This application relates generally to liquid concentrators, and more specifically to compact, portable, cost-effective wastewater concentrators that can be easily connected to and use sources of waste heat.
Concentration of volatile substances can be an effective form of treatment or pretreatment for a broad variety of wastewater streams and may be carried out within various types of commercial processing systems. At high levels of concentration, many wastewater streams may be reduced to residual material in the form of slurries containing high levels of dissolved and suspended solids. Such concentrated residual may be readily solidified by conventional techniques for disposal within landfills or, as applicable, delivered to downstream processes for further treatment prior to final disposal. Concentrating wastewater can greatly reduce freight costs and required storage capacity and may be beneficial in downstream processes where materials are recovered from the wastewater.
Characteristics of industrial wastewater streams are very broad as a result of the large number of industrial processes that produce them. In addition to wastewater produced by design under controlled conditions within industry, uncontrolled events arising from accidents and natural disasters frequently generate wastewater. Techniques for managing wastewater include: direct discharge to sewage treatment plants; pretreatment followed by discharge to sewage treatment plants; on-site or off-site processes to reclaim valuable constituents; and on-site or off-site treatment to simply prepare the wastewater for ultimate disposal. Where the wastewater source is an uncontrolled event, effective containment and recovery techniques must be included with any of these options.
An important measure of the effectiveness of a wastewater concentration process is the volume of residual produced in proportion to the volume of wastewater entering the process. In particular, low ratios of residual volume to feed volume (high levels of concentration) are the most desirable. Where the wastewater contains dissolved and/or suspended non-volatile matter, the volume reduction that may be achieved in a particular concentration process that relies on evaporation of volatiles is, to a great extent, limited by the method chosen to transfer heat to the process fluid.
Conventional processes that affect concentration by evaporation of water and other volatile substances may be classified as direct or indirect heat transfer systems depending upon the method employed to transfer heat to the liquid undergoing concentration (the process fluid). Indirect heat transfer devices generally include jacketed vessels that contain the process fluid, or plate, bayonet tube or coil type heat exchangers that are immersed within the process fluid. Mediums such as steam or hot oil are passed through the jackets or heat exchangers in order to transfer the heat required for evaporation. Direct heat transfer devices implement processes where the heating medium is brought into direct contact with the process fluid, which occurs in, for example, submerged combustion gas systems.
Indirect heat transfer systems that rely on heat exchangers such as jackets, plates, bayonet tubes or coils are generally limited by the buildup of deposits of solids on the surfaces of the heat exchangers that come into direct contact with the process fluid. Also, the design of such systems is complicated by the need for a separate process to transfer heat energy to the heating medium such as a steam boiler or devices used to heat other heat transfer fluids such as hot oil heaters. This design leads to dependence on two indirect heat transfer systems to support the concentration process. Feed streams that produce deposits on heat exchangers while undergoing processing are called fouling fluids. Where feed streams contain certain compounds such as carbonates for which solubility decreases with increasing temperature, deposits, generally known as boiler scale, will form even at relatively low concentrations due to the elevated temperatures at the surfaces of the heat exchangers. Further, when compounds that have high solubility at elevated temperatures such as sodium chloride are present in the wastewater feed, they will also form deposits by precipitating out of the solution as the process fluid reaches high concentrations. Such deposits, which necessitate frequent cycles of heat exchange surface cleaning to maintain process efficiency, may be any combination of suspended solids carried into the process with the wastewater feed and solids that precipitate out of the process fluid. The deleterious effects of deposition of solids on heat exchange surfaces limits the length of time that indirect heat transfer processes may be operated before these processes must be shut down for periodic cleaning. These deleterious effects thereby impose practical limits on the range of wastewater that might be effectively managed, especially when the range of wastewater includes fouling fluids. Therefore, processes that rely on indirect heat transfer mechanisms are generally unsuitable for concentrating wide varieties of wastewater streams and achieving low ratios of residual to feed volume.
