The invention relates to a vehicle light system.
Currently, car light systems are provided with a low-beam and a high-beam option. Furthermore, some light systems are provided with a pair of fog lights so as to cope with adverse driving conditions in fog.
American patent publication US 2005/0041433 discloses a laser device for generating a laser beam which, upon incidence on a phosphor structure, produces a light beam which is collimated to a desired optical output beam by means of an optical element.
There is a need for different beam types depending on environmental conditions. As an example, special lights would be applied during the daytime and when driving in areas with public lighting. In urban areas, with their many crossings, the actual asymmetric main beam is counter-productive, particularly because additional glare is produced during acceleration after stops. Driving on motorways at a relatively high speed, with oncoming traffic traveling on a separate carriageway, requires other lighting functions. Adverse weather conditions have another impact, due to road reflection, resulting in reduced luminosity and higher (reflected) glare. In snowy, rainy or foggy weather, the emitted light is absorbed and scattered by snowflakes or water droplets so that vision is veiled by the reflected light, thereby resulting in a shorter visual range. Therefore, legislation is being formulated in order to introduce adaptive front light systems (AFS) which adapt the shape of the beam of headlights depending on exterior lighting, such as day, dawn, public lighting, night, traffic environment, such as motorways with separate carriageways, winding country roads, town and city streets, weather conditions, such as dry, wet, rainy, snowy, foggy, and/or vehicle attitudes, such as inclination changes by load, dynamic inclination changes while driving, degree of control, speed of vehicle, and ground clearance.
Mechanical AFS systems have been suggested for producing various beam shape types. As an example, International patent publication WO 2008/035267 discloses a vehicle lamp comprising a laser device and a reflector which is provided with a movable beam limiter. However, though functionality might be satisfactory, there is a need to provide light systems without moving parts, e.g. due to cost price, compactness, reliability, durability and repairability requirements.
Furthermore, AFS systems comprising multiple LEDs have been described. Due to the presence of multiple light source elements, these multiple LED systems require much space. In addition, a complex heat sink structure is needed for cooling the light source elements. As a result, the cooling performance is poor.
It is therefore an object of the present invention to provide a compact vehicle light system which is arranged to produce multiple output beam types.
According to a first aspect of the invention, a vehicle light system is provided, comprising a laser device for generating a laser beam, further comprising a light output module provided with a phosphor element for emitting a light beam upon incidence of the generated laser beam and provided with an optical element associated with the phosphor element for producing a light output beam, wherein the light system further comprises a further light output module provided with a corresponding further phosphor element and a further optical element, and wherein the laser device is arranged to switch between a first state, in which the generated laser beam is directed to the phosphor element, and a second state in which the generated laser beam is directed to the further phosphor element.
By arranging the laser device in such a way that the generated laser beam can switch from the phosphor element of the light output module to the phosphor element of the further light output module, the light system can be provided with a single laser device while different output beam types can be generated. As a result, a light source can be implemented in a compact way. Furthermore, an efficient cooling can be realized.
In one embodiment, the laser device comprises an optical switch for changing the direction and/or position of the laser beam. By providing the optical switch, the direction and/or position of the generated laser beam can be altered in a reliable, accurate manner without using moving parts, thereby obtaining a reduced cost price and an improved performance of the vehicle light system. Optical elements without moving parts such as liquid crystal elements, electrowetting elements and/or electrophoretic cells can be used for this purpose. It is noted that the direction and/or position of the beam can be changed, e.g. by providing the system with a mechanical actuator for changing the direction and/or position of the laser beam, e.g. by tilting the laser device.
In a further embodiment, the vehicle light system comprises a plurality of light output modules provided with a phosphor element for emitting a light beam upon incidence of the generated laser beam and provided with an optical element associated with the phosphor element for producing a light output beam, wherein the laser device is arranged to switch the direction and/or position of the generated laser beam towards a phosphor element of a selected light output module. As an example, a single laser device can be provided in combination with three or four light output modules, so that three or four light output beam types, respectively, can be produced. In principle, the vehicle light system can also be provided with another configuration of laser devices and corresponding light output modules, e.g. two laser devices and four light output modules. However, the light system can be advantageously realized in a very compact way by providing a single laser device.
In a specific practical embodiment, the phosphor element of an output module is arranged to emit a yellow-orange broadband light beam upon incidence of a blue light laser beam which leads to white light when incident laser light is partially converted to yellow light. When a violet laser beam or a laser beam emitting at shorter wavelengths such as UV light is used, a white emitting phosphor is used for producing white light. However, also other practical embodiments are possible, e.g. a specific embodiment, wherein the phosphor element of an output module is arranged to emit red, green and blue light upon incidence of a blue, violet or UV laser beam.
