This invention relates generally to the field of wireless communication systems. More particularly, it relates to compact antennas in multi-input multi-output (MIMO) configurations for small form factor devices including mobile phones and other compact wireless devices. The antenna system of the invention has wide bandwidth, high directivity and high efficiency and satisfies both fourth generation (4G) and 5G wireless communication bands with wide bandwidth.
There is increasing interest in developing wideband and/or multiband antenna systems for use in wireless communications, microwave tomography, remote sensing, and other applications. The demand for high channel capacity (high data rate) is rapidly increasing because high data rate is required for multiple functionalities like browsing the internet, video streaming, online gaming, and on-road navigation. The next generation wireless standard will provide an increase in the overall channel capacity 1,000 times greater than current capacity, with multi-Giga bits per second expected to be a reality by the year 2020.
The multiple-input-multiple-output (MIMO) technology will therefore serve as a key enabling factor in achieving such high data rates. These antennas will cover different frequency bands of different standards and will support high data rates. Many portable devices have now multiple functionalities as compared to early generations with the existence of multiple antennas. Depending upon the size and targeted application, the user terminal will be allowed to carry up to 8 antennas with a minimum of 4 antenna elements.
Future wireless standards will rely on novel technologies to increase the data rates and provide reliable links. Current fourth generation (4G) and upcoming 5G will rely on multiple antenna systems with multi-standard support. These multiple standards will operate in different frequency bands with enough frequency bandwidth to provide the expected high data throughput. Antenna elements are usually isolated from one another, and thus occupy a large space within a wireless terminal. The concept of connected arrays (CA) was recently introduced for single band coverage and with single arrays. Cell phones will have elements that are of smaller size and maybe less efficiency than tablets that have more real estate to have more efficiency antenna systems.
The use of multiple-input multiple-output (MIMO) technology as well as the use of higher frequency bands beyond those currently used for wireless communications (i.e. above 6 GHz) will be key factors in achieving the throughput increase. The user terminal will be allowed to carry up to 8-antenna elements within current cellular bands below 6 GHz, with a minimum of 4-antenna elements, depending on the device size and application.
Integrating higher frequency band antennas or antenna arrays along with MIMO antenna systems at the lower bands will be a must to satisfy the large increase in the data throughput expected, as bandwidths of at least 500 MHz are required, and these are not available in the lower spectrum bands.
Such integrated antenna systems that support multiple antennas as well as multiple standards with capabilities both less than 6 GHz and above 10 GHz are of extreme importance for upcoming wireless handheld devices to be able to achieve the expected performance of 5G standards.
Due to the use of multiple antennas in MIMO configurations, space becomes an issue, especially for lower frequency bands, as the antenna elements become larger in size. Coming up with novel compact size and highly efficient antennas is very desirable. At higher frequency bands, i.e. higher than 10 GHz, the free space attenuation of the radio signals becomes large, and thus antenna array configurations are preferred to provide higher gains and compensate for such losses.
Designing a novel, compact size, directional MIMO antenna system with high gain, high isolation and low correlation between the MIMO channels is of great value because they become compatible with multiple standards and simultaneously cover multiple bands without the need of extra hardware for reconfigurability or frequency switching. Directional radiation characteristics, along with wide bandwidth and high efficiency, are required for good MIMO performance, as directional patterns mean more isolated channels and thus better performance and low inter-element correlation. Therefore, there is high interest in using directional antennas like Yagi-Uda in future 5G technology.
Yagi-Uda antennas are well known for their highly directional radiation patterns, high FBR, high gain, low cross polarization, controllable input impedance, and moderate bandwidth that can be increased. Yagi antennas are highly compatible with printed RF circuitry because they are robust and can be easily fabricated. However, the main challenge faced in designing Yagi antennas is their large size due to the presence of the large ground plane or number of reflector elements required to achieve high 1-BR, and the large number of director elements required to achieve high directivity. Hence, such antenna systems are not suitable to be used in small form factor wireless devices due to the limited space available. Despite the distinct features of such antennas, the size issue limits their use in modern small user terminals.
Accordingly, there is need for a highly miniaturized, compact size, low profile, Yagi-based MIMO antenna system for small form factor devices including mobile phones and other compact wireless devices, wherein the antenna system has wide bandwidth, high directivity and high efficiency and satisfies both fourth generation (4G) and 5G wireless communication bands.
The present invention is a highly miniaturized, compact size, low profile Yagi-based MIMO antenna system. A simple back-lobe reduction technique is proposed for Quasi-Yagi antennas that does not require the complex techniques using electromagnetic band-gap (EBG) structures, isolation surfaces, multiple 3D metallic layers, multiple reflector elements, and resistor and inductor loading, etc. of prior art devices. The antenna of the invention is suitable for either microstrip or slot antennas.
