This application is the U.S. National Stage under 35 USC 371 of PCT Application PCT/IB2014/059895. and claims foreign priority based of Italian patent application VE2013A000020.
The “Compact Non-vibrating Endothermic Engine” (in the following “CoNVEE”) is an internal combustion engine with reciprocating motion of two pistons inside one cylinder; said “CoNVEE” is a two-stroke engine with unidirectional scavenging of the combustion chamber.
The Compact Non Vibrating Endothermic Engine (CoNVEE in the following) is an internal combustion engine with reciprocating motion of the pistons, whose innovative architecture makes it more compact, given the same delivered power, with respect to the current state of the art. This happens both because the CoNVEE core occupies a very reduced volume, and also because it does not require the presence of any additional compensation or damping of mechanical vibrations. In fact all the moving parts of the CoNVEE are already internally compensated: they act in perfect anti-symmetry compensating each inertia force developed, excluding, of course, that of the motor shaft which is indispensable for the generation of the useful mechanical energy. The intrinsic compactness of the CoNVEE is made possible by the new and characteristic mechanism adopted for the motion transfer from the pistons to the motor shaft. The CoNVEE may be conveniently used with any type of propulsion fuel and, particularly, for those applications which require high power density and low vibration in the motor.
A fundamental innovation that characterizes said “CoNVEE” is the mechanism for the transformation of the axial reciprocating motion of the pistons into rotational motion of the motor shaft. Said mechanism comprises the following three basic parts.
1. A piece here named “T-rod” connected to each piston: said “T-rod” comprises a cylindrical stem which is rigidly attached to the center of the piston 1 at one end, and two equal arms which are rigidly attached on the other end of said cylindrical stem; said two equal arms fork in opposite direction and terminate with a certain type of tappet or roller. In a possible realization, said two arms are aligned each other and they are both perpendicular to said cylindrical stem: said cylindrical stem and said two equal arms thus form a piece shaped as a “T”.
2. A hollow cylindrical cam (thus an axial section of said hollow cylindrical cam has the shape of a circular crown); the driving profile of said hollow cylindrical cam is facing the inside of the central cavity and it may have an optimized shape, not necessarily sinusoidal, to prevent jamming and to best exploit the thrust of the piston, and said driving profile is twice identically replicated along the complete round angle.
3. An element here named “T-rod guidance”, which is integral with the frame, is positioned at each end of the cylinder and it is thus located inside the central cavity of the cylindrical cam; said “T-rod guidance” element allows the sliding of said “T-rod” in the axial direction only, tying said its arms in order to prevent the rotation of the “T-rod” around its oscillating movement's axis.
The Figures attached to this description represent an extract of a design of a potentially real implementation of a “CoNVEE” according to the teachings of the invention.
The above part of “
“
“
Any construction detail outlined in the drawings and not explicitly described here is present with the purpose to provide an example of a possible assembly of the machine described; said details outlined in the drawings but not described above as essential characteristics of the invention are not binding on the implementation of a “CoNVEE” according to the present invention. It is therefore clear that further variants can be made by those experts in the field without departing from the scope of the invention as it is claimed in the following. List of items drawn:
An axial bearing 5 is applied on the frame 7 (a roller bearing or another type of bearing or, however, an element that constitutes an ideally nonstick interface). The cylindrical cam 4 can slide by rotating around its axis over said axial bearing. The two arms of said “T-rod” 2 are inserted into the “T-rod guidance” 6 and their ends are hooked on the driving profile of the cylindrical cam 4. The movement of the piston 1, according to the thermodynamic cycle that takes place in the cylinder, makes said arms of the “T-Rod” 2 to slide along said “T-rod guidance” 6 with a purely axial reciprocating movement; the ends of said arms will act as a tappet 9 on the driving profile of the cylindrical cam 4 that will draw a movement of pure rotation around its axis. Due to the action of said “T-rod guidance” 6 on said “T-rod” 2, the torque that moves the cam neither causes any rotation of said T-rod arms nor of the piston 1.
