This invention relates to multi-purpose exercise equipment that uses cables to transfer force from a resistance source to user interfaces and also to apparatus that have elements that pivot, translate, and transfer forces with cables.
There are mainly two different methods to do strength training and both have their inherent strengths and weaknesses. The first is to exercise with free weights and the second is to exercise with exercise machines that use cables to transfer the forces from a resistance source to a user.
The advantage of free weights is that they're very effective in producing strength gains and muscle mass. This is, in part, because the weight is unguided, and therefore secondary muscles get involved during the exercise in order to balance the weight. One of the inherent problems with free weights is that exercising with them is not as safe as exercising with an exercise machine. A lifter can lose his balance and be injured in a fall. The lifter may not be able to finish a lift, in which case he can become pinned under a bar. Plates can slide off the bar during a lift, potentially causing injury to the lifter and most likely to the floor. Lifting with free weights is also time consuming because of the need to take weight plates on and off to change the resistance, and because of the need to move the bar to different positions on the bar rack for different exercises. Also the lifting area can become cluttered with weight plates, thereby causing a hazard and making it difficult to locate desired weigh plates. In addition, some body parts are best worked out with an exercise machine, such as using a cable pulldown machine for working out the back. Furthermore, cost can be a factor. A lot of equipment is needed to be able to do a complete free weight workout, such as, the free weights, dumbbells, various lifting bars, a bench that inclines and declines, a bar rack for holding the barbell in several locations, and a cable pulldown machine. Purchase of all of this equipment can get quite expensive. Since free weights and free weight equipment are not designed to be compact or stored out of view, typically a whole room needs to be dedicated to such a setup.
Some of the advantages of exercise machines that make them so popular are because they overcome many of the disadvantages of free weights. They're safer to use than free weights as there is no risk of falling, of being trapped by the weights, or of having the weights fall off. Because the source of resistance is typically a weight stack where the weights are confined, the weights don't get scattered, lost, or dropped on the floor, and changing the amount of weight is quickly achieved by just changing the position of the selector pin. Many different exercises can be performed on one machine, and some exercise machines have multiple workout stations and weight stacks to permit performance of the various exercises needed for a complete body workout. Since it is possible to quickly and easily change between different exercises and resistance levels, circuit weight training is possible.
Circuit weight training was developed to promote both aerobic and muscular fitness at the same time. It consists of a series of exercises performed in succession, with a maximum of 30 seconds of rest between exercises, and lasting a total of 30 minutes. In order to maintain such a pace, an exercise machine must allow for a very quick and smooth transition between the different exercises and resistance levels, or there needs to be many different workout stations to allow all the different exercises needed to get a full body workout.
One of the problems with exercise machines is that they take up a lot of floor space. While some take up a smaller amount of floor space than others, typically they are all free standing and need to be set up far enough away from walls and furniture in order to allow for the space necessary to move around them and to exercise freely. Most exercise machines are designed such that only a certain number of body parts can be exercised per workout station. This is because the typical workout station is dedicated to doing specific exercises, such at a high pull station for doing pulldowns, or a low pull station for curls, or a station dedicated to doing the bench press or squats, etc. Exercise machines with these kinds of dedicated workout stations must have multiple workout stations for the user to get a full body workout. These larger machines require more steel, pulleys, and parts, resulting in a more complicated and expensive exercise machine that takes up more floor space.
Some inventions have attempted to deal with the problem of dedicated workout stations by allowing a set of pull points (the point at which individual hand grips or a bar is attached) to be adjustable in space. Some have achieved this by allowing the pull points to be adjusted vertically such as shown in U.S. Pat. Nos. 4,549,733; 4,603,855; and 4,898,381. One of the problems to be overcome by doing this is what to do with the excess cable as the pull points are moved. How complicated is the method for taking up the cable slack from moving the pull points? Another method to adjust the pull points in space is to position the pull points at the distal end of an arm, but the pivot of the arms is from a fix location that limits their versatility. Examples of this are shown in U.S. Pat. Nos. 4,826,157; 6,458,061 and 6,488,612. Cable length is constant but the arms pivot from a fixed pivot point.
For a lot of exercises a user may prefer to use a bar between the pull points. Some exercise machines that utilize pull points that move up and down are only designed to use individual hand grips. Some reasons a straight bar can't be used is because the vertical guides are spaced to closely together, the vertical guides aren't parallel to one another, and there is no space between the pull points (or arms) either because the arms are too short or there is structure directly between the pull points which prohibit the ability to do meaningful straight bar exercises like squats. Some examples of gyms that have one or more of these flaws are gyms like Nautilus NS700X, German patent application DE19801672, US patent application 2006/0116249, and Cybex FT-450. Some exercise machines have the ability to use a straight bar, like U.S. Pat. Nos. 5,725,459 and 6,447,430; and the Body Craft PFT Functional trainer, along with several others. The problem with these is that while they do allow the ability to use a straight bar between the pull points, there is no easy way to move the pull points at the same time while leaving the bar attached. They use spring loaded lock pins which require a constant force to keep the pins retracted during adjustment of the pull points. And so for these gyms there is no easy way to adjust the vertical position of the pull points except to remove the bar.
