The present disclosure relates generally to a compact, rugged, environmentally-sealed, electrically non-conductive, antenna radome for protecting an antenna operative for transmitting or receiving electromagnetic waves, and to a method of installing the antenna in the radome, and, more particularly, to using such an antenna radome with a radio frequency (RF) identification (RFID) reader, especially one configured for handheld, mobile use, and operative for scanning RFID tags associated with items contained in a controlled area, advantageously for inventory control of the RFID-tagged items.
RFID systems are well known and are commonly utilized for item tracking, item identification, and inventory control in manufacturing, warehouse, and retail environments. Briefly, an RFID system includes two primary components: a reader (also known as an interrogator), and a tag (also known as a transponder). The tag is a miniature device associated with an item to be monitored and is capable of responding, via a tag antenna, to an electromagnetic wave wirelessly propagated by a reader antenna of the reader. The tag responsively generates and wirelessly propagates a return electromagnetic wave back to the reader antenna. The return electromagnetic wave is modulated in a manner that conveys identification data (also known as a payload) from the tag back to the reader. The identification data can then be stored, processed, displayed, or transmitted by the reader as needed. The return electromagnetic wave can also be used to determine the true bearing and location of the tag in a controlled area.
The reader antenna is typically contained in, and protected by, a radome. Yet, the known radomes for handheld readers have several drawbacks. For example, the design of the known radomes is typically taken from the radome designs for fixed readers, which are relatively large, heavy, costly and obtrusive, and therefore largely impractical for handheld reader use where compact, light, and inexpensive considerations are more important for widespread adoption. In addition, the known radomes for handheld readers are not so structurally strong as to well resist strong impacts, and it is known for housing parts of the radomes to separate when dropped to the floor, or subjected to like abuse. Further, the known radomes for handheld readers are not so weatherproof, and typically expose their antennas to moisture, air, dust, and like contaminants in the environment over time and prolonged use. Also, the known radomes typically use electrically-conductive, metal fasteners in front of their antennas, i.e., forwardly of antenna keep-out planes, to hold their housing parts together, and such metal fasteners can detune their antennas, especially when they are located close to the antennas, as would be required for use with compact, handheld readers.
Accordingly, there remains a need for an antenna radome that is compact, rugged, environmentally-sealed, electrically non-conductive, for use with a handheld RFID reader for scanning RFID tags associated with items located in a controlled area, especially for inventory control of the RFID-tagged items, as well as to a method of installing an antenna in a radome.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions and locations of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
The structural and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
One aspect of this disclosure relates to an antenna radome for protecting an antenna of a radio frequency (RF) identification (RFID) reader operative for scanning RFID tags. Advantageously, the RFID reader is a handheld unit whose operating band of frequencies lies in a frequency range on the order of 902-928 MHz. This designated range is not intended to limit the invention disclosed herein, because other frequency ranges are also contemplated.
The radome includes a rear housing and a front housing, each constituted of an electrically non-conductive material, e.g., a synthetic plastic material. The front housing is directly connected to, and bounds an interior with, the rear housing. A support structure is located in the interior of the connected housings for supporting the antenna in the interior to enable RF signals to be transmitted or received by the antenna forwardly through the connected housings during scanning without being detuned by electrically conductive materials and electrically conductive fasteners located forwardly of the antenna. A seal between the connected housings environmentally seals the antenna inside the connected housings.
In a preferred embodiment, one of the housings has a plurality of electrically non-conductive, female fasteners, and the other of the housings has a corresponding plurality of electrically non-conductive, male fasteners. The male fasteners are moved into the female fasteners in a first direction, and are then moved in a second direction different from the first direction to secure the housings together. The housings are locked together by additional fasteners, which, if constituted of electrically conductive materials, are located rearwardly of the antenna behind a virtual antenna keep-out plane.
A method of installing an antenna, in accordance with another aspect of this disclosure, in a radome for use with a radio frequency (RF) identification (RFID) reader operative for scanning RFID tags is performed by mounting the antenna in an interior between a rear housing and a front housing, each housing being constituted of an electrically non-conductive material; by directly connecting the housings together; by supporting the antenna in the interior to enable RF signals to be transmitted or received by the antenna forwardly through the connected housings during scanning without being detuned by electrically conductive materials and electrically conductive fasteners located forwardly of the antenna; and by environmentally sealing the antenna inside the connected housings.
Turning now to
For the sake of brevity, conventional techniques related to RFID data transmission, RFID system architecture, RF signal processing, and other functional aspects of RFID systems (and the individual operating components of such systems) are not described in detail herein, except to say that the RFID reader 10 conventionally includes, without limitation: an RF communication module coupled to, and driving, the antenna 30; a power supply (e.g., a battery pack); a processor; and a memory. The various operating components of the reader 10 are coupled together as needed to facilitate the delivery of operating power from the power supply, the transfer of data, the transfer of control signals and commands, and the like. The processor may be any general purpose microprocessor, controller, or microcontroller that is suitably configured to control the operation of the reader. In practice, the processor may execute one or more software applications that provide the desired functionality for the reader 10. The memory is capable of storing application software utilized by the processor and/or data captured by the reader 10 during operation. The RF communication module is suitably configured to process RF signals associated with the operation of the reader 10, and to otherwise support the RFID functions of the reader. The communication module includes a transceiver that generates and transmits an RF interrogation signal to each tag via the antenna 30, and that receives a reflected RF payload signal generated by each tag via the antenna 30 in response to the interrogation signal. The antenna 30 is coupled to the RF communication module using RF transmission lines or RF coaxial cables in combination with suitable RF connectors, plugs, nodes, or terminals on the communication module and/or on the antenna.
