The present invention relates generally to the field of sound management and sound localization involving locating sound sources in one or more defined area. More particularly, the present invention relates to methods and arrangements for improved techniques for sound management and sound localization, and providing for the specifics of a predetermined location's physical layout, a listener's static or dynamic location, and also for differentiation as between electronically-generated sound and human sound (e.g., vocal emanations, talking, etc.).
There are numerous implementations to using microphones in predefined areas to improve sound quality. For instance, residential entertainment systems employ a central microphone to listen for each speaker arranged in a room by a residential user when the entertainment system is first implemented; in such a system, the microphone listens for sounds from each speaker and a processor determines an approximate physical arrangement. From the determined arrangement, the entertainment system adjusts output characteristics for each speaker such that an optimized sound quality can be experienced by the user at a predetermined location, typically that of where the microphone is placed during testing. Other systems may employ an array of microphones (directional, omnidirectional, etc.) to achieve a similar result in a more complex setting.
While microphones may be designed and utilized in arrangements to approximate physical locations of speakers in a predetermined area, the precise location of each speaker is often difficult to obtain. Further, because a predetermined area is often more complex than a simple box arrangement, many factors and characteristics about the predetermined area are often not known or accounted for in the determination of speaker locations. For instance, few locations, such as rooms or arenas, have a specific or pure geometric configuration; often there are cut-outs, heating and ventilation encumbrances, and other structural inclusions that can impact the transmission of sound waves across and throughout the area. This typically may also result in human error of speaker placement or may result in a contractor's placing speakers in locations that may be more convenient for structural placement than for sound quality. Additionally, often these systems result in a single preferred point of sound quality which can be limiting to multi-users in larger venues, residential situations where the furniture layout is modified, and even situations where the listener moves within a room, for instance. Further, these systems typically account for sound waves associated with the electronic sound generated from the system.
Therefore it is desired to have an improved technique for sound localization that provides for the specifics of a predetermined location's physical layout, a listener's static or dynamic location, and also for differentiation as between electronically-generated sound and human sound (e.g., vocal emanations, talking, etc.). Further, it is desired to have such an improved technique that additionally provides for identifying one or more person's presence in a predetermined area using voice recognition technology. The present invention addresses such needs.
The present invention fulfills these needs and has been developed in response to the present state of the art, and in particular, in response to the problems and needs in the art that have not yet been fully solved by currently available technologies.
One embodiment of the present invention provides for A method for improving sound localization and detection, comprising: inputting a predetermined location's dimensional data and location reference data for one or more detection devices in the predetermined location; identifying a sound detected by the one or more detection devices; and, providing sound localization information to one or more receiving sources; wherein sound localization information includes position and location information in relation to the one or more detection devices and the detected sound in association with the predetermined location's dimensional data.
Another embodiment of the present invention provides for A computer program product stored on a computer usable medium, comprising: a computer readable program means for causing a computer to control an execution of an application to perform a method for improving sound localization and detection including: inputting a predetermined location's dimensional data and location reference data for one or more detection devices in the predetermined location; identifying one or more sounds detected by the one or more detection devices; and, providing sound localization information to one or more users;
A further embodiment provides for a system for improving sound localization: comprising one or more detection devices arranged in a predetermined location directly associated with a physical dimensional representation of the location, one or more processors for processing detecting one or more sounds in the predetermined location in relation to reference sound characteristics and for mapping the detected one or more sounds in relation to the predetermined location's dimensional data for display; one or more detection devices in communication with the one or more processors; an analyzer that correlates a time difference of arrival of a detected sound and a reflected sound; and a communication interface for providing sound localization information for display.
In yet another embodiment, the present invention is a method for defining a reference sound position and producing an indicia proximate thereto in relation to one or more sound characteristics at a predetermined location. The method preferably includes: defining at least one sound characteristic to be detected; detecting at least one target sound in relation to the at least one sound characteristic; and determining the referenced sound position in relation to the detected target sound. Further the method provides for producing the indicia proximate to the determined referenced sound position.
