The present disclosure relates to small form-factor apparatus and methods for holding, securing, and accessing the personal items normally carried on a keychain and in a wallet including, for example, USB drive, driver's license, credit-cards, RFID cards and paper currency.
Conventional wallets and key holders are inherently bulky and, when worn in pants pockets, cause pocket-bulge that is both uncomfortable and unsightly. Wallets that are obvious where worn also increase vulnerability to pickpockets. Key rings and key chains are particularly uncomfortable because keys naturally splay in a pants pocket, causing key serrations and pointed tips to poke anatomy. Key organizers in pocket-knife embodiments cannot be used single-handedly. Money clips, because they are small and have a limited moment-arm, yield easily and then no longer securely hold one or several paper bills. Because credit cards and ID are not enveloped by a money-clip, these cards are easily dislodged. The clips on combination card holders and money clips tend to be either short leaf springs or hinged magnets, which respectively yield easily and do not provide a secure grip with more than a few bills. Unloaded card holders with segmented compartments are inherently thick because of the material stack-up. Single-compartment card holders without an elastic member do not securely hold more than a few cards. Card holders with an elastic member compromise easy card access and the elastic relaxes over time, compromising card retention. Card holders and wallets made from stitched leather or fabric wear out over time from worn stitching. Radio frequency identification (RFID) credit cards can be non-invasively read with a portable scanner, through non-shielded wallets and clothing. With over two hundred million RFID cards in circulation, unauthorized RFID scanning is a common cause of ID theft.
The wallet and key organizers provided by the present disclosure describe a resilient spring-clip to envelop credit cards and also contain keys as part of a thin laminate with keys held between the outside of the spring-clip and a cover plate. In certain embodiments, the spring-clip and the key organizer are not combined, so that they are independent in both form and function, minimizing the thickness of each, and the key organizer holds keys between two plates of the same length and width. The term card clip as used herein refers to a modified money-clip intended to envelop and hold credit cards, cash and/or ID. The term combination wallet as used herein refers to a combined card-clip and key organizer.
The RFID blocking card provided by the present disclosure, describes a compact shield for preventing unauthorized scanning of RFID cards held in the card clip, combination wallet, or most non-RFID blocking wallets and card holders.
In a first aspect, card clips for holding credit cards are provided, comprising a plate wherein a first portion of the plate is folded back over a second portion of the plate, wherein, the first portion comprises a window and a flared end configured to receive credit cards; and the second portion is substantially flat.
In a second aspect, key organizers are provided, comprising: a backing plate comprising: three or more internally-threaded bosses peripherally arranged toward sides of the backing plate and configured to mechanically mount keys and/or tools; and a cover plate comprising key access slots configured to rotate keys with a thumb or index finger, wherein the cover plate is mounted over the backing plate.
In a third aspect, devices are provided comprising: a card clip comprising: a plate wherein a first portion of the plate is folded back over a second portion of the plate, wherein, the first portion comprises a window and a flared end configured to receive credit cards; and the second portion is substantially flat; and at least three internally-threaded bosses mounted to an outside surface of the second portion of the clip, wherein at least three bosses are peripherally arranged toward edges of the second portion and are configured to mechanically mount keys or tools; and a cover plate comprising key access slots configured to rotate keys with a thumb or index finger, wherein the cover plate is mounted over the card clip.
In a fourth aspect, RFID blocking shields are provided comprising a thin, composite material laminated to a metalized fabric.
Other features of the present disclosure will become apparent from the following detailed description.
Reference is now made to certain embodiments of clips, organizers, combination clips and organizers, and RF blocking cards. The disclosed embodiments are not intended to be limiting of the claims. To the contrary, the claims are intended to cover all alternatives, modifications, and equivalents.
The card clip comprises a three-sided housing that grips and envelops credit-cards, folded paper currency, ID, and business cards. In a particular embodiment, the profile of the card clip is a tear drop shape, with the two long sides in contact at their ends, and with at least one of the ends flared to receive and grip cards, currency and ID. One of the long sides has a trapezoidal opening, effecting two long, tapered beams on either side of the opening, and a void between the tapered beams so that cards and cash are visible, accessible and readily available. The length of the beam, combined with a root width that is twice as wide as the tip, increases leaf-spring elasticity and fatigue resistance. The width of the opening between the tapered beams controls spring resistance, and also permits a thumb or finger to push cards outward from the clip, with cards still held by the clip, allowing the user to easily select, remove and insert a single card or cash. The side opposite from the tapered beams is an unrelieved and smooth surface to prevent magnetic tape abrasion on cards that include magnetic tape.