The gun-shaped configuration of the reader sled 12 is merely exemplary, because the antenna 30 can be deployed in any number of different reader configurations. Also, the front deployment of the antenna in the radome 18 is merely exemplary, because the antenna 30 can be deployed at other locations on the sled, for example, on the top or the bottom of the sled 10, or in a dock on which the reader 10 is supported. In the exemplary application described herein, the antenna 30 is designed to operate in the UHF frequency band designated for RFID systems. Alternate embodiments may instead utilize the high frequency band, or the low frequency band, designated for RFID systems. For example, in the United States, RFID systems may utilize the 902-928 MHz frequency band, and in Europe, RFID systems may utilize the 865-868 MHz frequency band. The antenna 30 can be designed, configured, and tuned to accommodate the particular operating frequency band of the host RFID reader 10. In addition, the antenna 30 described herein can also be used in non-RFID applications.
As best shown in
As described below, the antenna 30, in the preferred embodiment of
Returning to
Similarly, as best shown in
Similarly, the second board 38 has a plurality of holes through which the second posts 42 are inserted until a leading side of the second board 38 rests on top of the second support projections 46. Then, the exposed free ends of the second posts 42 are deformed, typically by being exposed to a heat or welding gun, to form enlarged, deformed heads 48 for engaging a trailing side of the second board 38, thereby heat-staking and locking the second board 38 against the second support projections 46. Thus, the posts 24, 42, the projections 28, 46, and the heads 40, 48 together constitute a support structure for holding the boards 36, 38 apart in mutual parallelism (see
The front housing 20 is directly connected to, and bounds an interior with, the rear housing 22. More particularly, as best seen in
As best seen in
Returning to
Although different antenna embodiments may be employed, the antenna 30 depicted in
To increase the antenna gain, it is desirable to juxtapose the secondary antenna member 34 (on board 38) with the primary antenna member 32. The secondary antenna member 34 re-radiates the electromagnetic waves propagated by the primary antenna member 32 with a secondary slant polarization that is congruent to the primary slant polarization in a manner analogous to a Yagi antenna. Thus, the secondary antenna member 34 is likewise S-shaped and is spaced generally parallel to, and rearwardly of, the generally planar, S-shaped primary antenna member 32 by a spacing of about a quarter wavelength or less as measured at a center frequency in the operating band. The secondary antenna member 34 includes a first antenna element comprised of three, generally planar, electrically conductive, linear sections 131A, 132A, and 133A arranged in an end-to-end succession, one after another. Adjacent successive linear sections 131A and 132A are generally perpendicular to each other in a first turn. Adjacent successive linear sections 132A and 133A are generally perpendicular to each other in a second turn. Linear sections 131A and 133A are generally parallel to each other. The secondary antenna member 34 also includes a second antenna element comprised of three, generally planar, electrically conductive, linear sections 131B, 132B, and 133B arranged in an end-to-end succession, one after another. Adjacent successive linear sections 131B and 132B are generally perpendicular to each other in a first turn. Adjacent successive linear sections 132B and 133B are generally perpendicular to each other in a second turn. Linear sections 131B and 133B are generally parallel to each other. Sections 131A and 131B are collinear and extend in opposite radial directions. Sections 132A and 132B are generally parallel to each other.
The RF signal is fed to the antenna 30 by a feeding arrangement that includes a feed line 70 and an L-shaped, microstrip circuit having a linear section 23 that is juxtaposed with the linear section 31A of the primary antenna member 32, and a linear section 25 that is juxtaposed with the linear section 32A of the primary antenna member 32. The feed line 70 passes through the secondary antenna member 34 with a clearance 140 and is electrically isolated therefrom. The electrical length of the linear sections 23 and 25 is about a quarter of a wavelength or less at the center frequency of the operating band. To simplify the drawings, the microstrip circuit has been illustrated without its supporting dielectric substrate.
In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.
The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has,” “having,” “includes,” “including,” “contains,” “containing,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements, but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a,” “has . . . a,” “includes . . . a,” or “contains . . . a,” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, or contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially,” “essentially,” “approximately,” “about,” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1%, and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
It will be appreciated that some embodiments may be comprised of one or more generic or specialized processors (or “processing devices”) such as microprocessors, digital signal processors, customized processors, and field programmable gate arrays (FPGAs), and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used.
Moreover, an embodiment can be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer (e.g., comprising a processor) to perform a method as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory) and a Flash memory. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein, will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus, the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.