The present disclosure relates generally to a shotgun which may be a compact shotgun, to a trigger assembly that could be used with such compact shotgun or other firearms, and to an adapter and multipurpose mount that could be used with firearms or other devices. More particularly, some aspects of the disclosure relate to a compact shotgun that may be configured for mounting beneath the barrel of another long gun or used separately, and various components therefor
Shotguns have been introduced that can be mounted beneath the barrel of another long gun, such as a rifle. Such “underbarrel” or “undermount” shotguns are configured with firearm components such as a barrel, breech, fire control unit (i.e., trigger assembly), etc., as well as a connector such as a “Picatinny” rail (MIL-STD-1913) connection or other accessory mount structure for mounting the shotgun beneath the long gun. Such undermount shotguns may not have a conventional headstock, as the headstock of the rifle is used for support during firing of the long gun and the shotgun. The M26 Modular Accessory Shotgun System (from C-More Systems) and the “Masterkey” (from Knight Armament Company) are two examples of existing undermount shotguns.
While existing products have been successful, improved and alternative shotguns, fire control assemblies, and mounting structures and combinations or components thereof would be welcome.
According to certain aspect of the disclosure, a shotgun for firing a shell and mountable beneath a long gun may include a body member having a front end, a rear end, and a connecting structure located along a top side of the body member for attaching the body member to the long gun; a breech tube fixedly located within the body member proximate the rear end, the breach tube having at least one lateral opening though which a shell may be moved; a barrel mounted so as to be axially slidable within the body member and the breech tube, the barrel movable between a rearward position wherein a shell in the breech tube is within a chamber of the barrel and a forward position wherein a shell is loadable or unloadable from the breech tube via the at least one lateral opening; and a trigger assembly including a housing mounted to the body member proximate the rear end, the housing supporting a trigger, a firing pin, and a firing mechanism operatively interconnecting the trigger and the firing pin for actuating the firing pin when the trigger is pulled.
According to certain other aspects of the disclosure, a compact double-action trigger assembly for firing a shell in a gun may include a housing attachable to the gun and having a top, a bottom a front and a back; a firing pin mounted in the housing movable between a rest position and a firing position in which a shell in the gun may be fired; a hammer movably mounted in the housing for moving the firing pin, the hammer defining a first contact surface; a slider mounted in the housing so as to slide on an axis extending from the front to the back between a rearward position and a forward position, the slider having a second contact surface; a spring located in the housing for urging the slider in a direction toward the rearward position; and a trigger pivotally mounted in the housing generally beneath the hammer and movable between a rest position and an actuated position, the trigger when moved from the rest position partially toward the actuated position causing the slider to move toward the forward position thereby loading the spring, the trigger when moved fully to the actuated position releasing the slider so that the spring moves the slider toward the rearward position thereby using the second contact surface to contact the first contact surface and pivot the hammer so that the firing pin moves to the firing position.
According to certain other aspects of the disclosure, a compact double-action trigger assembly for firing a shell in a gun may include a housing attachable to the gun and having a top, a bottom a front and a back, the housing including a hammer compartment having a length from front to rear of less than about 1.0 inches; a firing pin mounted in the housing compartment movable between a rest position and a firing position in which a shell in the gun may be fired; a hammer movably mounted in the housing compartment for moving the firing pin, the hammer defining a first contact surface; a slider mounted in the housing so as to slide on an axis extending from the front to the back between a rearward position and a forward position, the slider having a second contact surface; a spring located in the housing for urging the slider in a direction toward the rearward position; and a trigger pivotally mounted in the housing and movable between a rest position and an actuated position, the trigger when moved from the rest position partially toward the actuated position causing the slider to move toward the forward position thereby loading the spring, the trigger when moved fully to the actuated position releasing the slider so that the spring moves the slider toward the rearward position thereby using the second contact surface to contact the first contact surface and pivot the hammer so that the firing pin moves to the firing position. As above, various options and modifications are possible.
According to certain other aspects of the disclosure, an adapter is disclosed for connecting a first object to a second object, the first object including a portion defining first grooves separated by first ridges in a repeating pattern, a width of each first groove being substantially identical, a width of each first ridge being substantially identical so that a first pitch of the first grooves is substantially equal along the portion. The adapter may include a rail member defining second grooves separated by second ridges in a repeating pattern, a width of each second groove being substantially identical and substantially identical to the width of the first grooves, a second pitch of at least some of the second grooves being different than the first pitch so that a ratio of a pitch unit length of the second pitch to a pitch unit length of the first pitch is a non-whole integer ratio whereby the adapter is connectable to the portion in multiple relative orientations by alignment of at least one of the first grooves with at least one of the second grooves to form a passageway, the multiple relative orientations being separated from each other by a distance smaller than the first pitch; and a connector insertable through the passageway for securing the rail member to the portion thereby connecting the first object to the second object.