In a further embodiment, the present invention is a method for determining a reference sound source location and performing an indicia proximate to the reference sound location, in relation to one or more targeted characteristics of one or more sound sources in a predetermined sound environment. The method includes defining one or more target sound characteristics being one or more of frequency range, decibel level, pitch range, loudness range, directional location, and period of time; defining one or more characteristics of the indicia as being one or more of visible, audible, and/or tactile; detecting at least one target sound in relation to the one or more target sound characteristics in the sound environment; and, determining the referenced sound source location in relation to the detected target sound. Preferably the method also includes assigning the indicia to be performed proximate to the determined referenced sound source location.
In a further embodiment, the present invention is a system for determining a reference sound source location and displaying one or more images proximate to the reference sound location, in relation to one or more predetermined performance characteristics for a sound environment. Preferably, included in the system is a sound detection device for detecting one or more sounds in the sound environment in relation to one or more predetermined performance characteristics; a processor for processing detected sound information in relation to reference sound source location of the sound environment and generating one or more images for display proximate to the reference sound source location; and an image display device for displaying the generated one or more images proximate to the reference sound source location.
As used herein, the term microphone is intended to include one or more microphones which may include an array.
Other aspects and advantages of the present invention will become apparent from the following detailed description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
The present invention relates generally to the methods and arrangements for improved techniques for sound localization that provides for the specifics of a predetermined location's physical layout, a listener's static or dynamic location, and also for differentiation as between electronically-generated sound and human sound. The determination and processing, as used herein, may include the use and application of voice recognition technology and software. The present invention further provides for identifying one or more person's presence in a predetermined area using voice recognition technology.
The following description is presented to enable one of ordinary skill in the art to make and use the invention and is provided in the context of a patent application and its requirements. Various modifications to the preferred embodiment and the generic principles and features described herein will be readily apparent to those skilled in the art. Thus, the claimed invention is not intended to be limited to the embodiment shown but is to be accorded the widest scope consistent with the principles and features described herein.
Further aspects of the claimed invention include a compact array of 4 microphones placed one over three, spaced inches apart. Such an arrangement is design to fit on a television, computer screen, or embedded in a third party display, although other arrangements are possible. Additional embodiments include a compact array of multiple microphones (e.g., six microphones) split into groups (e.g., two of three microphones) spaced apart (e.g., within inches of each other). As described in further detail below, embodiments of the claimed invention programmatically incorporate dimensions of a screen, the arrays relation to the screen, and using such dimensions to effect animations appearing on the screen, such as turn the faces of CGI characters on screen to look out into a room at the people speaking to the device.
Turning now to the figures,
From
Another characteristic of sound is related to its loudness where loud sounds result from a larger pressure variation which dissipates over distance. As each sound may travel across a room at the speed of sounds, the pressure variation produced by each sound may be affected by competing sounds, time, and the distance the sound travels. In such a setting, determining a particular center point for an aggregated set of sound sources or for a single sound source surrounded by competing sound sources, presents a challenge.
For instance,
Further,
Similarly, an event producer may desire to align a visual feature, for a listener's enjoyment, with specific characteristics related to the sound, sound source and environment of the performance, where accuracy of determining an aligned association between a sound source location and timing information of sounds being or to be emanated from one or more sound sources is required.
Further from
At 630, an effect is identified for use by the present invention. As used herein, the term indicia is intended to be far reaching where an indicia may be visual, audible or tactile in manner. For instance, an indicia may include but not be limited to a visual effect, audible effect, tactile effect, visual image, cartoon, character representation, video, anime, hologram, light beam, projecting fire, animation, and combinations thereof, for display in relation to a detected target sound or determined reference sound location.
