The present disclosure relates to fluid machinery, and more particularly to shaft support devices, such as bearings, for rotating components of fluid machinery.
Turbomachines, such as centrifugal compressors, may include a rotatable shaft and one or more working components (e.g., impellers) mounted on the shaft. During use of the turbomachine, the shaft is subjected to various axial and radial loads. To support the rotating shaft and various loads on the shaft, one or more shaft support devices, such as bearings, balance pistons, etc., may be provided.
Certain shaft support devices support radial loading, such as journal or rolling element bearings, while other shaft support devices, such as thrust bearings, balance pistons, etc., support axial loading on the shaft. Typically, the various shaft support devices may be spaced at least partially axially along the shaft. Thus, to accommodate the various shaft support devices, it may be necessary to increase the axial length of the shaft, which may increase the size and cost of the turbomachine.
Embodiments of the disclosure may provide a shaft support device for a turbomachine including a rotary body attached to a shaft of the turbomachine. The rotary body includes an inner portion having a thrust balance piston, and an outer portion having a thrust bearing collar. The outer portion is disposed at least partially radially outward from the inner portion and axially overlaps the inner portion. The exemplary shaft support device further includes a stationary body disposed within and fixably connected to a casing of the turbomachine. The stationary body includes a thrust bearing portion operatively engaging the thrust bearing collar of the outer portion of the rotary body, and sealingly engaging the inner portion of the rotary body.
Embodiments of the disclosure may further provide a shaft support device for a turbomachine including a rotary body attached to a shaft of the turbomachine. The rotary body includes a first portion having a thrust balance piston and a second portion having a thrust bearing collar. The first and second portions are axially overlapping. The exemplary shaft support device further includes a stationary body fixably attached to a casing of the turbomachine. The stationary body includes a first thrust bearing portion disposed adjacent to and operatively engages the first portion of the rotary body.
Embodiments of the disclosure may also provide a shaft support device for a turbomachine including a rotary body connected to a shaft of the turbomachine. The rotary body includes a plurality of thrust bearing collars, each of which is at least partially axially overlapping another one of the plurality of thrust bearing collars. The exemplary shaft support device also includes a stationary body fixably connected to a casing of the turbomachine. The stationary body includes a plurality of thrust bearing portions, each of which is disposed adjacent to and operatively engages one of the plurality of thrust bearing collars.
The present disclosure is best understood from the following detailed description when read with the accompanying Figures. It is emphasized that, in accordance with the standard practice in the industry, various features are not drawn to scale. In fact, the dimensions of the various features may be arbitrarily increased or reduced for clarity of discussion.
It is to be understood that the following disclosure describes several exemplary embodiments for implementing different features, structures, or functions of the invention. Exemplary embodiments of components, arrangements, and configurations are described below to simplify the present disclosure, however, these exemplary embodiments are provided merely as examples and are not intended to limit the scope of the invention. Additionally, the present disclosure may repeat reference numerals and/or letters in the various exemplary embodiments and across the Figures provided herein. This repetition is for the purpose of simplicity and clarity and does not in itself dictate a relationship between the various exemplary embodiments and/or configurations discussed in the various Figures. Moreover, the formation of a first feature over or on a second feature in the description that follows may include embodiments in which the first and second features are formed in direct contact, and may also include embodiments in which additional features may be formed interposing the first and second features, such that the first and second features may not be in direct contact. Finally, the exemplary embodiments presented below may be combined in any combination of ways, i.e., any element from one exemplary embodiment may be used in any other exemplary embodiment, without departing from the scope of the disclosure.
Additionally, certain terms are used throughout the following description and claims to refer to particular components. As one skilled in the art will appreciate, various entities may refer to the same component by different names, and as such, the naming convention for the elements described herein is not intended to limit the scope of the invention, unless otherwise specifically defined herein. Further, the naming convention used herein is not intended to distinguish between components that differ in name but not function. Further, in the following discussion and in the claims, the terms “including” and “comprising” are used in an open-ended fashion, and thus should be interpreted to mean “including, but not limited to.” All numerical values in this disclosure may be exact or approximate values unless otherwise specifically stated. Accordingly, various embodiments of the disclosure may deviate from the numbers, values, and ranges disclosed herein without departing from the intended scope.
