The invention relates to the field of devices that project a liquid in the form of droplets mixed with a stream of carrier air onto a target that consists of, for example, a plant mat, and it has as its object a compact spraying module. It also has as its object a system for spraying and controlling a number of such modules and a method for controlling the modules of such a system.
It can be applied in particular in the agricultural field for the treatment of field crops, tree farming, or wine-making. It will be described below for the sake of simplification in its application in the wine-making sector, requiring significant supplies of phytosanitary products. The supply of the latter in nature can generate over the more or less long term serious consequences on the health plane as on the ecological plane but also on the economic plane. These products are actually one of the primary sources of pollution of water, soil, and groundwater tables, and their inhalation and even their ingestion has irreversible consequences on the users' health. On the economic plane, apart from the high cost of products and their implementation, the ineffectiveness of a treatment can cause irreversible damage to the harvest.
In this context, over the past few years, public authorities have made the standards more stringent on treatment devices, imposing, for example in France, an obligatory technical monitoring of spraying devices every 5 years. Along another avenue, active materials identified as being the most dangerous are forbidden or their approved dose is reduced. It is clear that these standards will evolve continuously in the future and will therefore become even more stringent with regard to the regulatory situation of the machines and products. This evolution requires the design of new spraying machines making it possible to make judicious use of minimum doses of active material directed toward a specified plant target while limiting their energy consumption for preserving at the same time the environment, the health of the plants in question, but also that of the operators having to control such machines.
Known are multiple types of sprayers used in the wine-making industry for cover treatments or focused on the area of bunches of grapes, and in particular the following four types of sprayers: spray-jet, air-assisted, pneumatic and centrifugal.
All of these devices have in common projection onto the crushed vegetation (term used to define the liquid to be projected, generally consisting of a mixture of water and active material) that is transported in liquid form and under pressure in piping that ends in a spray nozzle. The pulp is micronized in droplets in the area of the nozzle and directed toward the vegetation by different means according to the technology of the spraying device. The nozzle comprises a calibrated jet, most often consisting of the opening formed in a small plate of slight thickness, this opening passing through the small plate that can have varied shapes (cylinder, prism, cone, . . . ) but of small size to be able to transform the pressurized liquid upstream into droplets downstream. The jet defines the flow rate of pulp that will be sprayed and the droplet size. This flow rate of pulp is not, however, controlled precisely because of depending in particular on the pressure conditions of the liquid upstream, different for each nozzle, because of being based on geometry and the length of piping between the pump and the nozzle, and the wear and tear over time on the jet due to the abrasion of its opening with passage of the products.
In the spray jet devices, in a general way comprising a number of nozzles for covering the zone to be sprayed, the pulp is transformed into droplets in the area of each nozzle by the combined effect of the pressure of the liquid upstream from the jet and the geometry of the jet, with this effect also communicating to said droplets a kinetic energy and a direction of their spraying. The droplets are thus projected directly into the ambient air generally in the form of a cone for spreading at a more or less large angle, depending also on the shape of the jet and the pressure of the pulp upstream from the latter. In contrast, the higher the pressure of the pulp, the higher the speed the droplets formed at the outlet of the jet will have, but then the smaller size they will be, limiting their kinetic energy and therefore their capacity to reach the leaves and the grapes, by adding the fact of their evaporation between the outlet of the nozzle and the targeted vegetation. The droplets can also be subjected to a significant drift from their path in the event of wind. It is also known in this type of device that a great variation in pressure generates only a small variation in flow rate, while making the droplet size vary significantly. This type of device then defines optimum operation between the pressure and the jet in the area of each nozzle that only allows little or no adjustment in the flow rate of pulp for spraying the targeted vegetation, i.e., the flow rate is not controlled upstream from the jet. The change in flow rate of pulp projected at the vegetation then makes it necessary to change all of the nozzles (or their jets) by human intervention that is long and labor-intensive and that requires that safety equipment be worn.
In the air-assisted devices, the pulp is always transported under pressure in the area of the nozzle with an effect similar to the spray jet devices. In this technology, however, a high-speed air stream (high flow rate of air at speeds on the order of 100 to 200 km/h) will surround the nozzle to carry the droplets to the vegetation, heightening the speed of the droplets to the targeted vegetation and promoting their penetration. This air stream is provided by a centralized ventilation system on the machine and will then be piped to each spray nozzle. Thus, with an air-assisted device, the droplet size is always determined by the combination of the pressure and the jet, but it is essentially the air stream in the area of the jet that will transport the droplets on a path that is oriented toward the targeted vegetation, by greatly reducing the sensitivity of said path to the influence of outside wind and by limiting the evaporation of the droplets during their travel.