In certain embodiments, the card clip wallet is fabricated from composite material and/or metal that, unlike leather or fabric wallets and card-holders, does not include stitching that is vulnerable to wear, and when used with the RFID blocking card described herein, prevents unauthorized scanning of RFID cards.
The key organizer provided by the present disclosure comprises: a rigid backing plate with threaded bosses that are peripherally arranged for key-mounting; a protrusion, or protrusions in the middle of the backing plate for limiting rotational travel of the keys; washers provided as spacers when keys are not installed; curved, disc springs provided for holding the keys in place when rotationally extended or refracted; a cover-plate assembly consisting of a rigid plate with slots over the keys for key access, countersunk holes, and thin wear-washers adhered to the side of the cover plate opposite the countersinks and concentric to the holes; and flathead screws which fasten the cover-plate assembly to the backing plate's threaded protrusions and compress the disc springs when washers, keys, and/or tools such a flash-memory drive, bottle opener, screwdriver, or LED flashlight are installed. Cover plate key access slots are sized for the thumb, so that keys can be rotated open or closed with one hand.
In an embodiment of this disclosure, the backing plate material is 1 millimeter-thick stainless steel with press-fit, internally-threaded standoffs and the cover plate material is 2 millimeter-thick aluminum so that the key organizer can be durable, rigid, thin and unobtrusive when in a pants pocket. Both the backing plate and cover plate have a corner radius of at least 3 millimeters on each corner and deburred edges for comfortable wear and handling. This embodiment has a backing plate and a cover plate that are the same length and width of a credit card for compactness and dimensional compatibility with most non-vehicle keys available in North America, but the width and length could increase to fit with larger keys that are more common in Asia and in Europe.
In certain embodiments of this disclosure the height of the internally threaded, backing plate standoffs are 1 millimeter greater than the thickness of one standard key thickness (2 mm), or 1 millimeter more than the aggregate of multiple key thickness, so that the keys can be held in compression with disc springs, cover plate and screws installed, and so that rotational key resistance does not vary and the screws do not loosen when the cover is screwed tightly against the threaded protrusions of the backing plate.
An embodiment of this disclosure has three backing plate key positions: two positions having keys inset from the long sides, with adjacent key heads just inset from a short side; and a third position having a key or keys inset from the short side and the key head or key heads inset from one of the long sides. Since all keys are contained within the backing plate and cover, nothing sharp or pointed protrudes from the key organizer envelope. Internally threaded backing plate standoffs may be metric because off-shelf metric standoffs are available in 2 mm height increments that match increases in height when keys are stacked on top of each other, providing the same disc spring gap with the cover plate when one or more keys are stacked. In this arrangement, backing plates can be assembled with standoff heights that support key quantities in multiples of three, for example, three-key backing plates or six-key backing plates. Since backing plates support key quantities in multiples of greater than two, the thickness of the modified product is minimized.
In another embodiment of this disclosure, a removable key ring is provided with a backing plate washer to replace a key and to provide an attachment mechanism for oversized keys such as vehicle keys that are, or include, wireless electronic devices.
In certain embodiments of this disclosure, flathead screws are specified so that, taken together with the backing plate's press-fit standoffs, all hardware is flush or below flush to prevent dermal abrasion or abrasion of anything in contact with the key organizer. In certain embodiments of this disclosure a nylon patch is specified on the threads of the screw to prevent screws from loosening.
The combination wallet provided by the present disclosure is the same as the fore-mentioned key organizer, except that the key organizer's backing plate is replaced with the fore-mentioned card clip housing, modified to include press-fit, internally threaded standoffs installed in the unrelieved side of the housing that is opposite from the windowed side and with the standoff protrusions on the outside of the housing. Advantages of this construction include a common blacking plate for keys and cards, common tooling for the card clip and combination wallet described herein, as well as a common cover plate shared by the key organizer and the combination wallet. Henceforth, the modified card clip housing will be referred to as the combination backing plate.
