The invention relates to a valve arrangement for a barrel internal combustion engine. More particularly, the invention relates to a compact valve actuation mechanism for actuating the intake and exhaust valves of the valve arrangement.
Internal combustion engines are widely used for driving a variety of vehicles and stationary equipment. Internal combustion engines come in a variety of configurations, which are typically aptly named for the particular orientation or arrangement of the reciprocating pistons and cylinders in the engines. One example of an internal combustion engine is a “V” type engine, in which the “V” refers to the arrangement of the cylinders in rows that are angled relative to each other to form a V shape. Another type of internal combustion engine that is most relevant to the invention is a barrel-type engine.
The barrel engine includes a plurality of cylinders and pistons arranged in the form of a “barrel” in which their axes are parallel to each other and typically arranged along a circle concentric with a central drive shaft. Power is transmitted from the reciprocating pistons to a cam plate via a roller or bearing interface. The cam plate has a generally sinusoidal shape, so that the axial reciprocal movement of the pistons causes rotational movement of the cam plate and drive shaft.
The barrel engine also typically includes a valve assembly for controlling the intake of fuel-air and exhaust of combustion products. The valve assembly is actuated by a valve actuation mechanism and timed for appropriate intake and exhaust during the intake, compression, power and exhaust strokes of the engine.
It remains desirable to provide an improved valve actuation mechanism for actuating the valves in the barrel engine.
Advantages of the present invention will be readily appreciated as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawing, wherein:
According to one aspect of the invention, a valve actuation mechanism is provided for a barrel internal combustion engine having a drive shaft, an undulating cam plate interconnected with the drive shaft for rotation therewith, and a plurality of cylinders radially spaced apart from the drive shaft. The valve actuation mechanism includes a plurality of tappets, a plurality of valves, a plurality of rockers for actuating the valves and a rocker support. The tappets are configured to engage a cam portion of a rotatable drive shaft so as to cause axial displacement of each tappet in response to rotation of the drive shaft. Each valve has a valve head and a valve stern extending from the valve head. The rockers are mechanically coupled to the tappets for actuating the valves in response to rotation of the drive shaft. The rocker support pivotally supports a pair of the rockers for movement about respective pivot axes. The rockers are configured to actuate respective valves of an adjacent pair of cylinders in the engine.
According to another aspect of the invention, a barrel internal combustion includes a longitudinally extending drive shaft, a plurality of cylinders, a plurality of valves, a pair of cam lobes, a plurality of tappets, a plurality of rockers and a rocker support. The drive shaft is rotatable about a center axis. The drive shaft includes a cam portion. Each cylinder has an axis generally parallel with the drive shaft. The valves control the flow of gases through the cylinders. The lobes extend radially outwardly from the cam portion for rotation therewith. The tappets are engaged with the cam lobes to cause radial displacement of each tappet relative to the center axis during rotation of the drive shaft about the center axis. Each rocker is moveable about a pivot for actuating the valves. The rocker support pivotally supports a pair of the rockers for movement about the respective pivots. The pair of the rockers actuate the valves of an adjacent pair of cylinders.
According to another aspect of the invention, a barrel internal combustion engine includes a drive shaft, a plurality of cylinders, a plurality of valves, a pair of cam lobes, a plurality of tappets, and a plurality of rockers. The drive shaft is rotatable about a center axis. The drive shaft includes a cam portion. Each cylinder has an axis generally parallel with the drive shaft. The valves control the flow of gases through the cylinders. The cam lobes extend radially outwardly from the cam portion for rotation therewith. The tappets are engaged with the cam lobes to cause radial displacement of each tappet relative to the center axis during rotation of the drive shaft about the center axis. Each rocker is moveable about a pivot for actuating the valves. Each rocker has a pair of arms extending outwardly from the pivot. One of the pair of arms is coupled to one of the valves and the other of the pair of arms is coupled to one of the tappets to cause actuation of the valve in response to the radial displacement of the tappet during rotation of the drive shaft. One of the pair of arms extends from the pivot toward the cylinders.