Referring now to the drawings in detail, wherein like numbers are used to indicate like elements throughout, there is shown in
The rotary body 12 includes first and second portions 13a and 13b, respectively. In an exemplary embodiment, the second portion 13b may be disposed at least partially radially outward from the first portion 13a, and therefore the first portion 13a may be described herein as the inner portion 13a, and the second portion 13b may be described herein as the outer portion 13b. It will be appreciated, however, that the described relative location of the first and second portions 13a, 13b is merely exemplary and other arrangements of the first and second portions 13a, 13b, including the reverse of that just described, are contemplated herein. Each of the inner and outer portions 13a, 13b are configured to provide one or more thrust bearing collars and/or one or more thrust balance pistons. In the exemplary embodiment shown in
Further, the stationary body 14 includes at least one thrust bearing portion 20 that may be disposed adjacent to the outer portion 13b; however, in other exemplary embodiments, the thrust bearing portion 20 may be disposed adjacent to the inner portion 13a. In an exemplary embodiment, the thrust bearing portion 20 is operatively engageable with the outer portion 13b, so as to support axial loading on the shaft 3 and/or to substantially prevent axial displacement of the shaft 3. The stationary body 14 may include the thrust bearing portion 20, as shown in
As shown in
Referring now to
The turbomachine 1 may be a centrifugal compressor including at least one impeller 5, and each impeller 5 may have an impeller outlet 5b and an impeller inlet 5a. As such, the thrust balance piston 18 generates the axial pressure force FP to counteract any opposing axial forces which result from the pressure differential between the axially spaced impeller outlet(s) 5b and impeller inlet(s) 5a.
In an exemplary embodiment, the inner portion 13a of the rotary body 12 includes an outer circumferential surface 22 extending generally between the first and second axial ends 18a, 18b of the thrust balance piston 18, and the stationary body 14 includes a seal 24. The seal 24 is configured to engage the outer circumferential surface 22 so that the seal 24 prevents substantial fluid flow generally between the first and second axial ends 18a, 18b. The seal 24 may be a generally annular labyrinth seal including a plurality of radially inwardly extending annular shoulders or “teeth” 26 that are slidably engageable with the outer circumferential surface 22 of the rotary body 12, but the seal 24 may also be constructed in any other appropriate manner.
In an exemplary embodiment, the outer portion 13b includes the thrust bearing collar 16 and the stationary body 14 includes at least one magnet 27. The thrust bearing collar 16 and the at least one magnet 27 together provide a magnetic thrust bearing 30, which may be known in the art as an active magnetic bearing (AMB). In an exemplary embodiment, the at least one magnet 27 of an AMB may include an electromagnet. Using an electromagnet may allow the magnetic thrust bearing 30 to control the position of the rotary body 12. That is, the at least one magnet 27 may be configured to exert force on the thrust bearing collar 16 so that the at least one magnet 27 biases the rotary body 12 generally axially toward the at least one magnet 27. Accordingly, the at least one magnet 27 may act on the thrust bearing collar 16 to counteract axial forces on the shaft 3. The magnetic force biases the thrust bearing collar 16, and thus the rotary body 12 and ultimately the shaft 3, in a direction opposing net axial forces arising from such factors as pressure differentials on the impellers 5, and the like.
In another exemplary embodiment, the at least one magnet 27 may include only permanent magnets. If the at least one magnet 27 only includes permanent magnets, the magnetic thrust bearing 30 may counteract thrust forces on the shaft 3, but may not actively control the position of the rotary body 12 in some embodiments.
Referring to
The at least one magnet 27 may be first and second magnets 28, 29. In an exemplary embodiment, the first magnet 28 is disposed in the first body section 32, and the second magnet is disposed in the second body section 34. The thrust bearing collar 16 may be disposed between the first and second magnets 28, 29. Accordingly, the first magnet 28 may be configured to bias the thrust bearing collar 16 in an axial direction D2 (see
Accordingly, the magnetic thrust bearing 30 may be formed between the outer portion 13b and the first and second body sections 32, 34 of the stationary body 14, and may balance axial forces exerted in either axial direction D1, D2 by having the first and second magnets 28, 29 interact with the thrust bearing collar 16. The at least one magnet 27 may be a permanent magnet or the core of an electromagnet. Further, the direction in which any of the at least one magnet 27 biases the rotary body 12 may be reversed by reversing the polarity of the at least one magnet 27.