According to certain other aspects of the disclosure, a multipurpose connector for connecting a first object to a second object may include a first rail member defining first grooves separated by first ridges in a repeating pattern, a width of each first groove being substantially identical, a width of each first ridge being substantially identical so that a first pitch of the first grooves is substantially equal along the portion; a second rail member defining second grooves separated by second ridges in a repeating pattern, a width of each second groove being substantially identical and substantially identical to the width of the first grooves, the first rail member and the second rail member being configured for contacting each other so that at least one of the first grooves is alignable with one of the second grooves to create a passageway between the first and second rail members; a second pitch of at least some of the second grooves being different than the first pitch so that a ratio of a pitch unit length of the second pitch to a pitch unit length of the first pitch is a non-whole integer ratio whereby the first rail member is connectable to the second rail member in multiple relative orientations by alignment of at least one of the first grooves with at least one of the second grooves to form a passageway, the multiple relative orientations being separated from each other by a distance smaller than the first pitch; and a connector insertable through the passageway for securing the first rail member to the second rail member thereby connecting the first object to the second object.
More details of the present disclosure are set forth in the drawings.
Detailed reference will now be made to the drawings in which examples embodying the present disclosure are shown.
The present disclosure is directed to many interrelated aspects of a modular shotgun, an underbarrel shotgun, a combinable shotgun and long gun, a compact trigger assembly, a multifunction mounting assembly, an adapter for a mounting assembly, and various combinations and subcombinations of such elements. Thus, it should be understood that the various embodiments of such items are examples only, and that numerous other modifications and combinations can be employed using the teachings of the present disclosure to carry out aspects of the many inventions disclosed herein.
It should be understood that long gun 42 could be any type of long gun, such as a rifle, shotgun, carbine, musket, machine gun, sub-machine gun, etc., longer than a handgun to which shotgun 40 may be attached. Accordingly, the use of the term “long gun” herein within the description and claims is intended to refer to any such gun and not only the example depicted. Further detailed description of long gun 42 is thus not necessary for comprehension of the various inventions disclosed herein, and for brevity only aspects necessary for such comprehension will be discussed below.
Certain elements of shotgun 40 are introduced briefly below, and are then described in more detail as required. Shotgun 40 as illustrated includes a body member 66 having a front end 68, a rear end 70, and a connecting structure 72 located along a top side 74 of the body member for attaching the body member to long gun 42. A breech tube 76 is fixedly located within body member 66 proximate rear end 70. Breech tube 76 has at least one lateral opening though which a shell 78 may be moved for loading and/or unloading into the breech 79. As illustrated, breech tube 76 has two lateral openings on opposite sides of breech 79: a first opening 80 for loading a shell, and a second opening 82 for discharging a shell.
To comply with the United States National Firearms Act (USNFA) to thereby allow private citizen ownership of such a compact shotgun, it is required that a shotgun have barrel length no shorter than 18 inches or an overall length no shorter than 26 inches. Thus, to meet such standards, barrel 84 may have a length of at least 18 inches. If shotgun 40 is to be used separately from long gun 42, a stock 98 (
Barrel 84 includes a chamber portion 100 a forward portion 102 adjacent the chamber portion. Chamber portion 100 includes the chamber 86, a first barrel section 104, and a conventional forcing cone 106 between the chamber and the first barrel section.
In one embodiment (
As shown in
An alternate barrel 84′ is shown in
If chamber portion 100 of barrel 84 has a length of approximately 9.5 inches, and forward portion 102 and optional (sleeve 85) have a length of 11.25 inches, with an overlap axially of about 2.0 inches, the axial length of barrel 84 is about 18.75 inches, although differing barrel lengths (both above and below the 18 inch USFNA limit) are possible. Similar dimensioning is possible for barrel 84′. Such compact sizing assists with making shotgun suitable for underbarrel use.
A trigger assembly 88 includes a housing 90 mounted to body member 66 proximate rear end 70. Housing 90 may be formed in several parts and supports a trigger 92, a firing pin 94, and a firing mechanism 96 operatively interconnecting the trigger and the firing pin for actuating the firing pin when the trigger is pulled.
As noted, barrel 84 slides linearly relative to breech tube 76 and generally the rest of shotgun 40 to open and close breech 79. To allow a user to do so, a handle 108 and follower 110 are attached to chamber portion 100 of barrel 84. An axial slot 112 is located along breech tube 76 and includes laterally (circumferentially) located receivers 114,116 spaced receiving handle 108 and follower 110. An axial slot 118 formed in body member 66 is located correspondingly to slot 112 in breech tube 76, with a lateral (circumferential) receiver 119 for handle 108. First and second openings 81,83 formed along slot 118 corresponding to openings 80,82 in breech tube 76 to allow loading and unloading of a shell relative to breech 79.