Another problem with exercise machines is that during the performance of some of the pressing exercises or fly motion exercises, the path of travel for the exercise follows a predefined arc or guide-way. Such single plane motion eliminates or substantially reduces the amount of work that smaller secondary muscles would be required to do to balance the weight if the same exercise was being performed using free weights.
Some machines require extra time in selecting a resistance level, especially those that utilize progressive resistance means such as springs, elastic band resistance, or flexible members to provide the resistance. These means of resistance are generally not as preferred by serious athletes for muscle development, who instead prefer the constant resistance offered by free weights or stack weight machines. Many of the functional exercise machines have two weight stacks instead of one which more than doubles the time required to change resistance levels. If a machine takes a long time to be setup for different exercises and resistance settings, circuit training cannot be performed, and the workout is longer than it would otherwise need to be.
Another problem with existing exercise machines is that they detract from a room that is not specifically dedicated for exercise. Most exercise machines aren't designed to be hidden from view when not in use, which can be unsightly for a room that is not specifically dedicated to be a fitness room. Some gyms are designed to fold up when not in use to cut down on the space they take up, but they're often too heavy and/or bulky to move or store away from view. There are some home gyms that fold up and can be stored out of sight, perhaps under a bed. But these require substantial time and effort to unfold for a workout and then fold up again afterwards. In addition, these fold-up gyms often fail to provide a full body workout.
The benefits of the invention relate to its versatility, compactness and functionality. A wide variety of exercises can be done on this one piece of equipment. As a result, additional exercise equipment is unnecessary. Various exercises can be performed with minimal changeover time which allows for the ability to do circuit training. The apparatus is designed to collapse into a space having a minimum depth. Thus, the apparatus is suitable for folding up into a cabinet, which allows the room to be used for other activities. Also, because of its compact size it could be shipped preassembled, freeing the buyer from this task and making it easy to take along during a move to a new home.
The ability of the arms to rotate both horizontally and vertically as well as translate vertically allows the cable ends at the ends of the arms to be positioned anywhere from near the ground to well overhead. The pulley assemblies at the ends of the arms allow the cables to exit freely and that feature along with the ability of the arms to freely rotate in the horizontal direction during exercising allows for a degree of instability during exercising which is balanced by the involvement of secondary muscles to balance the resistance. This helps to give the gym a feeling not dissimilar to working out with free weights. The horizontal movements of the arms also allow the arms to be better position for some exercise than if the arms were fixed parallel to one another. One example is while doing curls with the handgrips. The arms swivel in underneath where the handgrips are going through their motions and in that way gives a more natural feel to the exercise. Another example for this would be when doing flys or bench press exercises with the handgrips. The arms can also be locked into different positions of horizontal rotation (both inwardly and outwardly) in order to perform certain types of exercises. Like locking them all the way to their outmost positions for doing a crossover fly exercise.
The arms are able to move independently from one another in horizontal rotation (even during exercising) but they're tied together in vertical rotation and vertical translation. Because the arms are tied to move together in vertical rotation and vertical translation this allows an exercise bar to be left attached during repositioning the arms. The ability of the vertical rotation and vertical translation locks to remain in an unlocked position also aids in repositioning of the arms to new positions. Many gyms require a constant force to be exerted on their locking mechanisms for adjusting the guides (and arms) and so only one guide at a time is able to be repositioned by a single user. Because of this it would be difficult for a single user to reposition both guides at the same time while leaving a straight bar attached. For most gyms this isn't a problem because they aren't designed to use a straight bar. Even if the locks on other gyms could be locked in an open position, because the guides are not tied together in vertical translation (and if the gym also has arms attached to the guides these would need to be able to be tied together in rotation also) it would be difficult for a single user to reposition an attached straight bar to the same vertical (and rotational) positions. The means to engage the translation locks for both arms come to a single location and attaches to a single lever at the distal end of one arm and the means for engaging the vertical rotation locks for both arms also come to a single location and a single lever at the distal end of the other arm. This simplifies the movement of the arms by only needing to activate these two levers to release the arms in both vertical rotation and translation. And because of the levers' position and functionality, this allows the user a convenient place to hold onto the arms during arm repositioning. While tying the arms together (permanently in some embodiments) in vertical rotation and vertical translation does prevent the user from repositioning the arms at different heights and rotations relative to one another, the benefits of tying them together as outlined above outweighs this disadvantage. Many more exercises require the arms to be at the same height and vertical rotation than at different heights and/or rotations. Typically the user wants the two sides to be put into a mirror image to one another. So for each change of position without the above benefits the new location (both the vertical placement and vertical and horizontal rotation) would needs to be noted and remembered so that the other arm could be moved to the same location. Some exercises require the use of only one handgrip or leg strap which is not hindered by tying the arms together in vertical rotation and translation.