However, in line with the spray jet technology, the flow rate in the area of each nozzle is given only by way of indication, is not controlled, differs from one nozzle to the next, and can vary only over a small flow rate range, requiring that the nozzles (or their jets) be changed to modify the flow rate of pulp to be sprayed. In addition, the air that is necessary to the composition of the air stream is generated in a centralized way and then distributed to the various nozzles through a circuit of long and complex piping generating significant losses of feedstock, air speeds that are different and not controlled from one nozzle to the next, as well as an overabundant energy consumption. The high-power turbines used here are in addition particularly noisy.
In contrast to air-assisted or spray-jet devices, the pneumatic devices form the droplets directly from an accelerated high-speed air stream in the area of the nozzle (generally from 300 to 500 km/h), called a spark gap here (often a simple jet). The pulp is brought under pressure into the area of the spark gap to form a vein of non-micronized liquid in the absence of the air stream. The high-speed air stream is accelerated in the area of the spark gap (for example, by Venturi effect) to generate the micronization of the liquid vein into droplets. The droplet size in such devices is linked to the speed of the air stream in close relation with the flow rate of the pulp in the area of the spark gap. A change in air speed is then always to accompany a change in flow rate and in a general way the jet of the spark gap, so as not to penalize the spraying quality. And conversely, a change in jet to modify the flow rate will also necessitate adapting the speed of the air stream. There also, the operating principle of these devices generates, like the technologies mentioned above, flow rates and air speeds that differ from one nozzle to the next resulting in the spraying in the area of the targeted vegetation, with a pulp flow rate that is given by way of indication and is not controlled. The generation of the air stream is also centralized there, a heavy consumer of energy and particularly noisy.
The major drawbacks of these first 3 technologies can be summarized as follows:
The centrifugal technology, which is the most recent in this field, makes it possible to solve a portion of the problems posed by the three other above-mentioned technologies.
The document FR 2 497 439 has as its object a spraying installation using the centrifugal technology, in which the droplets are formed by a rotary nozzle of large diameter, on the central part of which a jet projects the pulp to be sprayed. A collector in the form of a ring sector, with a fixed or adjustable angle, is attached opposite the periphery of the rotary nozzle, without contact with it, in such a way as to intercept the pulp that is sprayed into the sector corresponding to the collector and to limit the spraying zone to the part corresponding to the free sector of the collector. The droplets are formed here by exploding due to the centrifugal force of the liquid vein of pulp when it arrives at the end of the nozzle in rotation. This rotary nozzle technology has the advantage of spreading small quantities of pulp, quantities that in the other technologies would require considerably reducing the size of jets to obtain a low flow rate of pulp, by thus increasing the risk of the former being clogged. While using the same jet, the appropriate selection of the angle covered by the collector in ring sector form makes it possible to adjust the flow rate of pulp that is sprayed at the vegetation depending on the size of the open sector in the collector and therefore inevitably less than the flow rate of pulp entering the nozzle.
However, the installation of the document FR 2 497 439 has the following drawbacks:
Still in the centrifugal technology using rotary nozzles that have the effect of micronizing a liquid, i.e., a pulp in liquid form in droplets, the object of the document U.S. Pat. No. 6,152,382 is a modular spraying device that includes at least one spraying module that comprises an exhaust nozzle formed by a cylindrical tube that is open at its two ends, said exhaust nozzle generating a stream of carrier air generated by an axial fan positioned at one of its ends, said stream of carrier air acting at the outlet of the exhaust nozzle on a rotary nozzle, also known as a rotary atomizer, coming in the form of a conical part whose end goes beyond the outlet opening of the exhaust nozzle outside of the latter. Said stream of carrier air is, however, broken down into two laminar air streams, namely an axial laminar air stream around the rotary nozzle and oriented axially so as to distribute the pulp uniformly over a slight thickness of the conical part of the rotary nozzle and to communicate kinetic energy to the droplets generated by centrifuging at the end of the rotary nozzle in a predictable direction, and a helical laminar air stream organized around the axial laminar air stream, with the mixing of the two being performed between the outlet of the module and the plant mat, to make the droplets penetrate into all of the faces of the sheets of said plant mat. The pulp is transported in each module by an intake tube passing through the wall of the chamber of the corresponding module to emerge in the area of the conical outer surface of the rotary nozzle into a zone that is covered by the axial laminar air stream, from a central reservoir and by means of one or more pumps (one pump per ramp for spraying multiple modules) separated from the module that provides a flow rate that is given by way of indication in the area of each module as well as flow rate conditions that are similar from one module to the next. The flow rates in the area of each module are therefore not controlled and cannot be modulated in ranges that essentially differ from one module to the next.
