridges, etc. These ridges are smoothed or worn down during initial operation of the rotor, or upon collision between the rotor and the wiper plates. This is facilitated by the material of the wiper plates, being a soft material such as PTFE, Ultem plastic or other suitable material. A low outgassing material is preferred in order to prevent the introduction of contaminant gasses into the gas stream.
As depicted in
It will be apparent that the seal between the wiper plates and the rotor is actually a pumping leak, because the thin gap between the wiper plate and the rotor acts as a molecular-drag pump itself. Referring to
As with the conformable wiper plates described above, the passive seal ring 226 is preferably made of a soft abradable plastic material such as PTFE or Ultem plastic, and is provided with ridges 222 in its contacting face in a similar manner as the wiper plate in FIG. 13. The ridges help reduce friction between the rotor and the seal ring during initial operation of the pump, until the facing surface becomes sufficiently abraded to provide a tight shape-conformed seal. Because the potential leakage pathway is generally perpendicular to the long axis of the passive seal ring, the ridges in its contacting surface are parallel to, rather than perpendicular to the direction of motion of the adjacent rotor surface, as shown in FIG. 14. This configuration further reduces the friction between the rotor and the passive seal ring during initial operation of the motor.
It will be apparent that to function as shown in
Alternatively, the passive seal rings can be continuous, unbroken rings. For example, viewing
In other locations, where gas passageways must traverse a seal ring, continuous seal rings may still be used if the gas passageway is routed around the seal ring. For example, viewing
With regard to the ridges on the contacting face of the seal ring, viewing
Another feature of this pump that helps reduce gas leaks is the configuration of the permanent magnets 118 installed in the rotor 110. These permanent magnets are disposed in small pockets 246 which do not extend entirely through the rotor. Consequently, there is no path by which gas can leak from the high pressure side to the low pressure side through the rotor around the magnets.
With this unique combination of a multiple stage drag pump, low friction bearings, and integral motor design, the inventors are thus able to produce a reliable, low cost, high efficiency molecular-drag pump that is powerful and efficient, and is suitable for a wide range of applications. It is to be understood that the above-described arrangements are only illustrative of the application of the principles of the present invention. Numerous modifications and alternative arrangements may be devised by those skilled in the art without departing from the spirit and scope of the present invention and the appended claims are intended to cover such modifications and arrangements.
The present application is a Continuation-In-Part of U.S. patent application Ser. No. 09/419,959, filed on Oct. 18, 1999 and entitled COMPACT MOLECULAR DRAG VACUUM PUMP, and subsequently issued as U.S. Pat. No. 6,450,772 on Sep. 17, 2002.
Number | Name | Date | Kind |
---|---|---|---|
3232524 | Rice et al. | Feb 1966 | A |
3969042 | Bachlerr | Jul 1976 | A |
3988024 | Watanabe et al. | Oct 1976 | A |
4164690 | Muller et al. | Aug 1979 | A |
4371817 | Muller | Feb 1983 | A |
4383193 | Tomite et al. | May 1983 | A |
4551645 | Takahashi et al. | Nov 1985 | A |
4579508 | Tsumaki et al. | Apr 1986 | A |
4678409 | Kurokawa | Jul 1987 | A |
4768921 | Shinjiro et al. | Sep 1988 | A |
4775812 | Kitamori | Oct 1988 | A |
4787829 | Miyazaki et al. | Nov 1988 | A |
5160250 | Ikegami et al. | Nov 1992 | A |
5354172 | Schofield | Oct 1994 | A |
5456575 | Helmer et al. | Oct 1995 | A |
5482430 | Hablanian | Jan 1996 | A |
5661354 | Burtis | Aug 1997 | A |
5709528 | Hablanian | Jan 1998 | A |
5713727 | Veronesi et al. | Feb 1998 | A |
5751089 | Stridsberg | May 1998 | A |
Number | Date | Country |
---|---|---|
3919529 | Jan 1990 | DE |
57-62995 | Apr 1982 | JP |
61-85599 | May 1986 | JP |
Number | Date | Country | |
---|---|---|---|
20030082059 A1 | May 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09419959 | Oct 1999 | US |
Child | 10246798 | US |