Further an indicia may one or more images for instance where each image or motion image is displayed at a particular predetermined time or in response to a particular predetermined sound characteristics, or both. For example, in one embodiment, a visual indicia is one or more of a holographic image displayed in relation to a determined reference sound position at intervals defined by one or more predetermined times. By further exemplar, where the environment a stage of a band, the indicia may be a hologram or a holographic image of a person, anime, icon, etc., which may have movement associated with the imagery or may have movement in response to sounds detected by the present invention.
Further from
At 650, positional locations of the identified sound sources are determined using output of the sound sensing devices as input to a first location processor of the present invention. In one or more preferred embodiments, an array of microphones set at a fixed distance from a target reference point are utilized as sound sensing apparatus. Output from the microphone array is provided as input to the first location processor. The first location processor receives the array information and determines a first location of the targeted sound source, at a first instance in time.
For instance, in a further preferred embodiment, a microphone array of 30 microphones are set along a common x-axis reference plane in relation to the sound source's target reference frame. When the sound source transmits the sound to be sensed by the present invention, the sound is received non-uniformly by the microphone array. Since each microphone of the array is at a fixed distance in relation to one another and to the sound source target reference frame, the present invention can calculate a location position of the sound source target, at the time, t1, of the sound transmission. The first location processor of the present invention then determines a first location in relation to the target reference frame at t1.
A further embodiment includes the use of multiple microphone arrays where each array may vary in the number of microphones a part of the defined array and the location of each array in relation to the target reference frame may also differ. For this embodiment, when the sound source transmits the sound to be sensed by the present invention, the sound is received non-uniformly by the plurality of microphone arrays. Since each microphone of each array is at a fixed distance in relation to one another, to each array, and to the sound source target reference frame, the present invention can calculate a location position of the sound source target, at the time, t1, of the sound transmission.
In a further embodiment, the arrays are positioned multi-dimensionally around the target sound source. The first location processor of the present invention then determines a first location in relation to the target reference frame at t1.
It will be appreciated that in each of the referenced embodiments above, the positional location of the targeted sound source can be identified with particular accuracy.
Continuing from
At 780, the process re-evaluates the determined sound source using the predefined characteristics in accordance with steps 740-770 for time periods following the initial time period of t1. Accordingly, for t1+1, at 740, using the sound target characteristics defining the sound and the defined sound sources to be targeted, sound sources are identified within the environment using sensing apparatus of the present invention for the next time period. The process continues until 770 where the visual effects may be mapped and displayed in relation and proximity to the reference sound source based on determined and identified sound information and indicia for time t1+1. Accordingly, the process may repeat for additional time periods.
Interactively, the present invention is further able to provide for having a facial indicia of 910 having limited or no action until the detection of a particular sound or suite of sounds in relation to one or more sound characteristics. Upon detection of such target sounds using the present invention, the indicia of 910 may change by image or motion in the display such that the face may turn towards the reference sound location. For example, if a sound were detected to the left of the front facing indicia of 910, the face may then morph so as to continue to appear to “look” towards the reference sound location. In so doing, the 910 forward face transitions to the 930 face looking right (or the face's left) and toward the detected sound source. The face indicia 930 would continue until a future time interval or until a period in which the detected sound ceases. If the detected sound were to cease, the face indicia 930 may be caused to return to the 910 forward facing look.
From
From
Memory elements 1204a-b can include local memory employed during actual execution of the program code, bulk storage, and cache memories that provide temporary storage of at least some program code in order to reduce the number of times the code must be retrieved from bulk storage during execution. As shown, input/output or I/O devices 1208a-b (including, but not limited to, keyboards, displays, pointing devices, etc.) are coupled to the data processing system 1200. I/O devices 1208a-b may be coupled to the data processing system 1200 directly or indirectly through intervening I/O controllers (not shown).
Further, in
Additionally, in one or more preferred embodiments, the data processing system 1200 of
In one or more preferred embodiments, software operative for the present invention may be an application, remote software or operable on a computer, smartphone, or other computer-based device. For instance, sound detected from a sound source such as iphone may be used with the present invention where software of the invention is arranged with a microphone array and acoustic cameras to detect sound sources from the iphone and display a visual image at the iphone in accordance with one or more embodiments of the present invention. It is envisioned that the present device may be used in most any environment and application including those involving but not limited to rock performance, video performance, theater, characterization and/or theatrics involving a live/dead performer, cartoon applications, interactive electronic and virtual forums, homeland security needs, security residential, etc.