This mechanism, just described above, is characterized by the fact that it allows the transformation of the purely axial movement of the piston 1 into rotational movement of the cylindrical cam 4 around the same axis of oscillation of the piston 1. This mechanism has very few moving parts: just the “T-Rod” 2 rigidly attached to the piston 1 and the cylindrical cam 4 coupled through an axial bearing 5 to the frame 7 of the engine.
Differently from the classic rod-crank systems which are today widely used, the mechanism described in this invention does not raise any slap on the piston 1, whose skirt can therefore be significantly reduced, for example, the height of the piston 1 may be smaller than the radius of the piston 1 itself, thus obtaining great advantages due to the reduction in size which may be achieved.
The fact that the stem 12 of said “T-rod” 2 has a cylindrical section and its motion is purely axial, makes easier to achieve a pre-compression chamber 3 in which a wall closes the cylinder on the back of the piston 1 (and it is therefore crossed by said stem 12 of said “T-rod” 2); the engine may thus exploit the second effect (otherwise called back stroke) of the piston 1 to push the fresh input charge in the cylinder (it may arrive there via some non-return valves, strips or the like): this is also the best implementation for the scavenging of the cylinder in two-stroke cycle engines.
For this reason said “CoNVEE” uses a particular two-stroke cycle, with unidirectional scavenging of the combustion chamber: this type of scavenging is the most effective, but it requires two opposing pistons 1 in the cylinder (not wanting to use poppet valves) and, until today, it was mostly implemented using two crankshafts at the ends of the cylinder.
Thanks to the mechanism described in this invention, said “CoNVEE” neither need an external blower for scavenging of the combustion chamber (saving the associated encumbrance) nor the couple of shafts at the ends of the cylinder: two pistons 1, each with its related mechanisms according with this invention, are at the ends of the cylinder, and a single straight shaft, more thin of a crankshaft because stressed only to torsion, is placed nearby parallel to the cylinder axis; said shaft also acts as a synchronization shaft 8 (via gear trains 11 or the like) for the movement of the cylindrical cams 4.
The opposition of the two mechanisms according to the invention, operating in synchrony at the ends of the cylinder, balances the internal oscillating inertia: nevertheless the rotating inertia of cylindrical cams 4 (also gyroscopic effects in the case of movements of the entire engine) remains unbalanced and pulsating due to the thrust deriving from combustion. These last inconveniences may be managed in said “CoNVEE” by placing, side by side, two parallel and equal cylinders, each cylinder having two cylindrical cams 4 rotating in the opposite direction; the two mechanisms of the two cylinders may be directly meshed or synchronized each other through gear trains 11 or the like. In one possible different implementation two cylinders may have their thermodynamic cycle phase shifted by half a period so as to increase the continuity of motion, limiting the need for flywheel in addition to that already constituted by the cylindrical cams 4.
Given the same dimensions, it is therefore evident that said “CoNVEE”, according to the teachings of the present invention, has a greater power density than any internal combustion engine up to now used in any kind of the prior art applications. Said “CoNVEE” also presents a greater simplicity of construction since it requires a lower number of moving parts, whose motion is moreover intrinsically balanced.
Number | Date | Country | Kind |
---|---|---|---|
VE2013A0020 | Apr 2013 | IT | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2014/059895 | 3/17/2014 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2014/174383 | 10/30/2014 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2156304 | Phillips | May 1939 | A |
3986436 | Kaufman | Oct 1976 | A |
7124716 | Novotny | Oct 2006 | B2 |
7793623 | Bahnev | Sep 2010 | B2 |
8286596 | Lemke | Oct 2012 | B2 |
20080105224 | Kubes | May 2008 | A1 |
20080283002 | Mantheakis | Nov 2008 | A1 |
20080289606 | Bahnev | Nov 2008 | A1 |
20110011368 | Raether | Jan 2011 | A1 |
20110239642 | Schwiesow | Oct 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20160076441 A1 | Mar 2016 | US |