In a first embodiment, the antenna is designed and fabricated on a two-layer printed circuit board. A single antenna in a MIMO configuration can be utilized in current and future small form factor wireless terminals and handheld devices. The invention comprises a semi-loop, meandered Yagi antenna design used as a driven element (the one which is directly excited using a transmission line), and an arcuate ring sector director element used to obtain high directivity and highly directional radiation pattern. The proposed design is a highly miniaturized printed Quasi-Yagi antenna design using a very simple miniaturization technique of semi-loop meandering and small ground plane structure. The Quasi-Yagi antenna system of the invention is highly compact compared to conventional complex non-printed Quasi-Yagi miniaturization techniques that use fractal geometries or metamaterial structures. This embodiment of the invention uses a truncated ground plane reflector element with a size of only 60 mm×19.1 mm, which is very compact compared to other Quasi-Yagi reflector sizes described in literature. The invention not only reduces the back-lobe radiation, but it also switches the beam by 90° from the non-end-fire direction to the desired end-fire direction, which is one of the main requirement for a Yagi-Uda antenna. The antenna can then be used in a MIMO configuration for utilization in current and future small form factor wireless terminals and handheld devices.
In a second embodiment, the invention is a compact size, printed and low profile Yagi-Like antenna that mimics the features of a Yagi antenna. The antenna is etched from the ground plane and is based on a half-arc slot antenna with a complementary functional rectangular slot that acts as a director to increase the front to back ratio of the antenna. The antenna does not have any directors in the conventional sense, and is very compact. It is designed and fabricated on a two-layer printed circuit board. The single antenna is then used in a MIMO configuration that can be utilized in current and future small form factor wireless terminals and handheld devices.
The antenna systems in both embodiments are compact and do not occupy much space in the system ground plane, making them very attractive for handheld and portable wireless terminals. The specific dimensions disclosed hereinafter for the two invention embodiments are optimized for the targeted bands and can vary based on the device under consideration.
The patent or application file contains at least one drawing executed in color. Copies of this patent or patent application publication with color drawing(s) will be provided by the Office upon request and payment of the necessary fee.
The foregoing, as well as other objects and advantages of the invention, will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, wherein like reference characters designate like parts throughout the several views, and wherein:
In the first embodiment, a single semi-loop meandered Yagi antenna design geometry according to the invention is indicated generally at SA in
Referring to
First and second notches N1 and N2 are formed in the upper edge of the ground plane, with notch N1 positioned below an outer end of meandered leg ML1 and notch N2 positioned under the center portion of the meandered legs. A line L is connected to meandered leg ML1 and extends across notch N1 into the ground plane but not all the way across the ground plane. Antenna feed AF extends from the other meandered leg ML2 into and across notch N2 and across the ground plane to connector 125. An arcuate director strip DE is spaced a short distance 106 from the apex of the element SLE.
In a specific example of the invention for the targeted bands, the substrate S has a width 101 of 50 mm and a length 102 of 60 mm. The half-circular driven element SLE has a width 107 tuned to 1 mm, a length of approximately 122.5 mm, and a diameter 108+109+110 that is half the guided wavelength (λg/2), or 39 mm at the center frequency of 2 GHz. The truncated ground plane GP has a length 102 of 60 mm and a width 126+127 of 19.1 mm.
The arcuate strip forming the director element DE has a width 105 of 1 mm and a length 104 of 25 mm. The distance 103 of the director element DE from the adjacent edge 102 of the substrate S is 6.2 mm, and the spacing 106 between the director element DE and the driven semi-circular single loop element SLE is tuned to 1.62 mm.
The meandered legs ML1 and ML2 are spaced apart a distance 109 of 4 mm, the distance 108 from one end of the single loop element SLE to the inner end or edge of meandered leg ML1 is 15 mm, and the distance 110 from the other end of the single loop element to the inner end or edge of the meandered leg ML2 is 20 mm. The distances 111 and 124 between opposite ends of single loop element SLE and the side edges of the substrate S are equal at 10 mm, and the spacing 112 between the ground plane GP and the meandered legs ML1 and ML2 is 1.9 mm.
