The subject matter disclosed herein relates to current breakers, and in particular, to compact residual current breaker devices with overcurrent and leakage current protection.
According to one aspect of the invention, a single-module circuit breaker includes a first longitudinal portion, a second longitudinal portion, and a third longitudinal portion proximate the first and second longitudinal portions. The first longitudinal portion includes overcurrent detection componentry configured to detect an overcurrent condition. The second longitudinal portion includes leakage current detection componentry configured to detect a leakage current condition. The third longitudinal portion includes a contact mechanism, a first conduction path, and a second conduction path, and the contact mechanism is configured to disrupt the first and second conduction paths in response to at least one of the overcurrent condition and the leakage current condition.
According to another aspect of the invention, a single module circuit breaker includes overcurrent detection componentry configured to detect an overcurrent condition, a contact mechanism in mechanical communication with the overcurrent detection circuitry, and leakage current detection componentry in mechanical communication with the contact mechanism and configured to detect a leakage current condition. The contact mechanism is configured to open in response to at least one of the overcurrent condition and the leakage current condition.
These and other advantages and features will become more apparent from the following description taken in conjunction with the drawings.
The subject matter, which is regarded as the invention, is particularly pointed out and distinctly claimed in the claims at the conclusion of the specification. The foregoing and other features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
The detailed description explains embodiments of the invention, together with advantages and features, by way of example with reference to the drawings.
Generally, a residual-current device (RCD) is an electrical wiring device that severs a circuit if an electric current is not balanced between an energized conductor (i.e., single pole conduction path) and a neutral conduction path. Such an imbalance may be caused by current leakage (e.g., Earth leakage) through the body of a person who is grounded and accidentally touching an energized portion of a circuit with RCD protection. Thus RCDs provide leakage current protection, absent overcurrent protection. Thus, conventional RCDs are physically separate from overcurrent protection devices (e.g., circuit breakers), and often require substantially additional physical space either through being connected serially to a device, or within the device, intended to be protected, or alongside the overcurrent protection devices.
However, example embodiments of the present invention provide novel arrangements of conduction paths within a circuit breaker and compacted RCD components which, when arranged according to the illustrations provided, allow both overcurrent protection and leakage current detection within a single module housing.
An example embodiment of the present invention provides a single pole plus neutral residual circuit breaker within a single module (e.g., 1W) housing. Example embodiments make efficient use of the internal dimensions of the single module housing to accommodate both Residual Current Detection (RCD) portions and Micro-Circuit Breaker (MCB) portions to provide a single pole plus neutral residual circuit breaker with leakage current detection. Example embodiments include circuit breakers having a housing, a circuit breaker disposed within the housing such that a MCB portion of the circuit breaker is accommodated within a first portion of the housing, and a RCD portion of the breaker is accommodated within the second portion of the housing. The first portion of the housing is situated at a first longitudinal end of the housing and the second portion is situated at a second longitudinal end of the housing.
Referring now to
A single pole module housing 102 of the circuit breaker 100 has envelope dimensions that are the same as standardized single-pole circuit breakers, such as 18 millimeters wide in Europe and 0.75 inches wide in the US, also herein referred to as a 1W width, for example. Hereinafter, a more detailed description of the novel arrangement of typical circuit breaker components within a single module circuit breaker housing is provided with reference to
Referring now to
As illustrated, the circuit breaker 100 includes clamp 201 and contact 202 within the second portion 220 of the circuit breaker 100. The contact 202 provides for a conduction path for the single pole 114 to components within the circuit breaker 100. The circuit breaker 100 further includes core 203 disposed within the second portion 220. The winding 240 about the core 203 provides a conduction path for the single pole 114 of the circuit breaker 100.