To open a closed breech 79 with barrel 84 in the rearward orientation (
To hold an unfired shell 78 in breech 79 and to assist in removal of the shell after firing, at least one extractor may be attached to breech tube 76. As illustrated, extractors 124,126 are attached to end cap 128 attached to breech tube 76 and extend generally axially along breech 79. Extractors 124,126 are formed as flexible leaf springs of differing lengths and shapes, with shorter extractor 126 having a hook 130 on an end. As chamber portion 100 of barrel 84 is moved axially forward after firing, friction between the inside of breech tube 76 and shell 78 will draw the shell forward until a rear flange 132 of the shell contacts and pivots slightly around hook 130. By further moving breech tube 76 forward with rear flange 132 held axially by hook 130, shell 78 will pivot out of lateral opening 82 on the side of breech tube 76 on which extractor 126 is located. The user can then remove the spent shell and insert a new one via lateral opening 80, followed by moving barrel 84 back to its rearward and rotated position to chamber the next shell.
Sizing of certain above portions of shotgun 40 allows for a compact underbarrel arrangement. For example, chamber portion of barrel 84 may have an axial length of about 9.5 inches. Such length is sufficient for firing a shell without negatively impacting the length of the remainder of barrel 84 while compact enough to contribute to the underbarrel mounting. Also, trigger assembly 88 is formed compactly so that, when attached to barrel 84 it may extend rearwardly past the rear end of the barrel a small amount, for example less than about 1.0 inches. Thus, the combined axial length of shotgun 40 (configured for underbarrel mounting, without stock 98) measured between a front end of barrel 84 and a rear end of trigger assembly 88 is less than about 19.0 inches. Such compact sizing complies with USNFA requirements while also allowing for an efficient and intuitive underbarrel configuration where trigger assembly is located in front of magazine 50 of long gun 42. Magazine 50 can thus be also used as a grip for the hand used on trigger assembly 88 of shotgun 40.
Trigger assembly 88 as illustrated herein is one efficiently sized design that may provide such benefits. As shown trigger assembly 88 is a double-action trigger assembly with a firing mechanism 96 connecting trigger 92 and firing pin 94, although other double-action or single-action trigger assemblies could be substituted in some aspects of the disclosure.
Trigger assembly housing 90 has a top 128, a bottom 130, a front 132, and a back 134. A sub-housing 136 may be attachable to bottom 130 by pins 137 for attaching an assembly including trigger 92, trigger axle 138 on which trigger pivots and sear 140 pivotally attached to a top end of trigger 92 via sear axle 142. Conventional sliding safety 139 prevents movement of trigger 92 when in a blocking position. Firing pin 94 is pivotally mounted to a hammer 144 via a firing pin axle 146, and hammer 144 is in turn pivotally mounted within a hammer compartment portion 145 of housing 90 via a hammer axle 148. Axles 138, 142 and 146 may be pins attached to their respective elements, or may be formed integrally with such elements.
A slider 150 is mounted in the housing so as to slide on an axis extending from housing front 132 to housing back 134, and a compression spring 152 between front 132 and a pocket 154 in slider 150 urges the slider toward the back. A bushing 156 toward housing front 132 and an axial guide pin 158 extending from housing back 134 through a hole 160 on a stop tab 162 on slider 150 help guide the slider back and forth within the housing. A first contact surface 164 on hammer 144 is located for contact by second contact surface 166 on slider 150. Sear 140 has a protrusion 168 at its forward end for contacting a third contact surface 170 on slider. Trigger 92 has a fourth contact surface 172 for contacting a fifth contact surface which may be a pin 174 mounted in a slot 176 at the rearward end of sear 140.
Between
Between
In
In
In
In
In
Arrangements and/or dimensioning of certain of the above elements assist with providing a compact trigger assembly 88 and a compact shotgun 40 that can be suitable for underbarrel mounting. For example, if trigger 92, when in the actuated (pulled) position, extends toward back 134 of housing 90 further than hammer axle 148, front-rear compactness is improved. In other words, hammer 144 and hammer compartment 145 do not extend appreciably rearward of trigger 92 in trigger assembly 88. Also, if a trigger guard 188 of trigger assembly 88 is arranged so that hammer axle 148 is located between back edge 190 of trigger guard 188 and trigger axle 138, front-rear compactness is improved. In other words, hammer axle 144 and hammer compartment 145 does not extend appreciably rearward of trigger guard 188, and back edge 190 of trigger guard 188 may extend about the same distance rearward as back 134 of housing 90.
