All publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
Speaker apparatuses (including public address systems) configured for mounting to a ceiling or wall for integration with a wireless access point.
A wireless access point (AP) may be a device that allows wireless devices to connect to a wired network using WiFi, Bluetooth, or another local wireless networking standard. A mobile device such as a laptop, smartphone, or tablet computer may be configured to automatically connect to a wireless access point when the mobile device is in range of a compatible wireless access point.
A wireless access point may have a relatively short range, such as about 20 meters. However, multiple overlapping wireless access points may be used to cover relatively large areas. For example, a commercial premises such as a hospital, airport, or retail outlet, may install a network of wireless access points throughout the premises. Mobile devices, of users moving throughout the premises, may automatically switch to an in-range wireless access point, to thereby provide the users with seamless network connectivity throughout the premises.
Access points may be mounted to walls, ceilings, etc.
Generally, audio speaker systems are maintained within their own physical housing, which may also be mounted to walls, ceilings, etc. In particular, public address speakers (e.g., speakers having sufficient audio capabilities for projecting within a large room) may be mounted to a ceiling.
To date, a speaker (and particularly a public address speaker) that physically interfaces with, e.g., mounts and provides data/power input to, a wireless access point has not been suggested. As described herein, although challenging to design and implement, such apparatuses (systems and devices) may provide numerous surprising advantages.
In general, described herein are compact public address access point (AP) apparatuses and methods of using (and installing) them. Typically, such devices include one or more speakers (e.g., tweeters, woofers, etc.) coupled to a mounting or holding frame and one or more mounts, such as clamp brackets, and an access point, which may include an access point housing (AP housing) enclosing a radio and antenna. The combination of the one or more speakers, the frame and/or the mount may be referred to as a speaker assembly; the access point housing may be referred to as the access point assembly.
In order to achieve a compact form, the apparatuses (which may include devices and systems) may be preferentially arranged with the AP housing on an outermost-facing portion with the speaker recessed and at least partially (or completely) blocked by the AP housing. Although this would appear to be less optimal, particularly where the AP housing is formed of a solid, rigid or semi-rigid material, such as a plastic/polymeric, metal, ceramic or any other material, which would otherwise block any sound emitted by the speaker, it is surprisingly effective, as it may allow better wireless operation, at least in part because any magnetic components of the speaker (e.g., speaker coil, etc.) may be kept relatively close to the antenna and wireless (e.g., Wi-Fi_33) components of the AP, but in a portion that would otherwise prevent distortion and interference, such as behind the AP, towards the ceiling or wall. Instead, the apparatuses described herein may be configured so that the apparatus includes one or more components, such as frame components that efficiently direct sound from the speaker(s) in the forward direction and in a desired spread away from the apparatus. For example, any of the apparatuses described herein may include a frame to which the speaker is secured with the AP (e.g., AP housing) mounted in front of the speaker, and an acoustic reflector directing sound around the otherwise occlusive AP. For example, the frame to which the speaker(s) is/are mounted may include a conical acoustic reflector in front of the speaker, oriented with the direction of the conical acoustic reflector (some of which embodiments described herein may be referred to as a “horn”) is oriented so the direction of the apex of the conical acoustic reflector is directed towards the face of the speaker (from which sound is emitted). The conical acoustic reflector may have a generally conical shape, which may be truncated (e.g., the apex of the conical acoustic reflector may be snubbed or shortened). The sidewall of the conical acoustic reflector may be concave, so that a section through the conical acoustic reflector may have a trumpet shape. In operation, is the outer surface of this conical acoustic reflector that is used to reflect sound from the speaker to be emitted around the AP. The frame may also include a second acoustically reflective opposite from the conical acoustic reflector, such as an annular ring or perimeter. An annular region may surround (or partially surround) the AP housing when the AP housing is mounted to the frame; sound may be emitted from between the annular region and the AP housing down and away from the AP (e.g., into a room, when the apparatus is mounted to a ceiling).
These devices may include additional sound filtering, including passive or active sound filtering, including baffles, phase plug(s) or acoustical transformer(s), or the like. In general, these apparatuses may be particularly well suited for transmission of human speech (e.g., between 80 and 300 Hz).
In addition, the compact apparatuses described herein may include one or more microphones for receiving sound input (allowing the apparatus to operate as a two-way public address system). The microphone may be mounted to the frame, the AP, or coupled to the speaker. In particular, the microphone(s) may be on an external surface of the frame, including the annular region.
The apparatuses described herein may be operated together as part of a public address system, and may be controlled to provide synchronous-sounding activity, so that even devices operated within the same open space (e.g., outside or inside, e.g., a hallway, large room, warehouse, etc.) may produce an acoustically clear sound quality.