U.S. Pat. No. 5,342,482, which is hereby incorporated by reference, discloses a particular type of direct heat transfer concentrator in the form of a submerged gas process wherein combustion gas is generated and delivered though an inlet pipe to a dispersal unit submerged within the process fluid. The dispersal unit includes a number of spaced-apart gas delivery pipes extending radially outwardly from the inlet pipe, each of the gas delivery pipes having small holes spaced apart at various locations on the surface of the gas delivery pipe to disperse the combustion gas as small bubbles as uniformly as practical across the cross-sectional area of the liquid held within a processing vessel. According to current understanding within the prior art, this design provides desirable intimate contact between the liquid and the hot gas over a large interfacial surface area. In this process, the intent is that both heat and mass transfer occur at the dynamic and continuously renewable interfacial surface area formed by the dispersion of a gas phase in a process fluid, and not at solid heat exchange surfaces on which deposition of solid particles can occur. Thus, this submerged gas concentrator process provides a significant advantage over conventional indirect heat transfer processes. However, the small holes in the gas delivery pipes that are used to distribute hot gases into the process fluid within the device of U.S. Pat. No. 5,342,482 are subject to blockages by deposits of solids formed from fouling fluids. Thus, the inlet pipe that delivers hot gases to the process fluid is subject to the buildup of deposits of solids.
Further, as the result of the need to disperse large volumes of gas throughout a continuous process liquid phase, the containment vessel within U.S. Pat. No. 5,342,482 generally requires significant cross-sectional area. The inner surfaces of such containment vessels and any appurtenances installed within them are collectively referred to as the “wetted surfaces” of the process. These wetted surfaces must withstand varying concentrations of hot process fluids while the system is in operation. For systems designed to treat a broad range of wastewater streams, the materials of construction for the wetted surfaces present critical design decisions in relation to both corrosion and temperature resistance which must be balanced against the cost of equipment and the costs of maintenance/replacement over time. Generally speaking, durability and low maintenance/replacement costs for wetted surfaces are enhanced by selecting either high grades of metal alloys or certain engineered plastics such as those used in manufacturing fiberglass vessels. However, conventional concentration processes that employ either indirect or direct heating systems also require means for hot mediums such as steam, heat transfer oil or gases to transfer heat to the fluid within the vessel. While various different high alloys offer answers in regard to corrosion and temperature resistance, the costs of the vessels and the appurtenances fabricated from them are generally quite high. Further, while engineered plastics may be used either directly to form the containment vessel or as coatings on the wetted surfaces, temperature resistance is generally a limiting factor for many engineered plastics. For example, the high surface temperatures of the inlet pipe for hot gas within vessels used in U.S. Pat. No. 5,342,482 imposes such limits. Thus, the vessels and other equipment used for these processes are typically very expensive to manufacture and maintain.
Moreover, in all of these systems, a source of heat is required to perform the concentration or evaporative processes. Numerous systems have been developed to use heat generated by various sources, such as heat generated in an engine, in a combustion chamber, in a gas compression process, etc., as a source of heat for wastewater processing. One example of such a system is disclosed in U.S. Pat. No. 7,214,290 in which heat is generated by combusting landfill gas within a submerged combustion gas evaporator, which is used to process leachate at a landfill site. U.S. Pat. No. 7,416,172 discloses a submerged gas evaporator in which waste heat may be provided to an input of the gas evaporator to be used in concentrating or evaporating liquids. While waste heat is generally considered to be a cheap source of energy, to be used effectively in a wastewater processing operation, the waste heat must in many cases be transported a significant distance from the source of the waste heat to a location at which the evaporative or concentration process is to be performed. For example, in many cases, a landfill operation will have electricity generators which use one or more internal combustion engines operating with landfill gas as a combustion fuel. The exhaust of these generators or engines, which is typically piped through a muffler and an exhaust stack to the atmosphere at the top of a building containing the electrical generators, is a source of waste heat. However, to collect and use this waste heat, significant amounts of expensive piping and ductwork must be coupled to the exhaust stack to transfer the waste heat to location of the processing system, which will usually be at ground level away from the building containing the generators. Importantly, the piping, ducting materials, and control devices (e.g., throttling and shutoff valves) that can withstand the high temperatures (e.g., 950 degrees Fahrenheit) of the exhaust gases within the exhaust stack are very expensive and must be insulated to retain the heat within the exhaust gases during transport. Acceptable insulating materials used for such purposes are generally prone to failure due to a variety of characteristics that add complexity to the design such as brittleness, tendencies to erode over time, and sensitivity to thermal cycling. Insulation also increases the weight of the piping, ducting, and control devices, which adds costs to structural support requirements.
