The present invention relates to an automotive door lock that can be actuated both manually with a key and remotely, by an electrically powered actuator. More specifically, it applies to a lock for the tailgate of a pickup truck that has been designed for manual operation that needs to be upgraded subsequently for power operation after the truck has been purchased, also known as an aftermarket installation.
Car and truck manufacturers have offered the option of electrically operated door locks for a number of years. This option has enjoyed widespread popularity for two reasons: 1, with the push of one button the operator can lock and unlock all door locks simultaneously and 2, the system lends itself to remote operation so that the operator can lock and unlock all doors from outside of the vehicle with a radio signal. This feature however has never been offered for the lock of the tailgate of pick-up trucks. As a result of the paucity of factory installed power tailgate locks, there have been a number of aftermarket manufacturers who have tried to adapt electrically operated mechanisms to lock and unlock the tailgate.
Tailgate construction consists typically of a box structure that extends the width of the truck and is hinged horizontally along the bottom edge to provide access to the cargo area when folded down. A horizontal stiffening strut ties the front and rear faces of the tailgate to prevent flexing of the two faces. The tailgate is secured in the closed position by two catches on the sides of the tailgate. The catches are released by two control rods leading to a centrally mounted latch assembly. The control rods and the latch assembly are mounted in the horizontal cavity that extends the whole length of the tailgate defined by the stiffening strut and the sides
This cavity presents little limitation to the width of any power lock that is intended to be mounted alongside an existing latch assembly. As a result, prior art power locks, as shown in U.S. Pat. No. 5,174,619 and U.S. Pat. No. 5,295,374 have been constructed with the linear actuator and the associated control linkages positioned horizontally.
However new truck designs, as described in U.S. Pat. No. 6,918,624 may include a fold-out step stored inside the tailgate which severely limits the space available for a lock installation. The fold out step retracts into two vertical channels positioned in close proximity to the latch assembly and interfere with the installation of a power lock as described in the prior art. This restriction in a lateral direction is compounded by the restriction imposed vertically by the already existing stiffening strut.
A need exist, therefore, for a very compact power lock that can be installed in a tailgate with the space limitation resulting from the presence of a fold out step.
The present invention comprises an electrically powered linear actuator that is mounted onto a key lockable latch assembly at a right angle to the hinge axis of the tailgate with a sliding actuating link attached to the output link of the actuator specially formed to move back alongside the actuator to reset the position of said latch assembly to and from a locked to an unlocked position by two transverse tabs in response to electrical inputs of opposing polarity. In this manner the actuator can be stacked up over the existing key lock, resulting in a very compact installation. Said actuating link may further be spring loaded to return to a central position when the actuator is not energized and the tabs may be situated such as to provide sufficient lost motion in this position for the latch assembly to function freely when actuated by the key alone.
The primary advantage of the present invention is the provision of a power lock that can be installed in tailgates with only a limited amount of space.
Another advantage of the present invention is the provision of a power lock of a simple construction relying on a single moving component to actuate the locking mechanism.
Another advantage of the present invention is the provision of a power lock that can be easily installed.
Another objective of the present invention is the provision of an aftermarket power lock that can operate in tandem with a factory installed manual lock in such a fashion that one lock does not block the operation of the other.
These and other advantages will become apparent from the following description of the invention.
Referring to
The construction of the lockable latch assembly 103 is well known in the art such as shown in U.S. Pat. No. 6,523,869. It is reviewed here briefly because the present invention operates with it in tandem. Referring to
The components of a compact power lock 100 constructed according to the present invention are shown in
These components are shown in greater detail in
The actuating link 301 has an attachment flange 407 with an attachment slot 408 that couples it to the actuator bolt button 409. Attachment flange 407 is bent in a reverse direction so that the free end of the actuating link 301 points towards the stationary end of the linear power actuator 302 The actuating link 301 also has two tabs 410 and 411 whose function is to transmit the motion of the linear power actuator 302 to the lockable latch assembly 103
The linear power actuator 302 is of a conventional construction comprising a body 412 and a sliding actuator bolt 413 that terminates in attachment button 409 or some other suitable means of fastening. The body 412 may be mounted to the power lock bracket 300 with screws 414 and 415. Optional springs 416 and 417, mounted into apertures 420 and 421 may center the actuating link 301 in the neutral position when the actuator 302 is de-energized. An electrical impulse applied to leads 418 and 419 propels the actuating link 301 momentarily outward and an electrical impulse of a reversed polarity pulls it momentarily inward.
The geometry of the actuating link 301 is of special significance. By virtue of the reverse bend of the attachment flange 407 and the placement of the guiding slot 406 at the stationary end of the linear power actuator 302, the two tabs 410 and 411 are positioned alongside the body 412 and thus the compact power lock 100 can be stacked up in close proximity to the lock lever 204 of the lockable latch assembly 103 to achieve the desired level of compactness.
The installation of the compact power lock 100 onto lockable latch assembly 103 is illustrated in
As shown in
Conversely,
Referring to
While this invention has been particularly shown and described with references to example embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the scope of the invention encompassed in the appended claim.
The present invention application claims the benefit of U.S. Provisional Application No. 61/092,303 filed on Aug. 27, 2008. The entire teachings of the above application are incorporated herein by reference,
Number | Date | Country | |
---|---|---|---|
61092303 | Aug 2008 | US |