The apparatuses described herein operate as both public address (acoustic) speakers and/or microphones and access points (e.g., mesh access points, etc.). The apparatus may receive both power and data from the same connection (e.g., a power-over-Ethernet connection) or through separate power and data sources). The apparatus may include audio circuitry coupled to the speaker (e.g., speaker driver, acoustic encoder, digital to analog (D/A) converters, etc.); this acoustic or audio circuitry may be part of a circuitry such as a PCB or other substrate that is housed within the frame, and/or coupled to the frame. For example any of these apparatuses may include a digital to analog (D/A) converter and an analog amplifier coupled to the speaker. Data (sound signals) may be transmitted to the AP, e.g., from the network via the network (e.g., Ethernet) connection, and may drive the speaker. In parallel, data (digital data signals) may be transmitted and received by the AP and communicated to the network. The acoustic signals transmitted may be digital or analog, or some combination thereof. The apparatus may be configured to receive acoustic information for broadcasting from the speaker by a dedicated device, or a device running software (e.g., a smartphone, or other hand held electronics device) that can transmit the acoustic signal(s) to the apparatus for emission by the speaker. A remote (e.g., network) server may coordinate the operation of the speaker, including transmitting acoustic signals to/from one or more apparatuses.
For example, described herein are compact public address access point (AP) apparatuses including: a speaker having a front from which sound is projected; a frame mounted over the speaker, the frame comprising: a conical acoustic reflector centered over the front of the speaker, and an annular region surrounding the conical acoustic reflector, wherein the annular region comprises a concave inner wall facing the conical acoustic reflector; an access point (AP) housing mounted to the frame so that the AP housing covers the front of the speaker and the conical acoustic reflector is between the AP housing and the front of the speaker, wherein an outer surface of the AP housing is opposite from the concave inner wall of the annular region of the frame; and an antenna and a radio housed within the AP housing and configured to connect a plurality of wireless devices to a network.
A compact public address access point (AP) apparatus may include: a speaker having a front from which sound is projected; a frame mounted over the speaker, the frame comprising a conical acoustic reflector centered over a central region of the front of the speaker, wherein the conical acoustic reflector tapers towards a point in a direction of the speaker, and an annular region surrounding the conical acoustic reflector, wherein the annular region comprises a concave inner wall facing the conical acoustic reflector; a microphone coupled to the frame; and an AP housing mounted to the frame so that the AP housing covers the front of the speaker and the conical acoustic reflector is between the AP housing and the front of the speaker, wherein an outer surface of the AP housing is opposite from the concave inner wall of the annular region of the frame, further wherein the AP housing encloses an antenna and a radio configured to connect a plurality of wireless devices to a network.
As mentioned, the conical acoustic reflector may have a concave outer profile (e.g., through the tapering side of the conical reflector). The conical acoustic reflector may be made of any appropriate material(s), including a polymeric (e.g., plastic) material. The conical acoustic reflector may be oriented in the apparatus so that it tapers as it approaches the front of the speaker.
Any of these apparatuses may include a network connector coupled to the frame and configured to couple a cable (e.g., Ethernet, such as PoE) in communication with a network.
In any of these variations, the AP housing may be removable, e.g., by screwing on or off, from the rest of the apparatus (such as the speaker assembly). The AP housing may be configured to attach to the base of the conical acoustic reflector, and/or to the frame, including to one or more struts extending between the conical acoustic reflector and the annular region. In general, the annular region may form a recess into which the AP housing may be partially recessed. For example, the AP housing may be recessed within the annular region.
Any of these apparatuses may include a mount, such as (but not limited to) a clamp mount, including a plurality of clamps, on a lateral and/or back side of the frame. The clamps may be configured to compress a portion of a ceiling surface/wall between each clamp and the frame.
As mentioned, any of these apparatuses may include a circuitry coupled to the frame and configured to receive input from a network connection to drive the speaker.
In general, an Ethernet connection (e.g., a power over Ethernet connection) may be included and configured to connect to a power and/or Ethernet source to provide power to the radio and speaker. This connection may be on a back or lateral surface of the apparatus, including on or in the frame of the apparatus (e.g., on a back cover of the apparatus). The apparatus may also include one or more connectors between the speaker assembly portion of the apparatus and the AP housing portion. For example, the apparatus may include an Ethernet connection within the annular region configured to connect to the AP housing and provide data and power to the radio. Any of these apparatuses may include an Ethernet dongle, USB dongle, or both Ethernet dongle and USB dongle passing through an axis of the speaker.
As mentioned above, any of the these apparatuses may include a two-way acoustic transducer and filter network coupled to the speaker. These apparatuses may include a conical phase plug on a central axis of speaker for improvement of bandwidth and polar directivity pattern.