Additional benefits of the invention have to do with the cable reeving used in it. This reeving which is referred to as wrap-on wrap-off allows for a zero change in effective cable length (explained in more detail in the ‘Operational Aspects’ section below). This reeving helps to maintain a preload on the cable ends so that the bar doesn't slip during repositioning (important for some embodiments of the invention) and prevents movements of the selector bar at the weight stack. It allows for a different way to build a fixed arm variation as explained in the ‘Additional Alternative Embodiments’ section below. And it allows for the additional degree of freedom for the preferred embodiment, the ability for the arms to rotate in the horizontal direction (some of the benefits of which are as described above).
Other advantages will be apparent from the following description and drawings of several embodiments.
I have invented a versatile compact exercise apparatus. The exercise apparatus comprises the following: A pair of guide assemblies each comprising a guide and a rotating structure such that the guides are able to slide parallel to vertical axes and the rotating structures are able to rotate about them. A pair of arms that are rotationally attached to the guide assemblies at their pivot ends at horizontal axes that are substantially perpendicular to the vertical axes and have at their distal ends pulley assemblies which contain at least one pulley. A guide connection means for tying the guides together in vertical translation. A resistance assembly with a source of force and a selective means of engaging a portion of that force. And a cable assembly means for transferring forces from the resistance assembly to the cable ends that are located at the pulley assemblies at the distal ends of the arms.
I have also invented a versatile exercise apparatus comprising the following: A pair of guide assemblies each comprising a guide and a rotating structure such that the guides are able to slide parallel to vertical axes and the rotating structures are able to rotate about them. A guide connection means for tying the guides together in vertical translation. A resistance assembly with a source of force and a selective means of engaging a portion of that force. And a cable assembly means for transferring forces from the resistance assembly to the cable ends that are located adjacent to the rotating structures.
The drawings are briefly described below.
For
A preferred embodiment of the present invention provides a multi-function exercise apparatus comprising: a pair of guide assemblies each comprised of a rotating structure and a guide which translates vertically within a wall mounted frame assembly; a pair of arms pivotally attached to the guide assemblies at their pivot end and having a rotating pulley assembly at their distal end each comprising at least one pulley; an arm connection means for tying the arms together in rotation; a resistance assembly comprised of a single weight stack; and a cable assembly means for transferring force from the resistance assembly to the cable ends located at the distal ends of the arms. The cable assembly means allows the arms and guide assemblies to rotate both vertically and horizontally and to translate vertically without effecting cable length by using a method of cable wrap called wrap-on wrap-off. Other components of the invention may include: a counterweight assembly to offset the weight of the arms and guide assemblies to make effortless their rotation and translation. In the preferred embodiment the counterweight along with a guide connection are used to tie the arms together in rotation; a seat assembly with leg extension; locking means for locking the arms in fixed vertical and horizontal rotation and for locking the guides in positions of vertical translation; and optionally a decorative cabinet for enclosing the entire exercise apparatus when not in use. The cabinet takes up a minimum of floor space. The following discussion will focus on structural elements and operational aspects.
Various embodiments of the invention will be discussed to illustrate different aspects of the invention. It is understood that embodiments may include some or all of the components and features discussed below. While many of the figures are of different embodiments, the following discussion will be as though most are of one embodiment.
Overviews of the major components that can comprise one or more embodiments of an exercise apparatus of the invention are listed below. Later in the description more detail is given to each of the components. The major components of the exercise apparatus of these embodiments include: a pair of arms 70A,70B—(FIGS. 2,3) that are pivotally attached to a pair of guide assemblies 40A,40B comprised of a rotating structures 43A,43B and guides 44A,44B; a guide connection means 41 ties the guides 44A,44B together in vertical translation; a resistance assembly 92; a cable assembly means 108, that includes an arm cable assembly 110, a resistance cable assembly 120 and a leg extension cable assembly 129; a frame assembly 142 (
The preferred embodiment of the exercise apparatus is shown in
Guide assemblies 40A,40B (
The guide connection means 41 (
The resistance assembly 92 (
The cable assembly means 108 (
Arm cable assembly 110 (
Resistance cable assembly 120 (
Leg extension cable assembly 129 (
Frame assembly 142 (
Counterweight assembly 100 (
The seat assembly can be collapsed into a near planar configuration in a closed or storage position and be unfolded into a versatile support structure in an open position. As such, the seat assembly is suitable for many exercise machines besides the ones encompassed by the current invention. One embodiment of the seat assembly is seat assembly 160 (FIGS. 1,16-19) that is shown centered in the frame assembly 142 and is comprised of the components described below. Other embodiments are apparent to those of ordinary skill in exercise machines and are encompassed by the invention. In the embodiment shown, guide tube 166, is pivotally connected at its top end to the top frame assembly 146, and at its bottom end is slideably and pivotally connected to a lower member 168 near its middle. The lower member 168 is pivotally attached at its bottom end to support brackets 178A, 178B (
Four likely resistance-bearing user interfaces for the exercise apparatus embodiments under discussion are detailed below (FIGS. 1,35). A first is exercise bar 206 that is able to be attached to cable ends 112A, 112B or that fits into a holder 208 when not in use. A second is a pulldown bar 210 that has hooks that allow it to hook over the top of exercise bar 206 for use on pulldown exercises and that fits into holder 208 when not in use. A third are handgrips 214A, 214B which are able to attach to cable ends 112A, 112B or which hook over holders 216A, 216B when not in use. A fourth is a leg strap 218, which is able to attach to either cable end 124A, 124B in a similar manner that handgrip 214A, does and which hooks over holder 216C when not in use.
