A. Field of the Invention
The present invention relates to door and window hardware. More particularly, the present invention relates to a mechanically stable and ergonomically improved door and window sash lock.
B. Description of the Prior Art
Sliding windows or patio doors in a building are made for letting in necessary light and air into the room while allowing occupants to have a comfortable viewing of the surrounding nature. At the same time, such doors or windows should be able to lock out harmful elements and potential intruders.
Window latches and locks that are also applied to doors have been developed as the windows in the modernized buildings have long been evolved all together. Of different types of slider window, a single-hung type window is structured to have an upper outside pane in a stationary sash and an inside pane in a sliding sash guided in a window frame along its vertical path between a raised level positioned over the upper sash to half open the window and a lowered position to close the window opening in cooperation with the upper sash. A double-hung type window has two vertically sliding sashes movable in parallel planar paths in a single frame. There are also horizontal sliders. A gliding window has two sashes with at least one sliding horizontally past the other. The respective sashes of the double-hung windows may be made to swing inwardly for the purpose of a safe cleaning but they must be returned to their vertical abutting positions when the window is to be locked. Normally, in the closed position, the mating sashes have the respective proximal sides overlapped to offer the necessary sealing. Therefore, most latches are conveniently positioned near the meeting areas of the two sashes at the exposed surface of the inner sash while the mating keeper or strike is fixed to the accompanying outer sash.
Known latches for windows have their inherent drawbacks. Automatic window sash locks as depicted in U.S. design Pat. No. 395,222 to Fountaine comprise a main latch body attached to a slide-open sash for automatically engaging a fixed keeper on the companion sash or the sash itself that incorporates in its profile a notch so that the sashes are immobilized in the frame when the window is closed. Such sash locks generally include a user-operated component handle to release the automatic locking mechanism, which only needed the sliding closure of the sash to push in a bolt of the sash lock before it protrudes back into engagement with the keeper or notch. To streamline the one-handed user operation in lift or sideway slide opening of the window, the release handle or lever of the sash locks is adapted to be depressed by index to little fingers while the thumb presses on the underside of the proximal sash part to release the lock and slide the sash in one action.
However, the lever needs a substantial projection from the main latch body taking up space upward as well as toward the user for the bolt to create a proper lever or bolt action inside the latch device. This makes a bulky and unappealing lock structure that sticks into the viewing area of glass panes. Under the superficial problem lies a mechanical disadvantage to have to apply a large circular force to retract a locking bolt out of engagement with the counterpart of the other sash. For the internal actuator to move the bolt easily, the lever must extend above and beyond the latch device itself as long as possible. However, such deflecting lever movements produce a long-term adverse force against the secure joint between the latch device and sash during their combined lifetime because normally there is only a couple of fasteners to endure the releasing depressions at repeated window openings.
Hence, there is need for a small form factor sash lock that is not only visually unobtrusive but also mechanically stable and ergonomically fit.
In view of the foregoing, the object of the preset invention is to provide a compact sash lock that locks automatically and is squeezable directly over almost its entire body to actuate the release mechanism requiring no defecting actuators or handles.
Another object of the present invention is to provide a fail-safe locking mechanism for door and window sashes which is easy to manufacture.
A sash lock of the present invention is for use with door and window sashes and it has a base housing having an elongated planar bottom with two tubular posts located near farther lateral ends of the bottom to support fasteners for mounting the sash lock on a first inner sash member sliding in relation to a second outer sash member. Around the bottom of base housing an upright front wall with an elongated aperture and connecting side and rear walls encircle and a supporting topography is integrally formed inside of the walls.
A plunger is slidably supported in the base housing to move linearly under a forward bias and has cam surfaces at a rear end facing forwardly and a beveled lip portion at a front end protruding through the front aperture of the base housing.
A large button block extends laterally over the tubular posts of the base housing and has a beveled surface facing the cam surfaces of the plunger and two opposite end tunnels to fit snugly over the tubular posts for maintaining linear translations perpendicular to the moving direction of the plunger under an expansive bias for normally pushing the button block away from the base housing in cooperation with the biased counteraction of the cam surfaces of the plunger. The button block has a height greater than that of the surrounding walls of base housing. Then, a top housing is fastened to the base housing to enclose the plunger and button block allowing them to move within the respective ranges of translation.