Any appropriate AP circuitry may be included. For example, the AP housing may enclose one or more antenna (e.g., an array, including a phase array, antenna), and one or more radio (receiver/transmitter) chains. For example, in some variations the AP radio may be a dual-radio AP. The AP radio may be, in some examples, configured to support simultaneous dual-band, 3×3 MIMO operation in the 2.4 and 5 GHz radio bands for up to 1750 Mbps. Thus, the radio may be configured as a 3×3 MIMO radio.
In general, the compact public address access point apparatuses described herein may have a “stacked” arrangement, such that the AP is in front of (rather than alongside) of the one or more speakers. Despite this counterintuitive arrangement, which would otherwise block the speaker and potentially interfere with the sound quality, the apparatuses described herein may be adapted to provide a high-quality sound performance with accurate voice reproduction. For example, any of the apparatuses described herein may be adapted such that the speaker, conical acoustic reflector and annular region are arranged and configured so that an acoustic signal of between, e.g., 70 Hz and 20 kHz (e.g., between 80 Hz and 20 kHz, between 90 Hz and 20 kHz, between 100 Hz and 20 kHz, etc.) that is emitted by the compact public address access point (during normal operation, e.g., when the access point is mounted over the speaker) is greater than a minimum level (e.g., greater than 75 dBSPL, greater than 78 dbSPL, greater than 80 dBSPL, greater than 82 dBSPL, greater than 85 dbSPL, greater than 87 dbSPL, greater than 90 dBSPL, etc, greater than 92 dBSPL, greater than 95 dBSPL, etc.).
Also described herein are methods of operating any of the apparatuses described herein. For example, a method of making a public address from a wireless access point (AP). Such a method may include: receiving a public address signal indicated for audio broadcast at a compact public address AP apparatus; and emitting the public address signal as an audible signal from a speaker of the compact public address AP, wherein the speaker is mounted behind a housing of the AP, the housing enclosing an antenna and radio, so that the audible signal is projected from a front of the speaker and reflected from a conical acoustic reflector positioned between the front of the speaker and the housing of the AP so that the audible signal is directed out of an annular region surrounding the conical acoustic reflector and housing of the AP, wherein the annular region comprises a concave inner wall facing the conical acoustic reflector.
A method of method of making a public address from a wireless access point (AP) may include: wirelessly transmitting a public address signal from a handheld device, wherein the public address signal is indicated for audio broadcast; receiving the public address signal at a compact public address AP apparatus; and emitting the public address signal as an audible signal from a speaker of the compact public address AP, wherein the speaker is mounted behind a housing of the AP, the housing enclosing an antenna and radio, so that the audible signal is projected from a front of the speaker and reflected from a conical acoustic reflector positioned between the front of the speaker and the housing of the AP so that the audible signal is directed out of an annular region surrounding the conical acoustic reflector and housing of the AP, wherein the annular region comprises a concave inner wall facing the conical acoustic reflector; wherein the compact public address AP apparatus concurrently connects a plurality of wireless devices to a network to which the radio of the compact public address AP is connected.
In general, any of these methods may include concurrent transmission of data between a network and one or more wireless devices (e.g., acting as a wireless access point) and a transmission (and in some cases receipt) of audio information (e.g., acting as a speaker).
Any of these methods may include wirelessly transmitting the public address signal from a handheld device, wherein the public address signal is indicated for audio broadcast. The compact public address AP apparatus may concurrently connect a plurality of wireless devices to a network to which the radio of the compact public address AP is connected.
These methods may include receiving an audible response signal from a microphone of the compact public address AP, encoding the audible response, and transmitting the encoded audible response signal.
Transmitting the encoded audible response signal may comprise transmitting the encoded audible response signal to the handheld device (e.g., smartphone, smartwatch, pad, etc.) or laptop/desktop.
As mentioned, the radio and antenna of the compact public address AP may concurrently emit the public address signal as an audible signal and simultaneously couple one or a plurality of wireless devices to a network using 3×3 MIMO operation in the 2.4 GHz, 5 GHz or 2.4 and 5 GHz radio bands.
Also described herein are methods of installing a compact public address access point (AP). As mentioned, the compact public address AP may be any of those described herein, e.g., including a speaker surrounded by a frame and an access point housing covering the speaker, further wherein the access point housing may enclose a wireless radio and antenna configured to connect a plurality of wireless devices to a network. A method of installing such a compact public address AP may include: cutting a hole into a ceiling surface; connecting an Ethernet cable from the ceiling into a main port of the compact public address action point for connection to the network; adjusting a plurality of clamp brackets so that the compact public address AP is held within the hole when the clamp brackets hold the ceiling surface between the clamp bracket and the compact public address AP; and applying data and power through the Ethernet connection to the wireless radio and antenna of the AP.