There are two main sets of axes which define the major movements of the exercise apparatus. The first set of axes are the vertical axes 42A,42B. These are the axes about which the rotating structures 43A,43B of the guide assemblies 40A,40B rotate (allowing the arms to rotate in the horizontal direction) and define the axes that the guides 44A,44B of the guide assemblies 40A,40B slide parallel to. The vertical axes 42A,42B are substantially vertical (for the preferred embodiment) and substantially parallel to one another. They could be set to some angle from vertical but for the preferred embodiment (to minimize floor space) they are positioned vertically. Being set parallel to one another allows for the use of a rigid guide connection 46 used in the preferred embodiment. For some embodiments the guide connection 46 can be disabled, see ‘Additional Alternative Embodiments’ below.
The second set of axes are the horizontal axes 68A,68B that define the axes that the arms 70A,70B rotate vertically about and the axes at which the arms 70A,70B are rotationally attached to the guide assemblies 40A,40B (either to the guides 44A,44B as shown in the preferred embodiment (
The cable reeving of the cable assembly means 108 and specifically the reeving of the arm cable assembly 110 at the pivot end of arms 70A,70B is what allows the arms to rotate without causing a change in the effective cable length of the cable assembly means 108 which would change the position of selector bar 95 and cause it to move relative to the weight stack 94. The preferred embodiment of the resistance assembly provides a preload to the cable assembly means 108 by having a small gap between the lowest resistance setting and the next setting (a gap between no selection (10 lb) and the 20 selection). This preload exerts a force of 5 lb (10 lb/2) on each of the cable ends 112A,112B at the ends of the arms 70A,70B forcing the cable ends against the pulley assemblies 76A,76B. This preload provides the benefits of helping to prevent the cable ends (and therefore the bar or handgrips) from slipping during rotation or translation of the arms 70A,70B before the start of an exercise (specifically when the arms are rotated in front of the chest for the bench press exercise). If the effective cable length between the cable ends and the selector bar of the resistance assembly changes then this may make it difficult if not impossible to insert the selector pin 96 into the holes provided in the selector bar 95, or may allow the gap between the resistance plates to disappear and thereby lose the preload to the cable ends. Alternative embodiments that use a different means of resistance (such as spring type resistance elements) may make this change in effective cable length a mute point, but for stack weight resistance it is important. Another means of helping to prevent the cable ends 112A,112B from slipping during exercise setup is achieved by the flat spots 69 (
The explanation of wrap-on wrap-off follows. Refer to (
The same principal of wrap-on wrap-off also applies to an alternative case where pulleys 74A and pulleys 74B are not located on the horizontal axes 68A,68B but instead are mounted to the guides 44A, 44B (
The same principal of wrap-on wrap-off applies to the alternative embodiment of a single arm 70A as shown in (
Wrap-on wrap-off allows for zero effective cable length change for when the arms 70A,70B rotate vertically about the horizontal axes. The vertical translation of the arm and guide assemblies 40A,40B doesn't change the effective cable length or tension of the cable assembly means 108 because the cable ends 112A, 112B of the cable arm assembly 110 terminate in the arms 70A,70B which translates with the guides 44A,44B. Therefore as the arms 70A,70B move vertically the arm cable 114 wraps on and off of the pulleys in the top frame assembly 146 and bottom frame assembly 148 at the same rate therefore unaffecting the effective cable length or tension of the cable assembly means 108. During horizontal rotation of the arms 70A,70B they effectively rotate about the vertical axes 42A,42B regardless of vertical arm rotation because the arm cables 114 exit the arms 70A,70B substantially collinearly to the vertical axes 42A,42B and so the effective cable length change for the arms in horizontal rotation is also effectively zero. Additional benefits of wrap-on wrap-off cable reeving when used on an alternative embodiment of the exercise apparatus where the arms are fixed in horizontal rotation it is explained in the ‘Additional Alternative Embodiments’ section below.