Also, a relatively small hammer compartment 145 can assist in rendering trigger assembly 88 more compact. Thus, hammer compartment 145 may for example have a length from front to rear of less than about 1.0 inches, and/or such length may be smaller than a distance between back 134 of housing 90 and trigger axle 138. In other words, hammer compartment 145 may be small enough to be rearward of trigger axle 138.
Connecting structure on shot gun 40 for connecting the shot gun to accessory mounting rail 54 may be in some embodiments a conventional rail/adapter connector assembly, such as a Picatinny rail design or other connector design, allowing removable connection between shotgun 40 and long gun 42. However, use of connecting structure 72 described herein may also be used. Connecting structure 72 may allow for a more efficient attachment of shot gun 40 to certain long guns 42 by providing more precise adjustability of alignment between the guns being joined. Moreover, connecting structure 72 provides independent utility as a connector with a conventional rail such as mounting rail 54 or other.
As illustrated in detail in
Connecting structure 72 includes a rail member 197 defining second grooves 198 separated by second ridges 200 in a repeating pattern, a width of each second groove 198 being substantially identical and substantially identical to the width of first grooves 190 (e.g., 5.25 mm). A second pitch of at least some of the second grooves 198 is different than the first pitch so that a ratio of a pitch unit length of the second pitch to a pitch unit length of the first pitch is a non-whole integer ratio. Spacing first and second grooves 190,198 differently (with longer ridge 200 distances) allows rail member 197 of shotgun 40 to be connectable to grooved rail 54 of long gun 42 in multiple relative orientations by alignment of at least one of the first grooves 190 with at least one of the second grooves 198 to form at least one passageway 202. The multiple relative orientations are separated from each other by a distance smaller than the first pitch (about 10.00 mm, i.e., the Picatinny rail pitch). Such adjustability allows shotgun 40 to be attached to long gun 42 at a rearwardly optimized orientation more precisely than would be possible if rail member 197 were a second Picatinny rail spaced member. Such adjustability will be discussed in detail below.
A connector 204 includes at least one rod 206 insertable through passageway 202 for securing the rail member to the grooved rail thereby connecting shotgun to the long gun. As shown, two rods 206 are provided extending through a housing 208 via openings 210. Rods 206 may be releasably tightenable by various structures, such as nuts 212 on one end and over center clamps 214 on the other. Alternately, threaded screws, clips or other connectors could be employed.
Rail member 197 on body member 66 includes a hook 216 extending axially along one side for capturing extensions 196 of ridges 192. Openings 218 through hook 216 are located adjacent grooves 198 and are sized to receive rods 206/nuts 212 therethrough. Hook 216 includes a flat surface 220 for seating housing 208 therealong (see
To attach rail members 54,197 together, they are positioned so that certain of the grooves 190,198 align to form passageways 202, then rods 206 are slid through the passageways, threaded into nuts 212 until finger tight, at which point over center clamps 214 are tightened so secure the rail members together. Although a modified Picatinny rail structure is shown herein should be understood other structures and connecting elements are possible. Also, fewer or more than one rod/nut/clamp 206/212/214 could be used, or more than one assembly including a housing 208 with associated rod/nut/claim structure.
It should also be understood that the benefits described herein with reference to connecting structure 72 and spacing of grooves of rail member 197 have broad applicability outside of gun connection and/or use with exiting connectors, such as Picatinny rail connecting systems or others, or other custom rail systems. Thus, the present disclosure provides an adapter and a connector system beyond the described exemplary use with gun mounts.
Passageways 202(a)-202(j) are created in pairs in the sequential orientations. Staring with
In
In
In
In
In
Accordingly, a compact shotgun, a trigger assembly that could be used with such compact shotgun or other firearms, and an adapter and multipurpose mount that could be used with firearms or other devices are all disclosed above, and include the exemplary embodiments shown and variations explained as possible and permissible at law. While preferred embodiments of the invention have been described above, it is to be understood that any and all equivalent realizations of the present invention are included within the scope and spirit thereof. Thus, the embodiments depicted are presented by way of example only and are not intended as limitations upon the present invention. While particular embodiments of the invention have been described and shown, it will be understood by those of ordinary skill in this art that the present invention is not limited thereto since many modifications can be made. Therefore, it is contemplated that any and all such embodiments are included in the present invention as may fall within the literal or equivalent scope of the appended claims.
The present application is a Non-Provisional Patent Application and claims priority to U.S. Provisional Patent Application Ser. No. 62/615,071, filed Jan. 9, 2018, which is incorporated by reference herein.
Number | Date | Country | |
---|---|---|---|
62615071 | Jan 2018 | US |