For example, a method of installing a compact public address access point (AP) (e.g., wherein the compact public address access point includes a speaker surrounded by a frame and an access point housing covering the speaker, further wherein the access point housing encloses a wireless radio and antenna configured to connect a plurality of wireless devices to a network) may include: placing a mounting template against a ceiling surface; cutting a hole into a ceiling surface; releasing the access point housing from a speaker assembly of the compact public address action point to expose a conical acoustic reflector positioned between a front of the speaker and the housing of the AP and an annular region comprising a concave inner wall facing the conical acoustic reflector; connecting an Ethernet cable from the ceiling into a main port of the compact public address action point for connection to the network; adjusting a plurality of clamp brackets so that the compact public address action point is held within the hole when the clamp brackets hold the ceiling surface between the clamp bracket and the compact public address action point; connecting a second Ethernet cable between the access point housing and the speaker assembly; connecting a USB connector between the access point housing and the speaker assembly; re-attaching the access point housing to the speaker assembly; and applying data and power through the Ethernet connection to the wireless radio and antenna of the AP.
Thus, any of these method of installing a compact public address access point may include cutting the hole into the ceiling surface by placing a mounting template against the ceiling surface to guide cutting the hole.
In general, any of these methods may include releasing the access point housing from a speaker assembly of the compact public address action point to expose a conical acoustic reflector positioned between a front of the speaker and the housing of the AP and an annular region comprising a concave inner wall facing the conical acoustic reflector. Releasing the access point housing may comprise rotating the access point housing relative to the compact public address action point. Any of these method may also include connecting a second Ethernet cable between the access point housing and the speaker assembly, and/or connecting a USB connector between the access point housing and the speaker assembly. Any of these methods may also include re-attaching the access point housing to the speaker assembly.
In addition, when installing these compact public address access points, the method may include attaching a safety wire coupled to the compact public address action point to a structural point in the ceiling.
As mentioned, any of these methods (including the method of installing the apparatus) may include concurrently emitting an audible signal from a speaker of the compact public address AP and connecting, via the wireless radio, a plurality of wireless devices to the network.
The novel features of the invention are set forth with particularity in the claims that follow. A better understanding of the features and advantages of the present invention will be obtained by reference to the following detailed description that sets forth illustrative embodiments, in which the principles of the invention are utilized, and the accompanying drawings of which:
In
In general, described herein are compact public address access point apparatuses. These apparatuses typically include an access point (AP) within an integrated or removable AP housing. However, any of these apparatuses may be separately sold from the AP housing and configured to mate with a separate AP housing. Thus, any of these apparatuses may be adapted for use with an AP but may not include the AP and may be referred to herein as a mount for a wireless access point that includes audio output (and in some variations input), such as speaker interfaces for wireless access points.
Any of these apparatuses, such as compact public address access point apparatuses, may be operated as ceiling or wall (or any other surface) mounted speakers to which an access point (AP) is integrated and/or coupled. Any of these compact public address access point apparatus may be configured as public address speaker and wireless access points. Also described herein are method of operating these apparatuses, methods of installing the apparatuses, and kits including one or more of these apparatuses.
For example, these apparatuses may allow a user to make announcements over a Wi-Fi system without the need for additional separate hardware, and may provide high-quality sound with accurate voice reproduction, and any of these apparatuses may support simultaneous dual-band, 3×3 MIMO in the 2.4 and 5 GHz radio bands for up to 1750 Mbps. These apparatuses may be used with any handheld device (e.g., smartphone, pad, wearable electronics, etc.) and/or laptop to control and operate the apparatus. For example, in some variations an apparatus may be operate with software, firmware and/or hardware that permits a user to configure and operate (e.g., speak over, listen over, etc.) the public address speaker and wireless access point. In one example, the apparatus may be used with (or may include) a mobile Announcement Application software that may be used to broadcast announcements from the combined speaker/access point using a handheld device (e.g., phone).
In general, these apparatuses include a form factor that includes a mount (to which the AP may be attached) over top of the speaker, e.g., the central region of a speaker. Thus, the speaker may be held in a mount or frame. The combined speaker and frame may be referred to as a speaker assembly; in general an AP housing may be coupled or attached to the frame so that the AP housing covers all or most of the speaker. To avoid muffling or acoustic interference of the speaker output, the frame may be configured (e.g., to include an acoustic waveguide, such as a horn/housing) specifically to prevent muffling/drop out. For example, the central region of the frame beneath the AP mount may be an acoustic waveguide region having a conical (concave-shaped cone region) acoustic reflector region that is immediately above the speaker (e.g., tweeter). A second truncated conical (horn) region may be annularly positioned around this central acoustic reflector; for convenience this second portion may be referred to as an annular region or annular reflector. The lateral walls of the annular region extending from the internal speaker may be curved to match the curvature of the bottom surface of the AP housing (which may be recessed therein) when attached. Thus, the outer bell shape of the frame may be configured complementary to the AP housing. The AP housing itself may give a compressor phasing plug effect that allows for better efficiency for the projection of sound. The outer region of the annular region of the frame may include a flared region.