The number of cable segments used on either side of resistance block assembly 125 also influences the versatility of the invention. In the structure discussed above, by having one cable segments on the top side of pulley block assembly 125 and two cable segments on the bottom side, a 2:1 ratio is created that divides the resistance of the weight stack 94 equally to each of the cable ends 112A, 112B. The cable block assembly 125 also allows each cable end 112A, 112B to be pulled independently from one another, which helps to give the machine the feeling of working out with free weights. Since the resistance of each cable end 112A, 112B is half the resistance of the weight 94, when both cable ends are pulled at the same time, the resistance is the same as what is selected on the weight stack, and the amount of travel available for each cable end is equal to the maximum travel of the weight stack. When an individual cable end 112A is pulled alone, the resistance is equal to half the weight selected on the weight stack 94 and the available travel is equal to twice the maximum travel of the weight stack. For a given exercise, by using an individual cable end 112A, the distance the weight stack 94 travels is half of what it would be when both cable ends 112A, 112B are pulled at the same time. This also makes the velocity of the weight stack during the exercise equal to half that experienced when both are pulled. Since the velocity of the weight stack 94 is half, the momentum of the weight stack is equal to a quarter of the momentum of pulling both cable ends 112A, 112B because momentum is affected by the square of the velocity of the weight stack. Performing specialty exercises with a single handgrip allows the perceived force at the handgrip to be more constant because of the reduced velocity, and therefore momentum, of the weight stack. The weight stack of a preferred embodiment has a total weight of 200 lb (91 kilograms) and a preferred amount of travel of over 58.6 inches (1.49 meters) when using both cable ends 112A,112B at the same time, or 100 lb (45.5 kilograms) and 118 inches (3 meters) of travel when only one handgrip 214A is used. This should provide the necessary resistance and range of motion for the majority of users. Alternatively it may be desirable to have even less inertia and more range of motion than what is shown above. This can be achieved by the use of two weight stacks instead of one. One way to do this would be to use two sets of cables as laid out in (FIGS. 26,27). If the same weight was used in each weight stack that would effectively double the range of motion while keeping the weight the same. For a case such as this it should be understood that cable assembly means 108 would encompasses all the cables used in the gym, and resistance assembly 92 would encompasses all sources of resistance.
The translation lock means 56 and the rotation lock means 82 work in the same manner, by pulling on spring loaded lock pin assemblies 65A,65B and spring loaded ratchet bars 84(A-D) with cables that are attached to activation levers 64,90. The lock pin assemblies are able to stay retracted (FIGS. 14,15) by having the attachment point 89 of the activation lever 90 pass from one side of the pivot 87 to the other when activating the lever. This way the cable 86A (which is spring loaded from the lock pin assemblies) pulling on the activation point 89 keeps the activation lever 90 in the position selected. The difference between the distances 91A and 91B is the travel of the lock pin assemblies 65A,65B and ratchet bars 84(A-D).
The counterweight balances the arms 70A,70B and guide assemblies 40A,40B in rotation and translation to enhance speed of changeover. The weight of the counterweight 102 is equal, preferably, to the combined weight of the arms 70A,70B, exercise bar 206, guides 44A,44B (and guide connection 46 for the preferred embodiment), which makes them essentially weightless in their vertical translation. The counterweight 102 via cables 104 attaches to the arms 70A,70B at pivots 105A,105B. The location of these pivots 105A, 105B is at a location that balances the combined center of gravity of the arms 70A,70B and exercise bar 206 (when they are positioned horizontally) to the center of gravity of the guides 44A,44B and guide connection 46. This allows the arms 70A,70B, with the exercise bar 206 attached, to be balanced in rotation with respect to the guides 44A,44B and guide connection 46. By making the combined weight of the handgrips 214A,214B the same at the exercise bar 206 the balance is maintained when they are attached instead of the exercise bar 206. Because the arms 70A,70B and guide assemblies 40A,40B with the exercise bar or handgrips is balanced in both rotation and translation, they remain in whatever position they are left in between exercises without the need to engage the vertical rotation lock means 82 or translation lock means 56.
For the preferred embodiment an arm connection means 67 uses the counterweight assembly 100 in conjunction with the guide connection 46 in order to tie the arms together in rotation. If a user were to lift on only one arm, the force from the counterweight 102 that would normally go to that arm would instantly be transferred to the other arm. Because the guides 44A,44B are tied together by the use of the guide connection 46 the extra force to the other arm would make it rise at the same rate and angle as the arm that is being lifted.