In addition, with the type of device disclosed by the document U.S. Pat. No. 6,152,382, the pulp arrives on the conical surface of the rotary nozzle that is surrounded by the axial laminar air stream generating a draining by a combination of the effect of gravity and the suction generated by the laminar air stream in the area of the intake tube, followed by a pick-up of large drops in the axial laminar air stream, and even passing through the two successive laminar air streams to end outside of the targeted plant surface. Furthermore, the vortex effect of the helical laminar air stream makes the path of the droplets between the outlet of the module and the plant significantly longer, increasing the risk of the droplets drying during this travel, with the latter actually quickly losing the energy that is necessary for reaching the targeted plant. However, also, the means developed for generating each stream of air in a laminar way in the form of two sets of multilayer channels considerably increase the friction surface between the air and these channels and therefore the losses in feedstock inside the module, where the former are also heightened in the shearing zone of air generated at the interface between the two laminar air streams, outside of the module during the mixing between the two laminar air streams, but also during their interaction with ambient air at the module outlet. The electrical yield of the system is thus seriously affected. This system especially requires the installation of two motors per module to generate, on the one hand, the two laminar air streams, and, on the other hand, the micronization of the pulp, which has the result of increasing the weight, the space requirement, and the complexity of managing the system. Finally, the installation of solenoid valves at some distance from the module making it possible to distribute the pulp that arrives on the rotary nozzle does not make it possible, in the event that the supply of the pulp is cut off, to stop instantaneously the production of drops or droplets, taking into account the direct interaction of the axial laminar air stream on the arrival of pulp from the rotary nozzle and the inevitable suction by the axial laminar air stream of the quantity of pulp located between the solenoid valve and the end of the intake tube.
This invention has as its object to remedy at least one of these drawbacks by proposing a spraying module making possible the suction of ambient air and a liquid that comes from a reservoir to generate a stream of carrier air that can project said air stream mixed with said liquid at a controlled variable flow rate in the form of droplets at a target, with a high dynamic, an excellent energy yield, and a very low environmental impact.
Controlled variable flow rate is defined as the flow rate of a liquid obtained from a reservoir and provided by a liquid supply system under the control of and/or monitoring by an electronic intelligence, for example an electronic control and monitoring unit that operates on the basis of a microprocessor, making it possible to adjust a given flow rate according to a corresponding flow rate target and this independently of the pressure of the circuit.
Very low environmental impact is defined as the fact of being able to prevent the projection of pulp outside of the targeted vegetation, being able to spray the exact quantity of pulp by adapting during the spraying the pulp flow rate in a controlled manner based on the targeted vegetation, avoiding any loss of pulp through drainage on the ground, being able to stop the spraying of pulp instantaneously in the absence of vegetation, being able to limit the consumption of clear water for the pulp, or the cleaning of the system, and finally greatly limiting the electrical energy consumption that is necessary to the spraying operation.