Note that in some variations shown herein, the outer (exposed/visible region) of the horn of the speaker interface includes multiple openings/holes, which are optional. One or more microphones may be positioned within this region (e.g. on an outer surface or within the outer face of the frame and/or AP housing).
The shape/curvature of the inner horn region (conical acoustic reflector) and outer horn region (annular region) shown in
The speaker within the apparatus may be a very high-efficiency, light-weight speaker. For example, the magnet may be solid neodymium ring.
In general, the speaker interface for an access point (which may be referred to herein as simply a speaker interface, speaker mount, etc.) may connect, e.g., by POE connection, to an Ethernet line, which may then through the apparatus, provide data and/or power connection to the mounted/attached AP. Thus, the entire apparatus may be powered by the relatively low-low energy POE connection. Powering with USB (POE power) means that the speaker must be very efficient, as traditional POE does not provide much power. In the examples shown herein, the speaker provides 95 dB of loudspeaker output, usable output with one 1 Watt, using about 1 Watt of acoustic power (peak wattage). Thus, in some variations these apparatuses are configured to operate in the 5-15 (e.g., 12) Watt range (compared to most ceiling speaker which may extend up to 50 Watts or more). Although the speaker transducers shown herein may be configured to take this higher wattage, the electronics are adapted to provide and operate within the 5-15 (e.g., 12) Watt range. Thus, these apparatuses are configured as high efficiency loudspeaker transducers.
In general, the moving mass of the speakers are very light and low (e.g., less than approx. 2 g, 3 g, 4 g, (e.g., 2-7 g, 1 g-5 g, etc.). The weight of the moving parts is ultralight with strong, high-flux density motor. The coil may be a narrow diameter (e.g., having less copper—so lower weight of moving mass). Also, the gap of the motor may be a chamfered gap providing a dimension that focuses the flux to a higher density in the gap where the coil is.
In operation, these apparatuses may be used as speakers. Arrays of these devices (as described in the figures) may be connected together. For example, these apparatuses may find use in classrooms, public buildings, etc. In addition, these apparatuses may be used for surveillance/alarm systems/applications.
Because they are connected and potentially controlled by the AP, these apparatuses may also be coordinated to provide acoustic effects such as focusing of projected/received sounds. Arrays of speaker sand microphones are well characterized, and these apparatuses may be adapted to operate in arrays, including focusing the energy of the speakers or microphone arrays to optimize the acoustic requirements. Array capabilities are known, but are not typically networked, or performed with POE, etc. The system may be configured to measure acoustic output from nearby apparatuses (other speaker interfaces) and triangulate acoustically to optimize the output of the overall system and/or individual speakers, e.g., one apparatus sending and the other(s) listening.
Any of these apparatuses may be used with a user interface for communicating with the AP(s) and therefore the speaker(s) or connected system of speakers. A user interface may allow a user to select one or more speaker to transmit/receive from, and may allow public address and/or monitoring from the apparatus. A user interface may be accessed by any appropriate device, e.g., cell phone, lap top, etc.
As mentioned, the frame, including the acoustic reflector surfaces, may be configured to permit sound to be emitted from the speaker, into the acoustic waveguide region between the inner acoustic and out from around the edge of the access point housing. An example of a frame of the speaker assembly is shown in
In general, the frame 2105 may be mounted over the speaker 2119.
Thereafter, as shown in
In use, the apparatuses described herein may be used as part of a MESH network and may also or alternatively be included in an acoustic network to provide acoustic coverage of a large area, as well as wireless access coverage. For example,
When a feature or element is herein referred to as being “on” another feature or element, it can be directly on the other feature or element or intervening features and/or elements may also be present. In contrast, when a feature or element is referred to as being “directly on” another feature or element, there are no intervening features or elements present. It will also be understood that, when a feature or element is referred to as being “connected”, “attached” or “coupled” to another feature or element, it can be directly connected, attached or coupled to the other feature or element or intervening features or elements may be present. In contrast, when a feature or element is referred to as being “directly connected”, “directly attached” or “directly coupled” to another feature or element, there are no intervening features or elements present. Although described or shown with respect to one embodiment, the features and elements so described or shown can apply to other embodiments. It will also be appreciated by those of skill in the art that references to a structure or feature that is disposed “adjacent” another feature may have portions that overlap or underlie the adjacent feature.
Terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. For example, as used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising,” when used in this specification, specify the presence of stated features, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, steps, operations, elements, components, and/or groups thereof. As used herein, the term “and/or” includes any and all combinations of one or more of the associated listed items and may be abbreviated as “/”.