The sash lock further comprises two identical holes formed in the bottom of base housing at both sides of the aperture and a separate keeper for mounting on the second outer sash member. The keeper has a strike plate that extends in parallel with the front wall of base housing when it is mounted on the outer sash member, a beveled surface at a distal edge of the strike plate to face the beveled lip portion of the plunger, two opposite legs at a proximal edge of the plate to define a large rectangular notch into which the plunger protrudes, an L-shaped bracket joined to distal ends of the legs for supporting fasteners threaded though the second sash member and a double catch shaped to hook in the two bottom holes of the base housing as the plunger rides over the strike plate at the meeting of their beveled surfaces. Therefore, the lock can make a complete three dimensional locking engagement with the keeper until an inside occupant of the inner sash member gently grabs the inner sash and the button together to release the plunger and start sliding the sash at the same time.
The forward bias of the plunger and the perpendicular expansive bias of the button block are produced by two pairs of identical helical springs held in the respective positions at first ends by topographic peaks and valleys of the base housing and complementary protrusions of the top housing and at the opposite second ends through insertion into slots formed in the plunger and the button block to keep a balanced actuation of the button block and plunger.
The plunger is kept in fore and apt translations in one plane by two side upright walls from the base housing and in another perpendicular plane by a flat area of the base housing bottom and complementary guide plates from the top housing.
Embodiments of the invention will now be described by way of example with reference to the accompanying drawings.
Similar reference numbers denote corresponding features throughout the attached drawings.
With reference to
Besides covering the interior room of a building from the elements, window 12 may obtain an improved security and aesthetic value from the sash lock 10 that may be installed initially at the time of building a house or home improvements wherein the owner may replace the old bulky locking devices with this mechanically reliable and yet more compact sash lock 10. With functionally and ergonomically advanced quality, the installed sash lock 10 will blend well with the surrounding window sashes and does not create a physical interference with handling the sashes in opening and closing the window while allowing an uninterrupted view due to its low and thin profile lodged within a small confinement between the two sashes 14 and 16. With the complete renovation from the known cam lock mechanisms, lock assembly 10 of the present invention has come to have no conventional deflected lever projection any more. Instead, it provides an oversized push button 22 to be depressed directly toward lower sash 14 in its longitudinal direction so that the user intuitively grabs button 22 together with the underlying sash 14 to lift the same in the normal course of opening the window 12. No extra manipulations to release sash lock 10 are necessary. Because button 22 is depressed within the area of latch unit 11 of the sash lock 10 and in direct alignment with lower sash 14 the attachment of latch unit 11 to sash 14 stays firm over long time.
Facing opposite to lower sash 14, the upper sash 16 has a horizontal upper groove 24 for receiving a spring-loaded plunger 26 of latch unit 11 through the interlocking keeper 32, which is affixed into groove 24 and provides a beveled surface 34 for interacting with plunger 26 and a double catch 36 for immobilizing latch unit 11 and lower sash 14 completely.
Upper sash 16 may be stationary encasing upwardly extending glass panes 38 and a sealing 40 between the panes 38 although mechanisms are known to inwardly swivel and/or slide up down both sashes 14 and 16. In the double-hung type window 12 illustrated, latch unit 11 may be mounted on the top middle surface of lower sash 14. Along the outer side of lower sash 14 extends a downward lip 42 for mating with a U-shaped interlock 44 of the meeting rails made of sashes 14 and 16 in order to provide the preliminary security as well as weather sealing. The plunger 26 may be made of zinc. The metallic plunger 26 has a hardness, which provides wear-resistance to the repeated engagement with keeper 32 or the upper sash 16 at the groove 24 in case keeper 32 is not present.
The housing 50 and the rest associated parts constituting latch unit 11 are formed symmetrical with reference to the frontal meridian line (not marked) of the unit 11 in order to keep balanced latching actions in cooperation with the similarly symmetrical keeper 32. Mounted on the bottom 52 of base housing 50 is the twin cam plunger 26 adapted to slide horizontally through housing 50 within a straight track formed by two side upright walls 54 distanced equally from the meridian line of unit 11 as better shown in
Plunger 26 is generally U-shaped with two legs 56 extending toward the interior of housing 50 and terminated by feet 58, respectively. Each of the feet 58 has a top cam face 60 to be actuated by a vertical downward depression to provide a retracted position of plunger 26. The feet 58 of plunger 26 are connected by a lip portion 62, which is movable between an extended position shown in
The top surfaces of plunger 26 are flat save cam faces 60 and a selected cutout 72 that reduces the weight of plunger 26. Of the bottom surfaces of plunger 26, lip portion 62 has a beveled surface 74 around its lower front corner for cooperating with the corresponding surface of keeper 32. Then, two expansion springs 76 are inserted into the legs 56 through bores 78 that extend almost the length of the legs 56, respectively as shown in cross section in
In addition, two screw holes 84 are formed in bottom 52 near its lateral edges to permit two assembly screws 86 to be respectively driven up to downwardly extending mounting posts 88, which are integrally formed on upper housing 82 to permanently enclose the various components of latch unit 11 within a partially closed space between the two housing members 50 and 82.