In exemplary embodiments, the at least one magnet 27 may be a plurality of magnets 27, each of which may be disposed either in the first body section 32 or the second body section 34. More particularly, the at least one magnet 27 may be a set of four magnets: a first magnet 28a, a second magnet 28b, a third magnet 29a, and a fourth magnet 29b. In an exemplary embodiment, the first magnet 28a and the second magnet 28b may be disposed in the first body section 32, and the third magnet 29a and the fourth magnet 29b may be disposed in the second body section 34. The four magnets 28a-b and 29a-b may each be disposed in a separate one of the grooves 36, 37 of each of the first and second body sections 32, 34. As shown, the first magnet 28a may be disposed in the groove 36 of the first body section 32, the second magnet 28b may be disposed in the groove 37 of the first body section 32, the third magnet 29a may be disposed in the groove 36 of the second body section 34, and the fourth magnet 29b may be disposed in the groove 37 of the second body section 34. In this arrangement, the first and third magnets 28a, 29a may be configured to bias the rotary body 12 in the axial direction D1 and the second and fourth magnets 28b, 29b may be configured to bias the rotary body 12 in the axial direction D2.
Furthermore, in an exemplary embodiment, the first body section 32 may include an annular pocket surface 39, which may also be described as a pocket, extending radially outward from the inner circumferential surface 32c of the first body section 32 of the stationary body 14. It will be appreciated, however, that in other exemplary embodiments, the second body section 34 may include the annular pocket surface 39, which may extend outwardly from the inner circumferential surface 34c. The annular pocket surface 39 may be configured to support the seal 24, which may be a labyrinth seal as described above, such that the seal 24 extends into the central bore 35. Additionally, the outer circumferential surfaces 32d, 34d of the first and second body sections 32, 34, respectively, may each be configured to engage a compressor structural member 6 such that the compressor structural member 6 retains the shaft support device 10 at a generally fixed position within the casing 2.
Referring to
Referring now to
Further, in an exemplary embodiment, the inner portion 13a of the rotary body 12 includes a hub section 50 mounted on the shaft 3, a piston section 52 spaced radially outward from the hub section 50, and a collar section 54 that connects the hub section 50 and the piston section 52 and provides the first thrust bearing collar 17a. The hub section 50 is generally tubular and has a central bore 51 defined therein that is sized to receive a portion of the shaft 3, which may thereby couple the rotary body 12 with the shaft 3. The piston section 52, which is also generally tubular in shape and may thus be described as a tubular piston section, extends circumferentially about the hub section 50, and provides the first and second pressure surfaces 19a, 19b. Further, the collar section 54 extends generally radially between the hub section 50 and piston section 52, and has opposing radial engagement surfaces 55a, 55b that slidingly engage the first thrust bearing portion 21a of the stationary body 14, as described below.
In an exemplary embodiment, the outer portion 13b includes a disk 56, which is generally annular in shape and may also be known in the art as a thrust disk. The disk 56 extends radially outward from the piston section 52 of the inner portion 13a and thereby provides the second thrust bearing collar 17b. Additionally, the hub section 50, the piston section 52, the collar section 54, and the disk 56 may optionally be integrally formed, such that the rotary body 12 is of one-piece construction, but may also be formed of separate sections connected together by any appropriate means (e.g., welding, fasteners, etc.).
In an exemplary embodiment, the stationary body 14 includes the inner thrust bearing portion 21a, which slidingly engages the collar section 54 of the inner portion 13a of the rotary body 12. The stationary body 14 includes the outer thrust bearing portion 21b, which operatively engages the disk 56. In the exemplary embodiment, the disk 56 also provides the second thrust bearing collar 17b. The inner thrust bearing portion 21a includes first and second thrust bearing members 57a, 57b, respectively, which each slidingly engage a separate one of the radial engagement surfaces 55a, 55b, respectively, of the collar section 54. Each of the first and second thrust bearing members 57a, 57b includes a contact bearing member 58, which is generally annular and provides a fixed bearing surface 59 contactable with a proximal engagement surface 55a, 55b, respectively. The contact bearing member 58 may be fabricated of a sacrificial material, which is a soft and inexpensive material, for example carbon graphite, intended to absorb any wear that may result from regular use of a machine. In another exemplary embodiment, each of the first and the second thrust bearing members 57a, 57b may include a plurality of rolling contact elements, a plurality of tilt pads, or any other appropriate bearing element (not shown) instead of, or in addition to, the contact bearing member 58. Further, the second thrust bearing portion 21b may include the at least one magnet 27, the first and second magnets 28, 29, or the first through fourth magnets 28a-b, 29a-b, as described in detail above.