Spatially relative terms, such as “under”, “below”, “lower”, “over”, “upper” and the like, may be used herein for ease of description to describe one element or feature's relationship to another element(s) or feature(s) as illustrated in the figures. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if a device in the figures is inverted, elements described as “under” or “beneath” other elements or features would then be oriented “over” the other elements or features. Thus, the exemplary term “under” can encompass both an orientation of over and under. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptors used herein interpreted accordingly. Similarly, the terms “upwardly”, “downwardly”, “vertical”, “horizontal” and the like are used herein for the purpose of explanation only unless specifically indicated otherwise.
Although the terms “first” and “second” may be used herein to describe various features/elements (including steps), these features/elements should not be limited by these terms, unless the context indicates otherwise. These terms may be used to distinguish one feature/element from another feature/element. Thus, a first feature/element discussed below could be termed a second feature/element, and similarly, a second feature/element discussed below could be termed a first feature/element without departing from the teachings of the present invention.
Throughout this specification and the claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” and “comprising” means various components can be co-jointly employed in the methods and articles (e.g., compositions and apparatuses including device and methods). For example, the term “comprising” will be understood to imply the inclusion of any stated elements or steps but not the exclusion of any other elements or steps.
As used herein in the specification and claims, including as used in the examples and unless otherwise expressly specified, all numbers may be read as if prefaced by the word “about” or “approximately,” even if the term does not expressly appear. The phrase “about” or “approximately” may be used when describing magnitude and/or position to indicate that the value and/or position described is within a reasonable expected range of values and/or positions. For example, a numeric value may have a value that is +/−0.1% of the stated value (or range of values), +/−1% of the stated value (or range of values), +/−2% of the stated value (or range of values), +/−5% of the stated value (or range of values), +/−10% of the stated value (or range of values), etc. Any numerical values given herein should also be understood to include about or approximately that value, unless the context indicates otherwise. For example, if the value “10” is disclosed, then “about 10” is also disclosed. Any numerical range recited herein is intended to include all sub-ranges subsumed therein. It is also understood that when a value is disclosed that “less than or equal to” the value, “greater than or equal to the value” and possible ranges between values are also disclosed, as appropriately understood by the skilled artisan. For example, if the value “X” is disclosed the “less than or equal to X” as well as “greater than or equal to X” (e.g., where X is a numerical value) is also disclosed. It is also understood that the throughout the application, data is provided in a number of different formats, and that this data, represents endpoints and starting points, and ranges for any combination of the data points. For example, if a particular data point “10” and a particular data point “15” are disclosed, it is understood that greater than, greater than or equal to, less than, less than or equal to, and equal to 10 and 15 are considered disclosed as well as between 10 and 15. It is also understood that each unit between two particular units are also disclosed. For example, if 10 and 15 are disclosed, then 11, 12, 13, and 14 are also disclosed.
Although various illustrative embodiments are described above, any of a number of changes may be made to various embodiments without departing from the scope of the invention as described by the claims. For example, the order in which various described method steps are performed may often be changed in alternative embodiments, and in other alternative embodiments one or more method steps may be skipped altogether. Optional features of various device and system embodiments may be included in some embodiments and not in others. Therefore, the foregoing description is provided primarily for exemplary purposes and should not be interpreted to limit the scope of the invention as it is set forth in the claims.
The examples and illustrations included herein show, by way of illustration and not of limitation, specific embodiments in which the subject matter may be practiced. As mentioned, other embodiments may be utilized and derived there from, such that structural and logical substitutions and changes may be made without departing from the scope of this disclosure. Such embodiments of the inventive subject matter may be referred to herein individually or collectively by the term “invention” merely for convenience and without intending to voluntarily limit the scope of this application to any single invention or inventive concept, if more than one is, in fact, disclosed. Thus, although specific embodiments have been illustrated and described herein, any arrangement calculated to achieve the same purpose may be substituted for the specific embodiments shown. This disclosure is intended to cover any and all adaptations or variations of various embodiments. Combinations of the above embodiments, and other embodiments not specifically described herein, will be apparent to those of skill in the art upon reviewing the above description.