For this purpose, the compact spraying module, according to this invention, for the spraying of a liquid in droplet form for the treatment of a target, such as, for example, a plant row, and designed to equip a spraying and control system that comprises a number of spraying modules and a control panel that makes possible the remote individual control of each spraying module, independently of the other modules, with said spraying module comprising a spraying unit comprising, on the one hand, an exhaust nozzle with an air inlet at one of its ends and an air outlet at its other end, with said exhaust nozzle surrounding, along its axis, an inner space that contains at least one spraying element, piping for the supply of liquid of the latter, a fan that can axially generate—in the inner space of the exhaust nozzle—a stream of carrier air around said spraying element to carry toward the target the drops that are created and propelled by the latter in said air stream, preferably in the inner space, and a fan drive system for driving said fan, and in that it also comprises:
This invention also has as its object a spraying and control system designed to be installed on board a machine or a movable unit, with said system comprising a number of spraying modules for the spraying of a liquid in droplet form for the treatment of a target such as, for example, a plant row, with said liquid coming from a reservoir, being characterized essentially in that it also comprises a control panel comprising an electronic central control unit and a man-machine interface, so-called MIMI, connected to the latter, with each spraying module consisting of a compact spraying module as defined according to this invention and in that the electronic central control unit is functionally connected to each spraying module in such a way as to make remote individual control of each spraying module possible, independently of the other spraying module(s), from said control panel to adjust individually the spraying and operating parameters of each spraying module.
This invention also has as its object a method for controlling a number of spraying modules of a spraying and control system for the spraying of a liquid in droplet form for the treatment of a target, such as, for example, a plant row, with said liquid coming from a reservoir, said spraying and control system being defined according to this invention, being characterized essentially in that it consists in controlling individually each spraying module, independently of the other spraying modules, from the control panel of said spraying and control system to adjust and/or monitor individually the operating and spraying parameters of each spraying module.
The invention will be better understood owing to the description below, which relates to a preferred embodiment, provided by way of non-limiting example and explained with reference to the accompanying diagrammatic drawings, in which:
The accompanying figures show a compact spraying module, according to this invention, for the spraying of a liquid in the form of droplets 18 for the treatment of a target 21, such as, for example, a plant row and designed to equip a spraying and control system that comprises a number of spraying modules and a control panel 16 making possible remote individual control of each spraying module, independently of the other modules, with said spraying module comprising a spraying unit 3 comprising, on the one hand, an exhaust nozzle 1 with an air inlet opening 1a at one of its ends and an air outlet opening 1b at its other end. It is also possible to see, in particular in
In accordance with the invention, the spraying element 30, 31 is adapted to transform the liquid into droplets 18 and to propel the latter into the stream of carrier air and preferably into the inner space 1c of the exhaust nozzle 1.
Still in accordance with the invention, such a module also comprises:
The liquid is also commonly called pulp in the wine-making trade.
The electrical energy source 22 can consist of, for example, an electric generator coupled to a movable unit 23 such as a towing vehicle, with the energy able to be distributed by an electrical supply network 40 (
The piping 8, 9, making it possible to supply with liquid the spraying element 30, 31 in the spraying unit 3, can be connected to the electric pump 11. The latter can be connected hydraulically, via a connecting interface 7 and a hydraulic connection 7b, to the reservoir 26 (see in particular
In a preferred embodiment, as can be seen in
The rotary atomizer drive system 4′, 4′a can comprise an electric motor 4′, preferably an electric motor without brushes, functionally connected to the electronic control and/or monitoring unit 17, and a drive shaft 4′a that can be driven in rotation around its axis X1 by said electric motor and can transmit the torque and the rotation to the rotary atomizer 30 (
In a preferred embodiment, the fan drive system 4, 4a and the rotary atomizer drive system 4′, 4′a can be provided in such a way as to form a single fan and rotary atomizer drive system 4, 4a, 4′, 4′a that is common to both the fan 2 and the rotary atomizer 30. Such a common fan and rotary atomizer drive system can comprise a single common electric motor 4, 4′, preferably an electric motor without brushes, a so-called brushless motor, functionally connected to the electronic control and/or monitoring unit 17 and a single common drive shaft 4a, 4′a that can be driven in rotation around its axis of rotation X1, X2 by said common electric motor and can transmit the torque and the rotation both to the fan 2 and to the rotary atomizer 30. The first and second axes of rotation X1, X2 can then be combined. Such an embodiment makes it possible to reinforce or to improve the compactness of the spraying unit 3 and the spraying module. The applicant carried out numerous tests showing that the range of variation of the rotation speed of the propeller 2a that generates the stream of carrier air, combined with the size of the droplets 18 obtained by the rotary atomizer 30 in this range, exhibited satisfactory adjustment characteristics and no common measurement with the existing technologies. Thus, the embodiment based on a drive system with a common electric motor has the effect of simplifying the embodiment and the management of the module while increasing its compactness and its reliability. It was also demonstrated that the rotary atomizer 30 had the capacity of transforming into droplets 18 a liquid flow rate that can vary over a very wide range of flow rate values, without a common measurement there also with the existing solutions, and with all of the droplets being mixed in this case in a fairly homogeneous way in the air stream without a noticeable loss of liquid through drainage. In addition, in the tests conducted in the wine-making industry, the applicant noted very significant savings in energy consumption compared to the main technologies used to date.