In certain embodiments of this disclosure the height of the internally threaded, combination backing plate standoffs are 1 millimeter greater than the thickness of one standard key thickness (2 mm), or 1 millimeter more than the aggregate of multiple key thickness, so that the keys can be held in compression with disc springs, cover plate and screws installed, and so that rotational key resistance does not vary and the screws do not loosen when the cover is screwed tightly against the backing plate's threaded protrusions.
An embodiment of this disclosure has three combination backing plate key positions: two positions having keys inset from the long sides, with adjacent key heads just inset from a short side; and a third position having a key or keys inset from the short side and the key head or key heads inset from one of the long sides. Since all keys are contained within the cover and combination backing plate, nothing sharp or pointed protrudes from the combination wallet envelope. Internally threaded combination backing plate standoffs may be metric because off-shelf metric standoffs are available in 2 mm height increments that match increases in height when keys are stacked on top of each other, providing the same disc spring gap with the cover plate when one or more keys are stacked. In this arrangement, combination backing plates can be assembled with standoff heights that support key quantities in multiples of three, for example, a three-key combination backing plate or a six-key combination backing plate. Since combination backing plates support key quantities in multiples of greater than two, the thickness of the combination product is minimized.
In certain embodiments of this disclosure, flathead screws are specified so that screw heads are flush or below flush to prevent dermal-abrasion or abrasion of anything in contact with the combination wallet. A nylon patch is specified on the threads of the screw to prevent screws from loosening. Combination backing plate standoffs are flush-mounted to prevent magnetic tape abrasion when cards with magnetic strips are inserted or removed from the combination wallet.
The card clip component, of the combination wallet, is the combination backing plate, and comprises a three-sided housing that grips and envelops credit-cards, folded paper currency, ID, and business cards. In a particular embodiment, the profile of the card clip component is a tear drop shape, with the two long sides in contact at their ends, and with at least one of the ends flared to receive and grip cards, currency and ID. One of the long sides has a trapezoidal opening, effecting two long, tapered beams on either side of the opening, and a void between the tapered beams so that cards and cash are visible, accessible and readily available. The length of the beam, combined with a root width that is twice as wide as the tip, increases leaf-spring elasticity and fatigue resistance. The width of the opening between the tapered beams controls spring resistance, and also provides card access so a thumb or finger can push cards outwards from the clip, with cards still held by the clip, allowing the user to easily select, remove and insert a single card or cash. The side opposite from the tapered beams is an unrelieved and smooth surface, with flush mounted standoffs installed flush or below flush, to prevent magnetic tape abrasion on cards that include magnetic tape.
In certain embodiments, the combination wallet is fabricated from composite material and/or metal that, unlike leather or fabric wallets and card-holders, does not include stitching that is vulnerable to wear, and when used with the RFID blocking card described herein, prevents unauthorized scanning of RFID cards.
The RFID blocking card, provided by the present disclosure includes a thin, credit card sized, composite material, laminated with metalized fabric. In certain embodiments, the RFID blocking card is held within a card clip provided by the present disclosure, to prevent unauthorized scanning of RFID cards contained between the RFID blocking card and the unrelieved side of the card clip.
The RFID blocking card is fabricated from a material that is softer than the card clip and non-abrasive, so it cannot abrade the card clip, or combination wallet backing plate, which might then abrade magnetic tape when cards are inserted or removed.
In certain embodiments, two RFID blocking cards are used to sandwich RFID cards within a non-RFID blocking wallet, or card holder, to prevent unauthorized RFID scanning of RFID cards.
The
The
With reference to
With reference to
The
Finally, it should be noted that there are alternative ways of implementing the embodiments disclosed herein. Accordingly, the present embodiments are to be considered as illustrative and not restrictive. Furthermore, the claims are not to be limited to the details given herein, and are entitled their full scope and equivalents thereof.
This application claims the benefit under 35 U.S.C. 119(e) of U.S. Provisional Application No. 62/013,834 filed on Jun. 18, 2014, and of U.S. Provisional Application No. 61/872,338 filed on Aug. 30, 2013, each of which is incorporated by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
62013834 | Jun 2014 | US | |
61872338 | Aug 2013 | US |