This patent application claims priority to U.S. Provisional Patent Application No. 62/217,779, titled “SPEAKER INTERFACES FOR WIRELESS ACCESS POINTS,” filed on Sep. 11, 2015. This patent application is herein incorporated by reference in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
2455888 | Brown | Dec 1948 | A |
3599219 | Holtum et al. | Aug 1971 | A |
3739392 | Ross et al. | Jun 1973 | A |
4578638 | Takano et al. | Mar 1986 | A |
4626863 | Knop et al. | Dec 1986 | A |
4788554 | Smith | Nov 1988 | A |
4918459 | De Teso | Apr 1990 | A |
5010348 | Rene et al. | Apr 1991 | A |
5131006 | Kamerman et al. | Jul 1992 | A |
5151920 | Haagh et al. | Sep 1992 | A |
5295154 | Meier et al. | Mar 1994 | A |
5374911 | Kich et al. | Dec 1994 | A |
5402136 | Goto et al. | Mar 1995 | A |
5406260 | Cummings et al. | Apr 1995 | A |
5422887 | Diepstraten et al. | Jun 1995 | A |
5428636 | Meier | Jun 1995 | A |
5446792 | Sango | Aug 1995 | A |
5504746 | Meier | Apr 1996 | A |
5546397 | Mahany | Aug 1996 | A |
5625365 | Tom et al. | Apr 1997 | A |
5706428 | Boer et al. | Jan 1998 | A |
5740366 | Mahany et al. | Apr 1998 | A |
5760739 | Pauli | Jun 1998 | A |
5760749 | Minowa et al. | Jun 1998 | A |
5844893 | Gollnick et al. | Dec 1998 | A |
5907310 | Seewig et al. | May 1999 | A |
5936542 | Kleinrock et al. | Aug 1999 | A |
5940771 | Gollnick et al. | Aug 1999 | A |
5943430 | Saitoh | Aug 1999 | A |
6130892 | Short et al. | Oct 2000 | A |
6137449 | Kildal | Oct 2000 | A |
6169522 | Ma et al. | Jan 2001 | B1 |
6184840 | Hsin-Loug et al. | Feb 2001 | B1 |
6194992 | Short et al. | Feb 2001 | B1 |
6337990 | Koshino | Jan 2002 | B1 |
6374311 | Mahany et al. | Apr 2002 | B1 |
6437757 | Butler | Aug 2002 | B1 |
6563786 | Nee | May 2003 | B1 |
6636894 | Short et al. | Oct 2003 | B1 |
6665536 | Mahany | Dec 2003 | B1 |
6697415 | Mahany | Feb 2004 | B1 |
6714559 | Meier | Mar 2004 | B1 |
6789110 | Short et al. | Sep 2004 | B1 |
6795852 | Kleinrock et al. | Sep 2004 | B1 |
6810426 | Mysore et al. | Oct 2004 | B2 |
6857009 | Ferreria et al. | Feb 2005 | B1 |
6868399 | Short et al. | Mar 2005 | B1 |
6970680 | Tomoe | Nov 2005 | B1 |
7020082 | Bhagavath et al. | Mar 2006 | B2 |
7088727 | Short et al. | Aug 2006 | B1 |
7117526 | Short | Oct 2006 | B1 |
7155196 | Beard | Dec 2006 | B1 |
7194554 | Short et al. | Mar 2007 | B1 |
7197556 | Short et al. | Mar 2007 | B1 |
7254191 | Sugar et al. | Aug 2007 | B2 |
7295812 | Haapoja et al. | Nov 2007 | B2 |
7386002 | Meier | Jun 2008 | B2 |
7457646 | Mahany et al. | Nov 2008 | B2 |
7656363 | Devicque et al. | Feb 2010 | B2 |
7715800 | Sinha | May 2010 | B2 |
7739383 | Short et al. | Jun 2010 | B1 |
7752334 | Paunikar et al. | Jul 2010 | B2 |
7826426 | Bharghavan et al. | Nov 2010 | B1 |
8077113 | Syed et al. | Dec 2011 | B2 |
8190708 | Short et al. | May 2012 | B1 |
8335272 | Roberts | Dec 2012 | B2 |
8385869 | Feenaghty et al. | Feb 2013 | B2 |
8466847 | Pera et al. | Jun 2013 | B2 |
8483188 | Walton et al. | Jul 2013 | B2 |
8493279 | Pera et al. | Jul 2013 | B2 |
8581795 | Simms et al. | Nov 2013 | B2 |
8804622 | Thai | Aug 2014 | B1 |
8836601 | Sanford et al. | Sep 2014 | B2 |
9191037 | Lascari et al. | Nov 2015 | B2 |
9397820 | Schulz et al. | Jul 2016 | B2 |
9490533 | Sanford et al. | Nov 2016 | B2 |
9496620 | Schulz et al. | Nov 2016 | B2 |
20020044032 | Guguen et al. | Apr 2002 | A1 |
20020098805 | King | Jul 2002 | A1 |
20030032398 | Harris | Feb 2003 | A1 |
20030038753 | Mahon | Feb 2003 | A1 |