In an exemplary embodiment shown in
Referring to
In the exemplary embodiment of
The shaft support device 10 of the exemplary embodiment shown in
By having a rotary body 12 that includes axially overlapping thrust bearing collar(s) 16 and/or balance piston(s) 18, the entire shaft support device 10 requires a reduced axial length in comparison with previous shaft support devices. As such, both the shaft 3 and the casing 2 may be formed with lesser shaft length, thereby reducing material costs and making the entire compressor more compact.
The foregoing has outlined features of several embodiments so that those skilled in the art may better understand the detailed description that follows. Those skilled in the art should appreciate that they may readily use the present disclosure as a basis for designing or modifying other processes and structures for carrying out the same purposes and/or achieving the same advantages of the embodiments introduced herein. Those skilled in the art should also realize that such equivalent constructions do not depart from the spirit and scope of the present disclosure, and that they may make various changes, substitutions and alterations herein without departing from the spirit and scope of the present disclosure.
Number | Name | Date | Kind |
---|---|---|---|
4306834 | Lee | Dec 1981 | A |
4453837 | Shimizu et al. | Jun 1984 | A |
4557664 | Tuttle et al. | Dec 1985 | A |
4867633 | Gravelle | Sep 1989 | A |
4884942 | Pennink | Dec 1989 | A |
4997340 | Zinsmeyer et al. | Mar 1991 | A |
5302091 | Horiuchi | Apr 1994 | A |
5310311 | Andres et al. | May 1994 | A |
5340272 | Fehlau | Aug 1994 | A |
5425345 | Lawrence et al. | Jun 1995 | A |
5713720 | Barhoum | Feb 1998 | A |
5791868 | Bosley et al. | Aug 1998 | A |
5827040 | Bosley et al. | Oct 1998 | A |
RE36101 | Andres et al. | Feb 1999 | E |
5927720 | Zinsmeyer et al. | Jul 1999 | A |
5957656 | De Long | Sep 1999 | A |
6036435 | Oklejas | Mar 2000 | A |
6232688 | Ress et al. | May 2001 | B1 |
6367241 | Ress et al. | Apr 2002 | B1 |
6609882 | Urlichs | Aug 2003 | B2 |
6957945 | Tong et al. | Oct 2005 | B2 |
6966746 | Cardenas et al. | Nov 2005 | B2 |
7004719 | Baldassarre et al. | Feb 2006 | B2 |
7048495 | Osgood | May 2006 | B2 |
7144226 | Pugnet et al. | Dec 2006 | B2 |
7703290 | Bladon et al. | Apr 2010 | B2 |
20020197150 | Urlichs | Dec 2002 | A1 |
20040086376 | Baldassarre et al. | May 2004 | A1 |
20040101395 | Tong et al. | May 2004 | A1 |
20040179961 | Pugnet et al. | Sep 2004 | A1 |
20050106015 | Osgood | May 2005 | A1 |
20060140747 | Vandervort et al. | Jun 2006 | A1 |
20060186671 | Honda et al. | Aug 2006 | A1 |
20070122265 | Ansari et al. | May 2007 | A1 |
20080101929 | Allen et al. | May 2008 | A1 |
20080317584 | Murase et al. | Dec 2008 | A1 |
20090309439 | Yamamoto | Dec 2009 | A1 |
20090311089 | Begin et al. | Dec 2009 | A1 |
20100080686 | Teragaki | Apr 2010 | A1 |
20100129212 | Berger et al. | May 2010 | A1 |
20100139270 | Koch et al. | Jun 2010 | A1 |
20100180589 | Berger et al. | Jul 2010 | A1 |
20100183438 | Maier et al. | Jul 2010 | A1 |
20100310366 | Eguchi et al. | Dec 2010 | A1 |
20110038716 | Frankenstein et al. | Feb 2011 | A1 |
20110052432 | Cunningham et al. | Mar 2011 | A1 |
Number | Date | Country | |
---|---|---|---|
20100183438 A1 | Jul 2010 | US |