The separately formed button 22 is responsible to activate plunger 26 by pushing back the cam faces 60. Button 22 may be made of a single metal block spanning almost the entire length of the housing 50 or 82. Button 22 is elongated laterally and relatively higher than wall 66 of base housing 50. In addition, button 22 has twin vertical tunnels 90 through its opposite end legs 91 for snuggly receiving two upright guiding posts 92 that double as screw supports for two mounting screws 94, which can be easily driven from above the completed sash lock 10 through posts 92 and then into lower sash 14. Each post 92 may have a funnel-shaped top surface to conform to the conical surface of screw 94 for a firm engagement.
At the same time, button 22 is held in a balanced posture by two upright suspension springs 96, which are anchored on round columns 98 formed on housing bottom 52 inwardly of guiding posts 92. The combined expansive force of springs 96 is determined to be just enough to counter the gravity at button 22 plus a relaxed exertion of manual push to ensure a pleasant manual actuation of button 22 as well as the uninterrupted automatic advancement of plunger 26 into the locking position by the horizontal plunger springs 76.
Button 22 also has left and right block sections 99 with respective blind holes 100 formed concentrically to columns 98 for holding upper portions of springs 96 so that springs 96 are secured between base housing 50 and button 22, which are always urged away from each other. Extending lengthwise underside of button 22 is a push blade 102 beveled for engaging both cam surfaces 60 at the same time to retract plunger 26 when button 22 is depressed.
Additionally, in the front middle area of button 22 there is formed a stern 104 that conveniently enlarges the area of button 22 to be contacted by the operator's hand and helps assist button 22 in maintaining its vertical translations along the guiding posts 92 as stem 104 keeps sliding contacts with upper housing 82 through its large opening 106 that conforms to the general circumferential profile of button 22 as shown in
Button 22 has two side bumps 112 on its front vertical walls 114 (
The thus constructed button 22 can hold itself in the assembled position in base housing 50 while the respectively spring loaded plunger 26 and button 22 are both encased by upper housing 82, which is secured using the assembly screws 86. Depending from the bottom surfaces of button 22 are a pair of guide plates 122 for holding down legs 56 of plunger 26 and another pair of rear stakes 124 to run over springs 76 placed between the open blocks 79 and 80 to secure the distal ends of springs 76. In order to facilitate assembly of upper housing 82 onto base housing 50, upper housing 82 has an alignment means of discrete downward lips 126 along the lower peripheral surfaces to fit snugly in the interior of surrounding walls of base housing 50 which comprises front wall 66, two side walls 128 and a rear wall 130.
Keeper 32 comprises an upright strike plate 132 having beveled surface 34 at the top edge and two opposite legs 134a, 134b at the bottom to define a large rectangular notch 136 into which plunger 26 clicks to keep latch unit 11 in a locked position automatically after plunger 26 rides over strike plate 132 at the meeting of their beveled surfaces 74 and 34. Extending integrally from the bottom of strike plate 132 is an L-shaped bracket portion 138 with at least two screw slots 140 for fastening plate 132 to upper sash 16 shown in
The double catch 36 comprises two upturned hooks stemming from legs 134a and 134b. When latch unit 11 goes into the locked position, double catch 36 comes to penetrate into the holes 70 of base housing 50 in order to further lock the unit 11 and sash 14 horizontally over the primary vertical latching engagement of plunger 26. Therefore, latch unit 11 can make a complete three dimensional locking engagement with keeper 32 until an inside occupant of the window 12 gently grabs the lower sash 14 with button 22 to release plunger 26 and start sliding the sash 14 at the same time.
Therefore, while the presently preferred form of the sash lock has been shown and described, and several modifications thereof discussed, persons skilled in this art will readily appreciate that various additional changes and modifications may be made without departing from the spirit of the invention, as defined and differentiated by the following claims. For example, as a matter of simply changing the orientation, the same sash lock 10 may be mounted to a laterally sliding sash door at the interior side following the illustrated mounting method in order to obtain the equally improved benefit of the present invention.