According to another aspect of the invention, a barrel internal combustion engine includes a drive shaft, a plurality of cylinders, a plurality of valves, a pair of cam lobes, a plurality of spark plugs, a plurality of tappets, a plurality of rockers, and a spark plug tube. The drive shaft is rotatable about a center axis. The drive shaft includes a cam portion. Each cylinder has an axis generally parallel with the drive shaft. The spark plugs ignite a charge in the cylinders. The valves control the flow of gases through the cylinders. The cam lobes extend radially outwardly from the cam portion for rotation therewith. The tappets are engaged with the cam lobes to cause radial displacement of each tappet relative to the center axis during rotation of the drive shaft about the center axis. Each rocker is moveable about a pivot for actuating the valves. Each rocker has a pair of arms extending outwardly from the pivot. One of the pair of arms is coupled to one of the valves and the other of the pair of arms is coupled to one of the tappets to cause actuation of the valve in response to the radial displacement of the tappet during rotation of the drive shaft. A pair of the rockers are configured to actuate a pair of the valves of one of the cylinders. The spark plug tube extends between the arms of the pair of the rockers to define a path for access to one of the spark plugs.
The present invention provides an improved valve actuation mechanism for a barrel-type internal combustion engine. Described in greater detail below, the valve actuation mechanism utilizes a pair of L-shaped rockers pivotaly coupled to a common rocker support for actuating respective valves of an adjacent pair of cylinders in the engine.
Referring to
The engine 2 also includes a plurality of valves 22, 24 for controlling the flow of gases through the cylinders 6. In this embodiment, the engine 2 is a four-stroke engine having an intake valve 22 and an exhaust 24 valve provided for each cylinder 6. Each valve 22, 24 includes a head and a stem extending outwardly from the head. The valves 22, 24 are driven by the valve actuation mechanism, which in turn is driven by a cam portion 9 of the drive shaft 8. In this version, the cam portion 9 is a separate component and subsequently assembled to the drive shaft 8 for rotation therewith about the rotational axis. Optionally, the cam portion 9 may be integrally formed with the drive shaft 8.
Referring to
The actuating mechanism includes a plurality of lifters or tappets 18, 20, which correspond in number to the plurality of valves 22, 24. Each tappet 18, 20 has a generally cylindrical shape extending along a longitudinal axis and is supported in a bore that extends through a tappet carrier 60. Each tappet 18, 20 is slidable along its longitudinal axis within the bore. In this embodiment, the longitudinal axis of each tappet 18, 20 is generally radially aligned with respect to the rotational axis of the drive shaft 8. A roller bearing 19, 21 is pivotally coupled to an inner end of each tappet 18, 20. The bearing 19, 21 is rollingly engaged with one of the lobes 14, 16, so as to cause reciprocating movement of the tappet 18, 20 along its longitudinal axis during rotation of the drive shaft 8. An outer end of each tappets 18, 20 is recessed to receive an end of a pushrod 30, 32 therein. Alternatively, the tappets may be provided in the form of bucket tappets.
In the illustrated embodiment, the tappets 18 and 20 are roller tappets that also include hydraulic lash adjusters. It should be appreciated that conventional mechanical lash adjusters may be utilized instead of hydraulic lash adjusters. Alternatively, the lash adjustment may be provided at other locations, such as lash adjusters provided on top of each valve stem.
The tappets 18, 20 are arranged in upper and lower sets that are axially spaced apart with respect to the drive shaft 8. The upper set of tappets 18 is engaged with the upper lobe 14, while the lower set of tappets 20 is engaged with the lower lobe 16. The tappets 18, 20 are also positioned in the carrier 60 so that the tappets 18 actuating the intake valves 22 are offset axially (
A plurality of rocker supports 38 are fixedly secured to the engine block. the supports 38 may be secured to the engine block utilizing a bolt. If a single bolt is used, a dowel pin may be used to prevent rotation of the support 38 about the bolt. Alternatively, more than one bolt may be used to secure the support 38 to the engine block. Each rocker support 38 includes a main body 39 and a pair of pivot pins 34, 36 extending from opposite sides thereof. As best shown in
A pair of generally L-shaped rockers 26, 28 is pivotally coupled to the pair of pivot pins 34, 36. Each rocker 26, 28 includes a first arm 40, 42 extending from the pivot pin 34, 36 toward the cylinders. Each rocker 26, 28 also includes a second arm 44, 46 extending generally toward the cam portion 9 of the drive shaft 8. A pushrod 30, 32 extends between each tappet 18, 20 and the first arm 40, 42 of each rocker 26, 28. The second arm 44, 46 of each rocker 26, 28 is coupled to a valve stem of one of the valves 22, 24. The rockers 26, 28 are arranged in pairs for actuating respective valves 22, 24 of an adjacent pair of cylinders 6. Further, the tappets 18, 20 and pushrods 30, 32 corresponding to each pair of adjacent rockers 26, 28 are also arranged adjacent to one another in pairs. The adjacent pairs of tappets 18, 20 and pushrods 30, 32 are disposed generally between adjacent cylinders 6, rather than extending over any one cylinder 6. This provides numerous packaging benefits. Additionally, the pair of rockers 26, 28 are, in this embodiment, supported on a common rocker support 38. Alternatively, each rocker 26, 28 of each pair may be supported on its own individual support.