The depth 113 of notch N1 is 6.8 mm and the width 114 is 5.9 mm. The spacing 115 between the edge of notch N1 and the adjacent edge of the substrate and ground plane, which are coterminous, is 11.1 mm. Notches N1 and N2 are spaced apart a distance 116 of 5.5 mm, and meandered leg ML1 is spaced from the adjacent edge of notch N1 a distance 117 of 1.5 mm. Leg ML1 has a width 118 of 1.5 mm, and antenna feed AF has a width 119 of 1.478 mm and is spaced from the adjacent edge of notch N2 a distance 120 of 8.7 mm. Notch N2 is spaced from the adjacent edge of the substrate S a distance 121 of 19.8 mm. The bottom of notch N2 is spaced upwardly a distance 126 of 15 mm from the lower edge of the ground plane GP, and a distance 127 of 4.1 mm from the top edge of the ground plane.
The two lower branches LB of each of the meandered legs ML1 and ML2 have a combined width 122 of 2.5 mm, including the space between them, and those branches are spaced from the upper branch UB a distance 123 of 0.5 mm.
The Notch N1 together with the extending element EE shown in
The extending element EE together with notch N1 is used for back-lobe reduction, which eventually provides high front-to-back ratio (FBR), which is necessary for good Yagi-Uda performance. The principle behind back-lobe suppression is that the proposed notch N1 and the extending element EE significantly increases the magnitude of the current density towards the end-fire direction (along X-axis of
The second embodiment is shown in
The antenna SA′ is designed on a commercially available FR-4 plastic substrate S with dielectric constant of 4, thickness of 0.8 mm and loss tangent of 0.02). The total antenna size of the single antenna element has a length 100 of 40 mm and a width 101 of 40 mm. The half circle slot driven element HS has a typical radius 107 of 8 mm and a length half the guided wavelength (λg/2), which is around 22.6 mm at the center frequency of 3.6 GHz. The width 108 of the slot is tuned to 3.3 mm to achieve the desired resonance. The transmission line TL has a width 110 with a typical value of 3 mm and length 111 with a typical value of 14.2 mm to get minimum reflection loss and match to 50Ω. The rectangularly shaped director element DE′ has a width 103 of 14 mm and a length 105 of 9.5 mm. The dimensions 103, 105 of the director element are set to 14 mm×9.5 mm in this design, but can be changed based on the frequency band targeted. The spacing 104 between the director DE and the slot driven element HS is 0.2 mm, and the space 102 between the director element and the adjacent edge of the ground plane is 12 mm. One end of slot HS is inset a distance 106 of 4 mm from the adjacent edge of director element DE′, and the other end of the slot is spaced a distance 109 of 7.7 mm from the adjacent edge of the ground plane. Transmission line TL is centered between the side edges of the substrate and is spaced a distance 112 of 18.5 mm from each of the side edges.
A two-element system is indicated generally at TA′ in
3D gain patterns of the proposed MIMO antenna system computed using HFSS at 3.6 GHz are shown in
As can be seen, multiple wide-bands are covered by the antenna systems of the invention. The covered bands can be changed according to the design requirements by changing the slot width, inter-slot spacing, etc. The very wide bandwidths obtained are essential for future wireless standards to support higher data rates as well as backward compatibility with current standards.
While the invention has been described in connection with its preferred embodiments, it should be recognized that changes and modifications may be made therein without departing from the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
6483476 | Cox | Nov 2002 | B2 |
7015860 | Alsliety | Mar 2006 | B2 |
8228254 | Foltz et al. | Jul 2012 | B2 |
8384600 | Huang et al. | Feb 2013 | B2 |
8497811 | Huang | Jul 2013 | B2 |
8558748 | Chen | Oct 2013 | B2 |
8912973 | Werner et al. | Dec 2014 | B2 |
9054423 | Dandekar et al. | Jun 2015 | B2 |
9373893 | Stutrud | Jun 2016 | B2 |
9515377 | Zhang et al. | Dec 2016 | B2 |
9531084 | Li et al. | Dec 2016 | B2 |
20090174557 | Nikitin et al. | Jul 2009 | A1 |
20090295667 | Ma et al. | Dec 2009 | A1 |
20150035714 | Zhou | Feb 2015 | A1 |
20150194736 | Diukman et al. | Jul 2015 | A1 |
20160006116 | Sharawi et al. | Jan 2016 | A1 |
20160294052 | Baek et al. | Oct 2016 | A1 |
Number | Date | Country |
---|---|---|
204333258 | May 2015 | CA |
101345764 | Jan 2014 | KR |
101630674 | Jun 2016 | KR |
20160093516 | Aug 2016 | KR |
Entry |
---|
Du, Z. et al., “Compact Quasi-Yagi Antenna for Handheld UHF RFID Reader,” ACES Journal, vol. 30, No. 8, Aug. 2015, pp. 860-865. |
Number | Date | Country | |
---|---|---|---|
20180287244 A1 | Oct 2018 | US |