More particularly, it is possible to see, in particular in
If reference is now made to
As can be seen in
As can be seen in
As can be seen in
The channel for circulation of the air stream can then concentrically surround the fuselage 5 along the longitudinal axis X of the exhaust nozzle 1 and the spraying element 30 or 31.
In contrast, it is possible to see in
The connecting means 6 can also comprise electrical wires that make it possible functionally to connect the electronic control and/or monitoring unit 17 to the individual communication interface 20 that is functionally connected to the control panel 16 and in particular to the electronic central control unit 13.
Preferably, as can be seen in
The individual communication interface 20 can also be provided for the purpose of comprising a radiofrequency transmission circuit that makes possible the transmission by radiofrequency means of the communication signals that are necessary to the operation of the module.
In the state of operation of the spraying unit 3, the rotary atomizer 30, more particularly the periphery or the end 30b of the rotary receiving surface 30a, can thus be entirely surrounded by the stream of carrier air generated by the fan 2 in such a way as to be able to propel or to project all of the droplets into the space of the air stream, preferably inside the exhaust pipe 1 (see in particular
The spraying element 30 or 31 can preferably be placed close to the air outlet opening 1b.
Thus, the fact that the spraying element 30 or 31 forms a moving or stationary part of the fuselage 5 or falls within a part of its lateral surface or end, i.e., for example, that the periphery or the end 30b of the receiving surface 30a of the rotary atomizer 30 is part of the lateral surface 5a of the fuselage 5 or that the jet 31a is part of the end face of the fuselage 5, makes it possible, on the one hand, to promote the flow of the stream of carrier air around the spraying element 30 or 31 and to limit the number of obstacles in the stream of carrier air as well as the turbulence generated by the latter at the exhaust nozzle outlet 1, and, on the other hand, to facilitate the incorporation of the droplets 18 in the stream of carrier air to carry them to the target 21. The absence of deposition and liquid drops on the inner wall of the exhaust nozzle 1 at the module outlet also makes it possible to verify the integration of all of the droplets in the stream of carrier air.
It will be noted that the fuselage 5, outside of the section formed by the spraying element 30 or 31, can be made of several parts or sections that are assembled with one another, preferably in a removable or detachable manner, for example to be able to access various elements that are contained in the secondary inner space 5b of the fuselage 5 so as to carry out their changing or their maintenance (
The propeller 2a of the fan 2 generates the stream of carrier air during its rotation and by suction of the ambient air through the air inlet opening 1a.
Preferably, the first and second respective axes of rotation X1, X2 of the rotary atomizer 30 and the propeller 2a can be combined or essentially combined with one another, and, preferably, combined or essentially combined with the longitudinal axis X of the exhaust nozzle (
Preferably, the fan drive system 4, 4a and, if necessary, the rotary atomizer drive system 4′, 4′a can be housed in the secondary inner space 5b of the fuselage 5, so as to prevent the stream of carrier air from being disrupted by the presence of this or these drive system(s).
More particularly, if necessary, the brushless motor exhibits advantages of a fast rotation speed, preferably more than 15,000 rpm, with a low inertia to ensure fast changes in rotation speed and a low weight.
The fuselage 5 can comprise at least one cooling section surrounding the electric motor or motors 4 and being in contact with the stream of carrier air, with said section able to be made of aluminum or another material promoting cooling or limiting heating of the electric motor or motors 4 placed in this fuselage section 5.
Preferably, the spraying element 30, 31 can be provided in such a way as to be able to eject the droplets 18 in a transverse direction that is essentially perpendicular to the longitudinal axis X of the exhaust nozzle 1. If necessary, the receiving surface 30a of the rotary atomizer 30 can be provided for extending in a plane that is essentially perpendicular to the longitudinal axis X of the exhaust nozzle 1, so as to be able to eject the droplets 18 in said transverse direction.