The circuit breaker 100 further includes circuit board (e.g., printed circuit board, PCB) 204 and resistor 205 disposed within the second portion 220. The PCB 204 may include circuit components disposed to control a tripping relay of the circuit breaker, wherein the tripping relay is configured to trip the circuit breaker 100 in response to predetermined or desired imbalance associated with a leakage current (illustrated in
The circuit breaker 100 further includes mobile contact mechanism 206 in mechanical communication with strip 209, and arranged to rest on support 207. If the strip 209 exceeds a threshold temperature which is based upon the material-make-up of the strip, the strip 209 disturbs the mobile contact mechanism 206 thereby severing electrical communication through disruption of the current path at mobile contact 304 (illustrated in
The circuit breaker 100 further includes coil 208 in communication with the mobile contact 206 (illustrated in
The circuit breaker 100 further includes arc extinction portion 213 in communication with fixed contact 207 (illustrated in
With regards to separation of mobile contact 206 and fixed contact 207, it is submitted that mechanical linkages 250 are provided which “trip” or “set” the circuit breaker 100, and also provide separation of mobile contact 206 and fixed contact 207 during an overcurrent event. The linkage 254 mechanically links the toggle 110 with the mobile contact 206 through interim linkage 255. The tensile spring 253 provides for force between the interim linkage 255 and the mobile contact 206 such that contact separation occurs if the toggle 110 is moved into an “off position” (it is noted that an “on position” is shown for clarity). The tripping linkage 251 is also in mechanical communication with mobile contact 206 and fixed contact 207 and provides for contact separation in response to an overcurrent event. The tripping linkage 251 is also in mechanical communication with tripping relay 303 (illustrated in
Finally, the circuit breaker 100 includes neutral clamp 301 and contact 302 within the first portion 210 of the circuit breaker 100. The neutral contact 302 provides for an additional conduction path for the neutral pole 113 to communicate with an external connection from the circuit breaker 100.
Hereinafter, the second face of the circuit breaker 100 is described in detail.
Referring now to
As illustrated, the circuit breaker 100 includes single pole clamp 301 and single pole contact 302 within the second portion 220 of the circuit breaker 100. The single pole contact 302 provides for a conduction path for the single pole to components within the circuit breaker 100. The circuit breaker 100 further includes core 203 disposed within the second portion 220. The second winding 230 about the core 203 provides a neutral conduction path for the neutral pole of the circuit breaker 100.
The circuit breaker 100 further includes tripping relay 303 disposed within the second portion 220. The tripping relay 303 may be controlled through PCB 204 (illustrated in
Returning to the second winding 230, the circuit breaker 100 further includes mobile contact 304 in communication with the second winding 230. Further, the mobile contact 304 may be in severable communication with fixed contact 305. The mobile contact 304 may also provide a portion of the conduction path. Also, the fixed contact 305 may also provide a portion of conduction path. If the current carried within conduction path exceeds a given or desired threshold, the mobile contact 304 separates from fixed contact 305 thereby severing electrical communication between the mobile contact 304 and the fixed contact 305.
With regards to separation of mobile contact 304 and fixed contact 305, it is submitted that mechanical linkages 250 (
Finally, the circuit breaker 100 (see
Although described above as including particular single pole and neutral clamps/terminals and conduction paths on particular sides of the circuit breaker 100, it should be understood that the orientation and electrical connections to these clamps/terminals and conduction paths may be altered relatively easily according to any desired implementation. For example, the neutral clamps and conduction path noted above may be swapped with associated single pole clamps and conduction path through manipulation of connections to the clamps. For example, as the core 203 is disposed to detect an imbalance which results from leakage current, it is not necessary for either the primary or secondary windings 230 and 240 to be fixed as neutral or single pole conduction paths. Thus, example embodiments should not be limited to the particular orientation of each clamp and conduction path shown, but should include any suitable modification which offers substantially similar operation including overcurrent detection at a first longitudinal portion and leakage current detection at a second longitudinal portion of the circuit breaker 100.
In order to better understand the novel geometry described above, perspective cut-away views illustrated in
As described above with regards to
While the invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the invention is not to be seen as limited by the foregoing description, but is only limited by the scope of the appended claims.