Further from
Further, in
At 1450, positional locations of the identified sound sources are determined. In one or more preferred embodiments, the location may be a two axis coordinate or a three-dimensional coordinate. Similarly, additional processing by the present invention may provide conversion processing for two-dimensional location information to be converted to three-dimensional information. At 1460, the location of the identified source of target sound is determined. The process continues until 1470 where the visual effects are arranged in accordance with the user defined characteristics and are mapped in relation and proximity to the reference sound source based on determined and identified sound information and visual image data and preferences. At 1480, the visual image to be displayed is processed and arranged for display by the image projection system of the present invention. Using the present invention, the projection may display an image directly, indirectly, proximate to, distal from, at, towards or across a target location, whether two-dimensional or three-dimensional.
Accordingly, the process is then repeated at 1490 for t1+1 (for additional time periods). At 1490, since the characteristics are a function of time, new definitions may be set forth at 1410, or at other steps of the process if no changes occur with prior steps, and the process will continue with defined characteristics, acquired data, processed data, and data readied for output in accordance with the present invention, and also preferably, as a function of time for a time period following.
From
In one or more embodiments of the present invention, a determination is made from the blueprints as to where sound detection, monitoring, and/or emanation is sought. For instance, from
Microphones are placed in each room that is desired to have sound detection, monitoring and/or emanation associated with it. It will be readily recognized that it may be advantageous to place one or more microphones in each room identified on a blueprint, depending on the specific need or situation. The placement of the microphones are then determined where each microphone's 2-D and 3-D coordinates are actually determined by physically measurement or virtually determined via one or more associated processors detection of sound waves transmitted for receipt by the microphones, in relation to each respective microphone. These determined locations of each microphone are directly associated with the blueprints such that each microphone has a set of blueprint coordinates associated with it.
From
From
From
At 1940, a system and method in accordance with the present invention then determines the location of all microphones within the array in the predetermined location using reflected sound determination techniques and the blueprint coordinates of at least one microphone in the predetermined area. Preferably, using reflected sound to measure the difference in time between the sound detected and reflected sound at each active microphone provides for the processing by a system and method in accordance with the present invention to determine the X, Y and Z coordinates of the microphones in a predetermined location. Preferably, a system and method in accordance with the present invention determines the location of all microphones at 1940 using the data previously stored from the blueprint and microphone locations as well as via reflected sound techniques; operationally this approach is advantageous as often only a single microphone's location may be precisely known or microphones (and other detection devices) may be moved from time to time for convenience.
At 1950, a system and method in accordance with the present invention maps one or more detected sounds in relation to the blueprint data for the predetermined location, using time delay of arrival (TDOA) techniques. At 1960, a system and method in accordance with the present invention provides information determined to a receiving source through a communication mechanism such as a wireless communication system or via a wired system. A system and method in accordance with the present invention is not limited to a particular manner of communicating the determined information to a receiving source.
At 1960, a system and method in accordance with the present invention has already determined what sound and type of sound has been determined (i.e., human, electronically-generated, etc.). Preferably the determination of the type of sound, as human or non-human, is determined by a system and method in accordance with the present invention comparing sound characteristics to the sound(s) detected by the one or microphones in which a determination of the sound being electronically-generated or not electronically-generated can be readily determined.