In various embodiments, the output beam shape and/or direction of the optical element provided with a first light output module differs from the output beam shape and/or direction, respectively, of the optical element provided with a second light output module. In theory, the output beam shape and/or direction may substantially coincide, e.g. for providing a spare light output module which can be used if a primary light output module does not function properly, e.g. due to mechanical damage.
A car driver can control the vehicle light system by connecting it to an automotive control system. It is noted that the vehicle light system may not only be used in a car, but also in other vehicles, such as a motor bikes, trucks, trains or ships.
According to a second aspect of the present invention, a method of controlling a vehicle light system is provided, which method comprises the steps of: switching a laser device between a first state, in which a laser beam generated by the laser device is directed to a phosphor element provided in a first light output module, and a second state, in which the generated laser beam is directed to the phosphor element provided in a second light output module, the phosphor elements being arranged to emit a light beam upon incidence of the generated laser beam, and the light output modules being further provided with an optical element for producing a light output beam.
It will be appreciated by those skilled in the art that two or more of the above-mentioned embodiments, implementations, and/or aspects of the invention may be combined in any way deemed useful.
Modifications and variations of the method, which correspond to the described modifications and variations of the vehicle light system, can be carried out by a person skilled in the art on the basis of the present description.
In order that the invention may be more fully understood, embodiments thereof will now be described by way of example only, with reference to the drawings, in which:
a is a schematic view of a first embodiment of a vehicle light system according to the invention in a first state;
b is a schematic view of the vehicle light system of
c is a schematic view of the vehicle light system of
a is a schematic top view of a car provided with the vehicle light system of
b is a schematic top view of a car provided with the vehicle light system of
c is a schematic top view of a car provided with the vehicle light system of
a is a schematic view of a second embodiment of a vehicle light system according to the invention in a first state;
b is a schematic view of the vehicle light system of
c is a schematic view of the vehicle light system of
The Figures are merely intended to illustrate implementations and embodiments of the invention. In these Figures, the same reference numerals refer to equal or corresponding parts.
a is a schematic view of a first embodiment of a vehicle light system 1 according to the invention. The system 1 comprises a laser device 2 for generating a laser beam 3. The laser device 2 comprises a laser source 4 and an optical switch 5 for changing the direction and/or position of the laser beam 3. The system further comprises three light output modules 6a-c, each provided with a phosphor element 7a-c for emitting a light beam 8a-c upon incidence of the generated laser beam. Furthermore, each light output module 6a-c is provided with an optical element 9a-c associated with the corresponding phosphor element 7a-c for producing a specific light output beam 8a-c.
In a first state, shown in
According to an aspect of the invention, the laser device 2 is arranged to switch between the above-mentioned states. The optical switch 5 controls the change of direction and/or position of the generated laser beam 3. To this end, the optical switch 5 is controlled by an automotive control system. During operation, a driver may specify a desired output beam type, such as shape and/or direction, e.g. by interacting with a user interface, so that the control system will set the associated state of the laser device 2.
Multiple light output modules can be used for generating various beam shapes on the road near the vehicle.
b is a schematic top view of the same car 10, but on a lane 11 in a cross-country environment 13. The laser device 2 has been switched to the second state, corresponding to the situation as shown in
Alternatively or additionally, the direction of the produced light output beam can be changed, as the optical element of the corresponding light output module can be formed to produce the output beam in a desired direction.
The invention is not limited to the embodiments described herein. It will be understood that many variants are possible.
Instead of or in addition to assembling the vehicle light system in front of a vehicle, the light system can also be assembled to the rear of a vehicle.
Whilst specific embodiments of the invention have been described hereinbefore, it will be appreciated that the invention may be practiced in ways other than those described. The description is not intended to limit the invention. Any reference signs in the claims shall not be construed as limiting the scope.
Number | Date | Country | Kind |
---|---|---|---|
08162797 | Aug 2008 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/IB2009/053607 | 8/17/2009 | WO | 00 | 2/16/2011 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2010/020930 | 2/25/2010 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
4670637 | Morrison et al. | Jun 1987 | A |
6123439 | Hiranaka et al. | Sep 2000 | A |
6883947 | Sarabia | Apr 2005 | B1 |
7150552 | Weidel | Dec 2006 | B2 |
7966753 | Vanneman et al. | Jun 2011 | B2 |
20050004133 | Makings et al. | Jan 2005 | A1 |
20050041433 | Sayers | Feb 2005 | A1 |
20080013329 | Takeda et al. | Jan 2008 | A1 |
Number | Date | Country |
---|---|---|
2063170 | May 2009 | EP |
2008035267 | Mar 2008 | WO |
Number | Date | Country | |
---|---|---|---|
20110141754 A1 | Jun 2011 | US |