20030203743 | Sugar | Oct 2003 | A1 |
20030207669 | Kroeger | Nov 2003 | A1 |
20030221304 | Janssen et al. | Dec 2003 | A1 |
20030224801 | Lovberg et al. | Dec 2003 | A1 |
20040071298 | Geeng | Apr 2004 | A1 |
20040108966 | McKivergan et al. | Jun 2004 | A1 |
20050245254 | Hall | Nov 2005 | A1 |
20060001589 | Nicolae | Jan 2006 | A1 |
20060007044 | Crouch et al. | Jan 2006 | A1 |
20060009177 | Persico et al. | Jan 2006 | A1 |
20070057860 | Jaffer et al. | Mar 2007 | A1 |
20070132651 | Nilsson | Jun 2007 | A1 |
20070157482 | Wallace | Jul 2007 | A1 |
20080199037 | Xu | Aug 2008 | A1 |
20080224938 | Udagawa et al. | Sep 2008 | A1 |
20080240313 | Deisher et al. | Oct 2008 | A1 |
20080261548 | Krone | Oct 2008 | A1 |
20080297425 | Axton et al. | Dec 2008 | A1 |
20090174622 | Kanou | Jul 2009 | A1 |
20090310721 | Redfern et al. | Dec 2009 | A1 |
20100013729 | Harel et al. | Jan 2010 | A1 |
20100053022 | Mak et al. | Mar 2010 | A1 |
20100245187 | Omuro et al. | Sep 2010 | A1 |
20100285769 | Conroy et al. | Nov 2010 | A1 |
20100289705 | Shtrom et al. | Nov 2010 | A1 |
20110012801 | Monte et al. | Jan 2011 | A1 |
20110068988 | Monte | Mar 2011 | A1 |
20110168480 | Sterling | Jul 2011 | A1 |
20110181479 | Martin et al. | Jul 2011 | A1 |
20110258678 | Cowling et al. | Oct 2011 | A1 |
20120013516 | Ahn et al. | Jan 2012 | A1 |
20120176608 | McCown | Jul 2012 | A1 |
20120213086 | Matsuura | Aug 2012 | A1 |
20120250793 | Khatana et al. | Oct 2012 | A1 |
20130002515 | Hills et al. | Jan 2013 | A1 |
20130012134 | Jin et al. | Jan 2013 | A1 |
20130017794 | Kloper et al. | Jan 2013 | A1 |
20130028150 | Ma et al. | Jan 2013 | A1 |
20130135146 | Ransom et al. | May 2013 | A1 |
20130154894 | Caimi et al. | Jun 2013 | A1 |
20130163770 | Takemura | Jun 2013 | A1 |
20130249754 | Rice | Sep 2013 | A1 |
20130271337 | Lee et al. | Oct 2013 | A1 |
20140118220 | Ley | May 2014 | A1 |
20140220903 | Schulz et al. | Aug 2014 | A1 |
20140274177 | Carbajal | Sep 2014 | A1 |
20140315599 | Teichmann et al. | Oct 2014 | A1 |
20150280328 | Sanford et al. | Oct 2015 | A1 |
20150280329 | Sanford et al. | Oct 2015 | A1 |
20150292948 | Goldring et al. | Oct 2015 | A1 |
20150381293 | Hardy et al. | Dec 2015 | A1 |
20160104941 | Lee et al. | Apr 2016 | A1 |
20160112074 | Lascari et al. | Apr 2016 | A1 |
20160218406 | Sanford | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
202042599 | Nov 2011 | CN |
2416449 | Feb 2012 | EP |
S54-95157 | Jul 1979 | JP |
2002299940 | Oct 2002 | JP |
2007259001 | Oct 2007 | JP |
2010192992 | Sep 2010 | JP |
2012227863 | Nov 2012 | JP |
10-2008-0079357 | Sep 2008 | KR |
20-0450128 | Aug 2010 | KR |
10-1023789 | Mar 2011 | KR |
10-1068766 | Sep 2011 | KR |
WO9840990 | Sep 1998 | WO |
WO0131855 | May 2001 | WO |
WO0131886 | May 2001 | WO |
WO0186877 | Nov 2001 | WO |
WO2008042804 | Apr 2008 | WO |
WO2008154514 | Dec 2008 | WO |
WO2009131219 | Oct 2009 | WO |
WO2011005710 | Jan 2011 | WO |
Entry |
---|
Le-Ngoc et al.; Design aspects and performance evaluation of ATCS mobile data link; IEEE 39th; InVehicular Technology Conference; pp. 860-867; May 1, 1989. |
Lee et al.; U.S. Appl. No. 15/495,765 entitled “Antenna isolation shrouds and reflectors,” filed Apr. 24, 2017. |
Schulz et al.; U.S. Appl. No. 15/289,031 entitled “Radio system for long-range high-speed wireless communication,” filed Oct. 7, 2016. |
Number | Date | Country | |
---|---|---|---|
20170078810 A1 | Mar 2017 | US |
Number | Date | Country | |
---|---|---|---|
62217779 | Sep 2015 | US |