At 1970, where a voice sound has been detected, a system and method in accordance with the present invention arranges directional microphones which may be present in the predetermined location to be focused towards the detected sound. At 1972, a system and method in accordance with the present invention further determines, and may additional detect additional sounds, whether the detected sound is a command or is associated with the form of question, based on characteristics of the detected sound. For instance, a command may include, but not be limited to, words such as ON, OFF, OPEN, CLOSE, etc., and may be in any language. The commands, general or specific, may be part of a database which is readily accessible by a system and method in accordance with the present invention. Similarly, vocal patterns may be part of a database accessible by a system and method in accordance with the present invention in which voice sounds detected may be determined by a system and method in accordance with the present invention to form a question in which a response is being sought. A system and method in accordance with the present invention, in one or more preferred embodiments, may also include the capability to directly or indirectly provide an answer to the question in the form of an action, a text, a provision of a webpage or link, an electronically-generated response, or similar, at 1974; additionally, a system and method in accordance with the present invention may be able to refer the question to a secondary source, such as a smartphone having a voice-activated operating system, so the secondary source can be responsive to the question.
In a preferred embodiment, a system and method in accordance with the present invention includes cameras and actuation devices (locks, motors, on/off switches, etc.) which are also present in the predetermined location and each have a blueprint coordinate set associated with them. At 1980, after the detection of a sound is identified, an actuation device can be initiated to be actuated in response to the sound detected, such as turning a camera towards the sound source and activating the camera to provide, record, transmit, and otherwise provide imagery at 1982, wirelessly or wired.
At 1990, following the mapping of the information detected by a system and method in accordance with the present invention, the localization coordinates can be utilized by visual interfaces. For instance in one or more embodiments, once a sound is detected and the information is mapped, a mapping of a specific room and the location of the detection devices (microphones, cameras, etc.) may be sent to a user on a smartphone or via a URL link for access, where a user can view the activating and make appropriate decisions based on the information received.
At 1995, in one or more preferred embodiments, the detection device may include send, receive, transceiver capabilities. These capabilities may include but not be limited to Bluetooth for instance, where one or more detection devices in the predetermined location may further detect other connectable devices such that these other connectable devices may be connected to a system and method in accordance with the present invention and their features, characteristics and data gathering capabilities may also be used and/or integrated into a system and method in accordance with the present invention to further assist in sound detection, sound identification, sound localization, sound management, communications and dissemination.
A system and method in accordance with the present invention is also suited for rescue and emergency situations involving the safety of human life. For instance, an injured person in a predetermined location may call out within a specific room. The injured person's calling out is detected as human voice by a system and method in accordance with the present invention. In response to the call out by the injured person, the system may then communicate with the appropriate receiving source (user, emergency contact, police, computer, etc.) to communicate the information and/or the mapping of the information determined. In response, the receiving source can then act upon the information received.
Similarly, upon the occurrence of a fire, for instance, responding emergency personnel may receive a mapping of information in which coordinate sets of persons remaining in the building are identified and associated with their specific location in the residence or building. Additionally, whether a detected person is upright or in a downward location may also be determined as the three dimensional coordinate information is available for each person. Such information may assist emergency personnel is prioritizing a plan of action in response.
A system and method in accordance with the present invention provides processing, via one or more processors, to detect and determine one or more sounds from one or detection devices in communication with the one or more processors. The processing, in one or more preferred embodiments also provides for noise cancellation techniques and the cancelling of reflected sounds and white noise that are not a target of detection. The one or more processors may also be in communication with one or more connectable devices as well and is envisioned to be integrated with smart homes, intelligent systems and the like.
It will be appreciated that a system and method in accordance with the present invention may be integrated and adapted to work with a method for defining a reference sound position and producing an indicia proximate thereto in relation to one or more sound characteristics at a predetermined location, such as that disclosed in the related U.S. application Ser. No. 13/782,402, entitled “System and Method for Mapping and Displaying Audio Source Locations”. Preferably, the combined method includes: defining at least one sound characteristic to be detected; detecting at least one target sound in relation to the at least one sound characteristic; and determining the referenced sound position in relation to the detected target sound, associating the detected sound with the predetermined location's dimensional details and displaying the detected one or more sounds in relation to the predetermined location's dimensions.
