Claims
- 1. A compact turbocompressor unit comprising:
- a two-stage radially aligned compressor section and a two-stage radially aligned turbine section, the compressor section and the turbine section having a common axis of rotation and a common housing with an intake end and an exhaust end, and with an annular compressed air manifold in the compressor section and an annular combustion gas manifold in the compressor section;
- wherein the compressor section has an air intake at the intake end and a first low pressure compressor rotor axially arranged with the intake to receive air axially from the intake and constructed to eject air radially from the first compressor rotor; a second high pressure compressor rotor arranged concentrically around the first rotor to receive air radially from the first compressor rotor and constructed to eject air radially from the second compressor rotor, a compressor stator arranged concentrically around the second compressor rotor to receive air radially from the second compressor rotor and constructed to direct air to the annular compressed air manifold;
- wherein the turbine section has an exhaust gas outflow at the exhaust end of the housing and a first low pressure turbine rotor axially arranged with the outflow to eject exhaust gases axially to the outflow and constructed to receive gases radially into the first turbine rotor and a second high pressure turbine rotor arranged concentrically around the first turbine rotor to eject gases radially into the first turbine rotor and constructed to receive combustion gases radially into the second turbine rotor, a turbine stator arranged radially concentric with the second turbine rotor to direct combustion gases from the annular combustion gas manifold radially into the second turbine rotor, and
- wherein the first compressor rotor is directly connected to the first turbine rotor for rotation in unison, the second compressor rotor is directly connected to the second turbine rotor for rotation in unison and the first compressor rotor and first turbine rotor rotate opposite the second turbine rotor and the second compressor rotor.
- 2. The compact turbocompressor unit of claim 1 wherein the compressor stator is constructed to direct compressed air from the second compressor toward the intake end of the housing wherein the annular compressed air manifold is proximate to and concentric with the air intake for minimization of the axial length of the turbocompressor unit.
- 3. The compact turbocompressor unit of claim 1 wherein the turbine stator is constructed to direct combustion gases in the annular combustion gas manifold away from the exhaust end of the housing wherein the annular combustion gas manifold is proximate to and concentric with the exhaust gas outflow for minimization of the axial length of the turbocompressor.
- 4. The compact turbocompressor unit of claim 2 wherein the turbine stator is constructed to direct combustion gases in the combustion gas manifold away form the exhaust end of the housing wherein the compressor section is substantially the same configuration as the rotor section and the axial length of the turbocompressor unit is minimized.
BACKGROUND OF THE INVENTION
This application is a continuation-in-part of my earlier applications entitled, PROCESS OF INTENSIFICATION OF THE THERMOENERGETICAL CYCLE AND AIR JET PROPULSION ENGINES, Ser. No. 06/928,733, Filed: Nov. 7, 1986 (abandoned) which is a continuation of Ser. No. 06/764,424, Filed: Aug. 9, 1985 (abandoned).
US Referenced Citations (2)
Foreign Referenced Citations (1)
| Number |
Date |
Country |
| 874897 |
Aug 1961 |
GBX |
Continuations (1)
|
Number |
Date |
Country |
| Parent |
764424 |
Aug 1985 |
|
Continuation in Parts (1)
|
Number |
Date |
Country |
| Parent |
928733 |
Nov 1986 |
|