The guide connection 46 along with pulleys 54A and 54B are used in the preferred embodiment to minimize stress on the guides from exercising without engaging the translation lock mean 56. Moving arm cable 114 where it goes vertical from arm 70B collinearly along vertical axis 42B over to vertical axis 42C by the use of pulleys 54A,54B minimizes the overturn moment on the guides. The distance between the location where arm cable 114 goes vertical from both arms times the force being lifted defines the overturning moment. By moving the cable from 42B over to 42C (FIGS. 2,20,22) the overturning moment is approximately 1/20th what it would be compared to not moving it (FIGS. 21,23)
The exercise bar is shaped for a variety of different exercises. The straight sections near its ends allow for exercises where gripping a straight bar is best, such as pressing exercises like the bench press. The curved area just inboard of the straight section allows the hands to be rotated for more comfort while doing an exercise like curls, but maintain the center of the hands on the centerline of the bar to eliminate torque on the exercise bar. The bulged area at the middle of the exercise bar 206 allows the bar to give extra clearance for body parts on some exercises such as room for the chest during the bench press or room for the legs during dead lifts.
Elements involving the leg extension are designed to enhance consistency of resistance during leg exercises and increase adjustability for various sized users. A preferred form of the fold down bracket 173 (
The typical footprint of the invention is small and unobtrusive. Some embodiments of the exercise apparatus can be enclosed in a cabinet enclosure 191 (FIGS. 38,40,41) made from standard bi-fold door assemblies like those used on closet openings. The current preferred embodiment uses approximately one foot wide doors 192A,192B on the sides of the cabinet enclosure and four doors 192(C-F) approximately 15″ wide each across the front of the enclosure. This is the area into which some embodiments can fit and therefore only takes up 5.8 square feet (0.54 square meters) of floor space. The actual footprint may differ for some embodiments depending on the size, spacing and configuration of elements used. To complete the look of the enclosure, a cove assembly 194 can cover the top frame assembly 146. The frame assembly 142 and cabinet enclosure 191 that has been described above is designed to mount to the wall 222 with space available at the back of the bottom frame assembly 148 to allow the majority of base boards 226 and quarter round 228 from the standard home to fit through untouched. The movement of the front door panels 192(C-F) (
The exercise apparatus is of a very compact design which could be shipped fully assembled (minus the resistance assembly if it comprised of stack weights and the arm counterweight if is comprised of a heavy weight, these would be shipped and installed separately). This compact preassembled design benefits the end user in several different ways. First, since it's preassembled, the end user would only need to mount it to the wall (install weights as needed) and they're ready to go. No countless hours of assembly and the frustration that goes along with that. Also there is the benefit of moving the gym to a new location. No disassembly and reassembly needed. Some people, after doing the arduous task of assembly, will just leave their home exercise equipment with the sale of their home because they do not want to have to go through the time and frustration of what they went through when they assembled the gym in the first place.
I have also invented a versatile exercise apparatus as shown in (
An alternative to this is shown in (
An alternative embodiment is described below and shown in (
One benefit of the alternative embodiment is that the arms are able to rotated to different positions of vertical rotation relative to one another (provided a cable reeving method like FIGS. (22-27) or 37 is used). The reason the preferred embodiment is preferred to this embodiment has to do with the means of counter balancing the weight of the arms in rotation with respect to the guides. Because there is no ease way to have the counterweight pulleys 158C,158F follow the horizontal rotations of the arms a different means is needed. Something that puts a torque onto the connecting tubes 72A,72B will also put the same torque onto the guides 44A′,44B′ potentially causing them to bind against the vertical square tubes 58A′,58B′ and thereby make adjusting the guides 44A′,44B′ more difficult. A separate counterweight would also need to be used to counterbalance the complete arm and guide assembly.
An alternative embodiments is described below and is shown in (FIGS. 26,27). This embodiment uses a separate cable assembly means 108 and resistance assembly 92 for each arm 70A,70B. Each arm 70A,70B has an arm cable assembly 110′ comprising a cable end 112A that is positioned at the distal ends of the arms 70A,70B, an arm cable 114 that puts it in communication with the resistance assembly 92 for that arm, and a cable end 119 which terminates near the pivot end of the arm, either using wrap-on wrap off as described above (cable terminates on the arm) or the common reeving method shown in (
The benefits of this arrangement are the same as for the invention but also gives the ability to have two sources of resistance which for some applications is desirable. Especially where long travels of the cable ends are desired or were fast movements of the cable ends are desired. The draw backs are the added complexity and extra parts needed. Also the added weight (if a stack weight resistance was to be used). To simplify the cable reeving (
An additional alternative embodiment that has the arms of the gym permanently connected together with a connection tube 79 centered on their shared horizontal axes 85 (
While the above description contains many specificities, these should not be construed as limitations on the scope of the invention, but rather as an exemplification of one preferred embodiment thereof. Many other variations are also possible. For example:
An additional alternative embodiment would use electronic locks means instead of mechanical lock means to engage and disengage the vertical rotation lock means 82 and the translation lock means 56. So instead of mechanical activation levers 64,90 the lever could be place to grip the arms to aid in their movement and would have incorporated into them a sensor that would disengage the locks when grabbed during movement of the arms in vertical rotation and translation. There would also be a limit sensor that would prevent the disengagement of the locks if the weight stack or resistance assembly is engaged. There could also be some easier means of engaging and disengaging the lock for the rotating structure. Possibly a foot activated lock that when stepped on would lock the lock pins in a disengaged location and then when stepped on again would engage the spring loaded pins so that they would engage the next hole positioned under it.