As shown in
Referring to
During operation of the engine, the cam portion 9 and the cam lobes 14, 16 rotate together with the drive shaft 8 about the rotational axis. The rotation of the lobes 14, 16 causes reciprocating displacement of the tappets 18, 20 along their respective longitudinal axes. The reciprocating axial movement of the tappets 18, 20 is transferred by the rods 30, 32 to the rockers 26, 28, thereby causing reciprocating rotational movement of the rockers 26, 28 about their respective pivot pins 34, 36. The reciprocating rotational movement of the rockers 26, 28, in turn, actuates the valves 22, 24.
The timing of the actuation of the intake 22 and exhaust 24 valves is generally determined by the rotational offset of the eccentricity of one lobe 14 relative to the other lobe 16, one or both lobes 14, 16 relative to the drive shaft 8 and/or cam plate 10. It should be appreciated by those skilled in the art that the timing of the actuation of the valves 22, 24 can be changed by utilizing a conventional earn phasing mechanism known by those skilled in the art. The cam phasing mechanism allows adjustment of the rotational position of one lobe 12 relative to the other lobe 14.
Referring to
Referring now to
In the case of a spark-ignition type barrel engine, a plurality of spark plug tubes may be provided to define paths for accessing the spark plugs in the engine. The spark plug tubes are indicated at 88 in
In this embodiment, the tappets 92, 94 are generally parallel to each other, but may be configured to extend radially with respect to the rotational axis of the drive shaft 80. The first arms 97, 99 would then be shaped to accommodate the position of the outboard ends of the tappets 92, 94 and the axial displacement of the tappets 92, 94 along their radially-aligned axes.
It should be appreciated by those having ordinary skill in the art that the invention as described herein may be used in a variety of barrel engine types, such spark ignition, diesel, HCCI or any combination thereof. The invention may be used in combination with any of the technologies as disclosed in U.S. Pat. Nos. 6,662,775; 6,899,065; 6,986,342; 6,698,394; 6,834,636, and U.S. patent application Ser. Nos. 10/997,443; 11/255,804; 11/360,779; 60/773,263; 60/721,853; 60/774,982; 60/774,343; 60/774,344; 60/774,982; 60/774,411; 60/773,109; 60/774,410; 60/774,856; 60/773,090; 60/773,936; 60/773,233; 60/773,234, all of which are incorporated herein by reference in their entirety.
It should also be appreciated by those having ordinary skill in the art that the invention as described herein may be be incorporated with an engine having more than two valves per cylinder. The invention may also utilize multiple valves per tappet and/or additional cam lobes.
The invention has been described in an illustrative manner. It is, therefore, to be understood that the terminology used is intended to be in the nature of words of description rather than of limitation. Many modifications and variations of the invention are possible in light of the above teachings. For example, in any of the previous embodiments, the pivot axes of adjacent rockers may be coaxial or noncoaxial. Thus, within the scope of the appended claims, the invention may be practiced other than as specifically described.
This application is the U.S. national phase of PCT/US2006/024591, filed Jun. 23, 2006, which claims priority to U.S. patent application Ser. No. 11/472,718, filed Jun. 22, 2006, now abandoned, and U.S. Provisional Patent Application Ser. Nos. 60/693,497, filed Jun. 23, 2005 and 60/774,856, filed Feb. 17, 2006, the entire content of each application are incorporated herein by reference.
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/US2006/024591 | 6/23/2006 | WO | 00 | 7/14/2008 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2007/002475 | 1/4/2007 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1147313 | Desort | Jul 1915 | A |
1389967 | Murphy | Sep 1921 | A |
2686511 | Platner | Aug 1954 | A |
3169514 | Girodin | Feb 1965 | A |
5442971 | Romanchev et al. | Aug 1995 | A |
6899065 | Hauser | May 2005 | B2 |
Number | Date | Country |
---|---|---|
0079750 | May 1983 | EP |
0453249 | Oct 1991 | EP |
2267446 | Nov 1975 | FR |
11294182 | Oct 1999 | JP |
Number | Date | Country | |
---|---|---|---|
20100199932 A1 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
60693497 | Jun 2005 | US | |
60774856 | Feb 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11472718 | Jun 2006 | US |
Child | 11917147 | US |