Memory elements 2004a-b can include local memory employed during actual execution of the program code, bulk storage, and cache memories that provide temporary storage of at least some program code in order to reduce the number of times the code must be retrieved from bulk storage during execution. As shown, input/output or I/O devices 2008a-b (including, but not limited to, keyboards, displays, pointing devices, etc.) are coupled to the data processing system 2000. I/O devices 2008a-b may be coupled to the data processing system 2000 directly or indirectly through intervening I/O controllers (not shown).
Further, in
Additionally, in one or more preferred embodiments, the data processing system 2000 of
For instance, the data processing system 2000 may include a plurality of processors at 2002, wherein each processor may pre-process, process or post-process data (such as but not limited to detection device information, data and sensor data) that is received or transmitted in relation to the detection devices, the connectable devices and other data gathering devices in relation to the predetermined location and association with sound detection of a system and method in accordance with the present invention.
The plurality of processors may be coupled to memory elements 2004a-b through a system bus 2006, in respect to their processing with a system and method in accordance with the present invention. A plurality of input/output or I/O devices 2008a-b may be coupled to the data processing system 2000 directly, in association with a respective processor, or indirectly through intervening I/O controllers (not shown). Examples of such I/O devices may include but not be limited to microphones, microphone arrays, acoustic cameras, sound detection equipment, light detection equipment, actuation devices, smartphones, sensor-based devices, etc.
As shown in block 2210, flowchart 2300 illustrates a process according to embodiments herein of connecting and using a small hardware device (such ash the device shown in
According to block 2220, such a device may be physically mounted or embedded to 2D, 3D, or holographic display. At the same time, it is hardwired or wirelessly connected to another computer processor that controls imagery, cartoons, light, or any other visual display that may reveal where sound occurs in real time.
According to block 2230, a computing device (as shown in
According to block 2240, once the device is setup correctly, when sound occurs within range of the microphones, sound will be captured by the six microphones and sent to the firmware via the audio processors.
According to block 2250, the firmware will then process the time delay of arrival of the sound waves hitting the microphones using an algorithm to determine where the sound is occurring relative to the display. This may be used to control imagery like such as a CGI face looking from the display towards the person speaking in proximity to said display.
According to block 2260, the firmware will then provide these coordinates to the connected computer in the form of either vector 2 or vector 3 coordinates to be leveraged by content creators.
According to block 2270, the firmware will also run noise cancellation algorithms to determine if the sound is that of a human and clean up and send voice packets over the Internet. The device will function as a very powerful microphone able to beam form in three dimensions. These voice packets will be used for voice recognition either via firmware on the device or third party libraries over the Internet.
As shown in block 2310, flowchart 2300 illustrates a process according to embodiments herein of connecting and using a small hardware device (such ash the device shown in
According to block 2320, such a device may be physically mounted or embedded in 2D, 3D, or holographic display. At the same time, it is hardwired or wirelessly connected to another computer processor that controls imagery, cartoons, light, or any other visual display that may reveal where sound occurs in real time
According to block 2330, a computing device (as shown in
According to block 2340, once the device is setup correctly, when sound occurs in front of the device, sound will be captured by the four the microphones and sent to the firmware via the audio processors.
According to block 2350, the firmware will then process the time delay of arrival of the sound waves hitting the microphones using an algorithm to determine where the sound is occurring relative to the display. This may be used to control imagery like having a CGI face look from the screen towards the person speaking in front of of the screen and device.
According to block 2360, the firm ware will then provide these coordinates to the connected computer in the form of either vector 2 or vector 3 coordinates to be leveraged by content creators.
According to block 2370, the firmware will also run noise cancellation algorithms to determine if the sound is that of a human and clean up the single for VOIP use. The device will function as a typical computer microphone.
According to block 2380, the firmware will also run voice recognition algorithms to determine phonemes at the very least, but future more powerful embodiments will be able to analyze speech in multiple languages for meaning/definition.