In addition to the electronic locking means there could also be means for moving the guides in vertical translation, the arms in vertical and horizontal rotation, change the resistance levels and move the seat assembly in and out. Small servo motors in the exercise apparatus could be used to place the arms into preferred positions for different exercises. The servo motors would be strong enough to quickly and quietly move the different parts but not strong enough to do anyone or anything any harm or damage (the use of force sensors would sense an overload condition and release the motors such as would be experienced when hitting an obstruction). Buttons on the machine could be used to place the arms into common positions such as top position (T1, T2, or T3 depending on the height of the user where T1 is the max arm position for the machine), bottom position, curl position (again C1, C2 or C3 depending on the height of the user), bench press position (B1,B2 or B3), Squat position, etc. It may be easier for a user to first select their height range (H1 for say heights taller than 6′2″, H2 for heights from 5′9″ to 6′2″ and H3 for heights below 5′9″ as an example), then the user would only need to select their desired exercise activity. There would also need to be an up down arrow to manually override the current position once the bar is in position to fine tune the arm placement and likewise to fine tune the resistance assembly.
With these ideas in mind this could be expanded even more and could be incorporated into a commercial gym offering with even more features. Each user would have a magnetic card with their workout information on it that could be swiped through a card reader on the exercise machine to let the machine know the preferences of the user. This information would include every detail of a user's workout including the exercises performed, resistance settings, sets performed, order of the exercises and sets, and the corresponding position of the arms in vertical and horizontal rotation and vertical placement for each of these sets. Different workout days used for different body parts (legs workout, back, etc) would also be saved on the cards and different variations of each of these workouts could also be saved. Only the exercise attachments would need to be changed out manually by the user. This would allow a user to stay at one exercise location and get a complete body workout without the need to go to different exercise stations and wait to work in. It would also allow a user to do supersets of completely different exercises with little wait time between sets and without the need to tie up two or three different exercise workout stations at the same time. It allows for the user to customize and update their workout on the fly. By keeping their workouts saved on the magnetic cards it helps the user remember the order and intensity of their favorite workouts. They don't need to remember where to set the arms, at what height or rotations and what resistance levels they used the last time they worked out. Also all of the information about each workout could be saved after each workout. This could then be printed out when desired to show the dates of each workout, time, duration, exercises performed, number of sets, repetitions and resistances used. Even the speed of each repetition and therefore the horsepower exerted could be saved which could then be converted into calories burned etc.
Voice recognition could also be a feature which could be incorporated into the machine. This could be used in place of, but more likely in addition to a manual keyboard for inputting information. An example, it could be used to change the resistance level of the machine, by saying ‘more’ or ‘less’. To change the guide's height position the user would say ‘up’ or ‘down’. To move the seat the user would say ‘in’ or ‘out’. These features could be used before starting the exercise and even during the exercise (provided the user momentarily stops the exercise to remove any forces on the resistance assembly or arm assembly). Let's say that during a bench press exercise the user decides that the resistance level is not high enough. The user would momentarily stop and say ‘more’ and the resistance mechanism would notch up (say 5 lb) or the user could say ‘more 15’ and it would notch up 15 lb. Likewise at the end set to get a few more repetitions in the resistance could be lowered. The arm height could also be changed. Let's say the user during a set of bench press decides the arm is to low. Again the user would momentarily stop and say ‘up’ and the arm would move up one notch (on the preferred embodiment the notches in the area of the bench press are ¾″ apart). Or if he decided he wanted to move into an incline bench press he would say ‘up 3’ and it would move up three notches (2.25″ on the preferred embodiment).
Any changes made during the workout could be made permanent by adding the word ‘permanent’ after the changes is made. The following would be an example. The machine has just changed over to the bench press and is ready for the first set with the warm up resistance set at 150 lb. The user decides this is to light and says ‘more 10 permanent’ and it would change the weight to 160 lb and make the change permanent. The user would then be asked at the end of the workout to save the details about the workout and also to save any changes made during the workout. The user would then swipe the card to save their workout details and to save the permanent changes either to the current workout or elect to save the changes to a new workout under a different name.