In a preferred embodiment, the rotary atomizer 30 can have overall the shape of a disk or a truncated or conical part, and at least one of the outer faces of the disk or the truncated or conical part can form the receiving surface 30a (
The section of the fuselage 5 and/or the exhaust nozzle 1 can be variable, in dimensions and/or in shape, along its longitudinal axis, as can be seen in
The rotary atomizer 30 can be pierced centrally and axially by a bore 30c for making possible the passage of the drive shaft 4a making possible its rotation around the first axis of rotation X1 (
In a preferred embodiment of the piping 8, 9, it is possible to see, in particular in
If reference is made to
The high-speed rotation of the receiving surface 30a of the rotary atomizer 30 has the effect of distributing, outside of the stream of carrier air, the liquid received by the latter, up to the periphery or the end 30b of said receiving surface 30a, i.e., up to the or one of the edges forming its periphery or its end, where the liquid will be broken up into droplets 18 that will then be projected immediately into the stream of carrier air that surrounds the rotary atomizer 30 and in particular the periphery or the end 30b of its rotary receiving surface 30a.
If reference is made again to
Preferably, as can be seen in particular in
A passage bore 12c that allows the passage of the drive shaft 4a, which drives in rotation the rotary atomizer 30 (
The fuselage 5 extends longitudinally or axially between two ends, one of which, so-called distal end, is, in the mounted state in the exhaust nozzle 1, the farthest from the fan 2 or the closest to the outlet opening 1b, and the other, so-called proximal end, is the farthest from the outlet opening 1b. In a preferred embodiment of the axial or longitudinal position of the rotary section of the fuselage 5 formed by the rotary atomizer 30, the invention can provide that the rotary section can form the distal end of the fuselage 5 (
As can be seen in
In a first embodiment of the fuselage 5 combined with the rotary atomizer 30, as can be seen in
In a second embodiment of the fuselage 5 combined with the rotary atomizer 30 or the jet 31, the distal end of the fuselage 5 can end in an outer end face, if necessary through which the jet 31a passes, extending into a plane that is essentially perpendicular to the longitudinal axis of the exhaust nozzle 1 and that is rotated toward the air outlet opening 1b. Such an outer end face can form the receiving surface 30a of the rotary atomizer 30 or an end face that comprises the jet 31 (
As can be seen in particular in
As can also be seen in
In contrast, if reference is made to
Such a recovery device 14 can comprise a number of recovery elements 14a such as blades, each blade 14a able to extend between two end edges, one of which can be attached to the fuselage 5, i.e., on the outer face of its lateral surface, or wall, 5a, and the other can be attached to the exhaust nozzle 1, i.e., on the inner face of the latter. The majority or all of the recovery elements 14 can be made of a single part, for example in a way combined with a part of the exhaust nozzle 1 and a part of the wall of the fuselage 5a.
In an advantageous embodiment, as can be seen in particular in
Furthermore, if reference is made again to
In a preferred embodiment (
The attachment and the holding of the diffuser device 15 can be carried out, preferably, by attaching it onto the inner face of the exhaust nozzle 1 (
Such a spraying unit 3 makes it possible to obtain an effective combination of the injection of droplets 18, preferably in a plane or a projection surface that is essentially perpendicular to the longitudinal axis X of the exhaust nozzle 1, in a stream of carrier air with a high and suitable speed. Actually, if the speed of the stream of carrier air is too low, a portion of the droplets 18 is projected onto the inner wall of the exhaust nozzle 1, which generates drainage and a loss of liquid at the target 21, and if the speed of the stream of carrier air is too high, the brush formed by the former at the outlet of the exhaust nozzle 1 is then focused and narrow, which does not make possible a mixture of droplets in the entire air stream at the outlet of the exhaust nozzle 1. In this invention, the droplets 18 are projected into the stream of carrier air in a preferred way inside the exhaust nozzle 1, i.e., in its main space 1c, in such a way that their diffusion in the stream of carrier air is not disrupted by the outside atmosphere in contrast to, for example, the system described in the document U.S. Pat. No. 6,152,382.
If reference is made to
The microprocessor of the electronic control and/or monitoring unit 17 can be provided for the purpose of determining at least one of the following pieces of monitoring information:
The microprocessor of the electronic control and/or monitoring unit 17 can also be provided for the purpose of receiving from the electronic central control unit 13 at least one of the following pieces of set-point information:
The spraying module can also comprise a housing 19, adapted to protect the electronic control and/or monitoring unit 17, with said housing able to be placed inside or outside of the inner space 1c of the exhaust nozzle 1 by being integral with the latter or the support 10.