In one or more preferred embodiments, software operative for a system and method in accordance with the present invention may be an application, remote software or operable on a computer, smartphone, or other computer-based device. For instance, sound detected from a sound source such as a detection device (e.g., microphone array) may be used with a system and method in accordance with the present invention where software of the invention is arranged to detect sound sources from the detection devices, determine the type of sound detected, activate other detection devices, determine the detected sound or sounds location in relation to the dimensional data of the predetermined location, and provide the processed determinations as sound localization information that is available as text, hyperlink, web-based, three-dimensional or two-dimensional imagery, etc. A system and method in accordance with the present invention is capable of providing the visual image, including the mapping of the sound localization details, to a remote device or via a linked display, in accordance with one or more embodiments of the present invention. It is envisioned that the present device may be used in most any environment and application including those involving but not limited to entertainment, residential use, commercial use, emergency and governmental applications, interactive electronic and virtual forums, homeland security needs, etc.
In a further arrangement, an acoustic camera and video cameras may be used as additional detection devices or as connectable devices.
The system, program product and method provides for improved sound localization that provides for the specifics of a predetermined location's physical layout, a listener's static or dynamic location, and also for differentiation as between electronically-generated sound and human sound. A system and method in accordance with the present invention further provides for identifying one or more person's presence in a predetermined area using voice recognition technology.
In the described embodiments, the system and method may include any circuit, software, process and/or method, including an improvement to an existing software program, for instance.
Although the present invention has been described in accordance with the embodiments shown, one of ordinary skill in the art will readily recognize that there could be variations to the embodiments and those variations would be within the spirit and scope of the present invention, such as the inclusion of circuits, electronic devices, control systems, and other electronic and processing equipment. Accordingly, many modifications may be made by one of ordinary skill in the art without departing from the spirit and scope of the appended claims. Many other embodiments of the present invention are also envisioned.
Any theory, mechanism of operation, proof, or finding stated herein is meant to further enhance understanding of the present invention and is not intended to make the present invention in any way dependent upon such theory, mechanism of operation, proof, or finding. It should be understood that while the use of the word preferable, preferably or preferred in the description above indicates that the feature so described may be more desirable, it nonetheless may not be necessary and embodiments lacking the same may be contemplated as within the scope of the invention, that scope being defined by the claims that follow.
This application is a continuation application of U.S. patent application Ser. No. 15/346,270, filed on Nov. 8, 2016, which claims the benefit of U.S. Provisional Patent Application No. 62/253,065, filed on Nov. 9, 2015, entitled “COMPACT SOUND LOCATION MICROPHONE,” claims the benefit of U.S. Provisional Patent Application No. 62/330,738, filed on May 2, 2016, entitled “SPLIT COMPACT MICROPHONE ARRAY” and further claims the benefit of U.S. Provisional Patent Application No. 62/330,964, filed on May 3, 2016, entitled “COMPACT SPLIT MICROPHONE ARRAY,” all of which are incorporated herein by reference in its entirety. This application is related to U.S. patent application Ser. No. 14/162,355 (Attorney Docket No. 5227C) filed on Jan. 23, 2014, entitled “SYSTEM AND METHOD FOR MAPPING AND DISPLAYING AUDIO SOURCE LOCATIONS,” and U.S. Pat. No. 8,704,070 (Attorney Docket No. 5227P), issued on Apr. 22, 2014, entitled “SYSTEM AND METHOD FOR MAPPING AND DISPLAYING AUDIO SOURCE LOCATIONS,” and U.S. Pat. No. 9,042,563 (Attorney Docket No. 5379P), issued on May 26, 2015, entitled “SYSTEM AND METHOD TO LOCALIZE SOUND AND PROVIDE REAL-TIME WORLD COORDINATES WITH COMMUNICATION,” all of which are incorporated herein by reference in their entireties.
Number | Date | Country | |
---|---|---|---|
62330964 | May 2016 | US | |
62330738 | May 2016 | US | |
62253065 | Nov 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15346270 | Nov 2016 | US |
Child | 16502754 | US |