Another feature would be the ability to allow another user (or the same user) to jump into the machine between sets and do an exercise. This could be done by just saying or selecting a different exercise even though the machine is set up for something different. If it is the same user there is the option of making this addition to the workout permanent. After the exercise is performed the machine would ask to resume with the workout. In a similar vane, if the user is not having a good day they could say or select ‘skip’ to skip a set.
Another possibility would be to allow two or even three people to work out on a machine at the same time. Instead of just jumping in to do one or two sets, a new user could be added. They would select ‘add user’ and then swipe their info into the machine and the machine would alternate between each of the people entered allowing each their own individually saved workouts. They could do this at the beginning of each of their workouts or users could be added as other users end their workouts. This would allow the facility to have fewer machines for an equal number of users by utilizing the rest time that users take between individual sets. In the home (even without the automatic positioning) because of the ease of switching between exercises, two people could easily alternate between exercises and use the gym at the same time.
As can be seen, the exercise apparatus of this invention is a highly versatile exercise apparatus capable of providing a full body workout to the vast majority of users at a single workout station. An exercise apparatus that does not control the path of motion of the user interfaces and allowing the cable ends to act independently from one another. Allows for quick and easy transitioning of the arms to different exercise positions without have to change a lot of control levers, remember how one side was set up with respect to the other, or have to remove and reattach the straight bar. And when the workout is done, the exercise apparatus can be stored out of sight in a decorative cabinet that takes up a minimal amount of floor space.
Although the description above contains detailed descriptions of some embodiments, the details should not be construed as limiting the scope of the invention but as merely providing some of the presently preferred embodiments of this invention. Thus the scope of the invention is meant to be determined by the appended claims and their legal equivalents, rather than by the examples given.
This application claims the benefit of: Provisional Patent Application No. 60/565,384 filed 2004 Apr. 26 by David Clark, Utility patent application Ser. No. 11/114,450 filed 2005 Apr. 26 by David Clark, and of Utility Continuation patent application Ser. No. 11/787,307 filed Apr. 16, 2007 now U.S. Pat. No. 7,575,538 by David Clark.
Number | Name | Date | Kind |
---|---|---|---|
332989 | Benedict | Dec 1885 | A |
382440 | Sanchez | May 1888 | A |
723625 | Thomley | Mar 1903 | A |
2977120 | Morris | Jun 1959 | A |
4199139 | Mahnke et al. | Apr 1980 | A |
4402504 | Christian | Sep 1983 | A |
4431181 | Baswell | Feb 1984 | A |
4549733 | Salyer | Oct 1985 | A |
4603855 | Sebelle | Aug 1986 | A |
4624457 | Silberman et al. | Nov 1986 | A |
4709918 | Grinblat | Dec 1987 | A |
4809972 | Rasmussen et al. | Mar 1989 | A |
4826157 | Fitzpatrick | May 1989 | A |
4834367 | Salyer et al. | May 1989 | A |
4898381 | Gordon | Feb 1990 | A |
4976428 | Ghazi | Dec 1990 | A |
5018725 | Cook | May 1991 | A |
5069447 | Snyderman et al. | Dec 1991 | A |
5082259 | Gonzalez | Jan 1992 | A |
5135453 | Sollenberger | Aug 1992 | A |
5211614 | Henes | May 1993 | A |
5328428 | Huang | Jul 1994 | A |
5462510 | Ish, III | Oct 1995 | A |
5466204 | Nearing | Nov 1995 | A |
5470299 | Yeh | Nov 1995 | A |
5725459 | Rexach | Mar 1998 | A |
6019704 | Morgan | Feb 2000 | A |
6217493 | Spletzer | Apr 2001 | B1 |
6315702 | Ikonomopoulos | Nov 2001 | B1 |
6443877 | Hoecht et al. | Sep 2002 | B1 |
6447430 | Webb et al. | Sep 2002 | B1 |
6458061 | Simonson | Oct 2002 | B2 |
6488612 | Sechrest et al. | Dec 2002 | B2 |
6592498 | Trainor | Jul 2003 | B1 |
6685601 | Knapp | Feb 2004 | B1 |
6755770 | Martens | Jun 2004 | B2 |
6921355 | Campanaro et al. | Jul 2005 | B2 |
20020091043 | Rexach | Jul 2002 | A1 |
20030045406 | Stone | Mar 2003 | A1 |
20030176261 | Simonson et al. | Sep 2003 | A1 |
20040005966 | Chen | Jan 2004 | A1 |
20040018920 | Simonson | Jan 2004 | A1 |
20050096197 | Webber et al. | May 2005 | A1 |
20060116249 | Dibble | Jun 2006 | A1 |
20060189457 | Ripley | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
19704390 | Sep 1997 | DE |
19801672 | Nov 1998 | DE |
Number | Date | Country | |
---|---|---|---|
20100144497 A1 | Jun 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11787307 | Apr 2007 | US |
Child | 12583290 | US |