In contrast, the exhaust nozzle 1 can comprise a side wall 1d that extends longitudinally between its air inlet 1a and its air outlet 1b, and the housing 19 can be attached to the outer face of the side wall 1d of the exhaust nozzle 1 or can be integrated in said side wall.
The spraying module can comprise a casing 10 that can protect at least the spraying unit 3, the exhaust nozzle 1 and the electronic control and/or monitoring unit 17. Such a casing can advantageously form at least in part the support 10 for attaching the electric pump 11.
If reference is made in particular to
The accompanying figures, as can be seen in particular in
In accordance with this invention, such a spraying and control system also comprises a control panel 16 that comprises an electronic central control unit 13 and a man-machine interface 16a, so-called MMI, connected to the latter, with each spraying module consisting of a compact spraying module as defined according to the invention.
Still in accordance with the invention, and as can be seen in
Such a spraying and control system can comprise a central communication bus 25 that makes it possible functionally to connect each spraying module to the control panel 16.
In an embodiment of the communication, not shown, between the control panel 16 and the spraying modules, the control panel 16 can be provided for the purpose of comprising a radiofrequency central communication interface, and the individual communication interface 20 of each spraying module can consist of a radiofrequency communication interface in such a way as to make possible the individual control of each spraying module by radiofrequency means.
Still in referring to
The detection system 24 can comprise:
In a preferred embodiment of the presence detection means 24a, the former can consist of, for example, one or more detection sensors, for example of the ultrasound, laser or infrared type.
The MMI 16a can comprise a display screen 160a that is provided for the purpose of displaying in a visual manner at least one of the pieces of monitoring information and/or at least one of the pieces of set-point information as defined above, for the purpose of being able to monitor and track over real time the operation of each spraying module directly from the control panel 16. For example, such a display screen makes it possible to display the air speeds and the quantity of liquid sprayed by the spraying modules.
The MMI 16a can also comprise peripherals such as a joystick and/or push buttons that make it possible for the user to carry out various commands, adjustments or checks of the system, for example the adjustment of a manual or automatic mode of the system, the adjustment of the flow rate of liquid to be sprayed from some spray module or other that is selected or else the adjustment of the width of the row by selecting—based on this width—the number of spray modules to be started up.
The spraying and control system according to this invention can also comprise a calibration device of the electric pump 11 of each module that makes it possible to apply a correction factor on the electric pump 11 in question directly from the control panel 16 in such a way as to ensure the necessary precision of the flow rate of sprayed liquid.
Thus, in such a spraying and control system, the control panel 16, and more particularly its electronic central control unit 13, can be considered as being the master part of the system, and the electronic control and monitoring units 17 of the spraying modules can be considered as being the slave parts of the system making it possible to control and monitor the power elements of the modules.
Such a system makes it possible to reduce to the maximum the quantity of product (the liquid) applied on the target 21, such as a vine, and it makes it possible, for example, to provide the following functionalities and advantages:
This invention also has as its object a method for controlling a number of spraying modules of a spraying and control system for the spraying of a liquid in droplet form for the treatment of a target 21, such as, for example, a plant row, with said liquid coming from a reservoir 26, said spraying and control system being defined according to this invention.
In accordance with this invention, such a method consists in controlling individually each spraying module, independently of the other spraying modules, from the control panel 16 of the spraying and control system to adjust and/or monitor individually the operating and spraying parameters of each spraying module.
In a preferred embodiment of the method, the former can consist in individually controlling, from the control panel 16, each spraying module based on the presence or the absence of the target and/or based on the target profile detected from the detection system 24. More particularly, the method can consist in carrying out, from the control panel 16, the individual control of each spraying module by controlling and monitoring:
Of course, the invention is not limited to the methods or embodiments described and shown in the accompanying drawings. Modifications are possible, in particular from the standpoint of the composition of the various elements or by substitution of equivalent techniques, without thereby exceeding the scope of protection of the invention.
Number | Date | Country | Kind |
---|---|---|---|
1555895 | Jun 2015 | FR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/FR2016/051548 | 6/23/2016 | WO | 00 |