A compact liquid concentrating device disclosed herein may be easily connected to a source of waste heat, such as a landfill gas flare or a combustion engine exhaust stack, and use this waste heat to perform a direct heat transfer concentration process without the need of large and expensive containment vessels and without a lot of expensive high temperature resistant materials. The compact liquid concentrator includes a gas inlet, a gas exit and a mixing or flow corridor connecting the gas inlet and the gas exit, wherein the flow corridor includes a narrowed portion that accelerates the gas through the flow corridor. A liquid inlet located between the gas inlet and the narrowed portion of the flow corridor, injects liquid into the gas stream at a point prior to the narrowed portion so that the gas-liquid mixture is thoroughly mixed within the flow corridor, causing a portion of the liquid to be evaporated or concentrated. A demister or fluid scrubber downstream of the narrowed portion, and connected to the gas exit, removes entrained liquid droplets from the gas stream and re-circulates the removed liquid to the liquid inlet through a re-circulating circuit. Fresh liquid to be concentrated is also introduced into the re-circulating circuit at a rate sufficient to offset the combined total of liquid evaporated in the flow corridor and any concentrated liquid that is withdrawn from the process.
The compact liquid concentrator described herein includes a number of attributes that operate to cost-effectively concentrate wastewater streams having broad ranges of characteristics. The concentrator is resistant to corrosive effects over a broad range of feed characteristics, has reasonable manufacturing and operating costs, is able to operate continuously at high levels of concentration, and efficiently utilizes heat energy directly from a wide variety of sources. Moreover, the concentrator is compact enough to be portable, and so may be easily transported to locations where wastewater is generated through uncontrolled events and can be installed in close proximity to waste heat sources. Thus, the concentrator disclosed herein is a cost-effective, reliable and durable device that operates to continuously concentrate a broad range of different types of wastewater streams, and that eliminates the use of conventional solid-surface heat exchangers found in conventional indirect heat transfer systems which lead to clogging and deposit buildups.
As the gas and liquid flow through the narrowed portion 26, the venturi principle creates an accelerated and turbulent flow that thoroughly mixes the gas and liquid in the flow corridor 24 at and after the location of the inlet 30. This acceleration through the narrowed portion 26 creates shearing forces between the gas flow and the liquid droplets, and between the liquid droplets and the walls of the narrowed portion 26, resulting in the formation of very fine liquid droplets entrained in the gas, thus increasing the interfacial surface area between the liquid droplets and the gas and effecting rapid mass and heat transfer between the gas and the liquid droplets. The liquid exits the narrowed portion 26 as very fine droplets regardless of the geometric shape of the liquid flowing into the narrowed portion 26 (e.g., the liquid may flow into the narrowed portion 26 as a sheet of liquid). As a result of the turbulent mixing and shearing forces, a portion of the liquid rapidly vaporizes and becomes part of the gas stream. As the gas-liquid mixture moves through the narrowed portion 26, the direction and/or velocity of the gas/liquid mixture may be changed by an adjustable flow restriction, such as a venturi plate 32, which is generally used to create a large pressure difference in the flow corridor 24 upstream and downstream of the venturi plate 32. The venturi plate 32 may be adjustable to control the size and/or shape of the narrowed portion 26 and may be manufactured from a corrosion resistant material including a high alloy metal such as those manufactured under the trade names of Hastelloy®, Inconel® and Monel®.
After leaving the narrowed portion 26, the gas-liquid mixture passes through a demister 34 (also referred to as fluid scrubbers or entrainment separators) coupled to the gas exit 22. The demister 34 removes entrained liquid droplets from the gas stream. The demister 34 includes a gas-flow passage. The removed liquid collects in a liquid collector or sump 36 in the gas-flow passage, the sump 36 may also include a reservoir for holding the removed liquid. A pump 40 fluidly coupled to the sump 36 and/or reservoir moves the liquid through a re-circulating circuit 42 back to the liquid inlet 30 and/or flow corridor 24. In this manner, the liquid may be reduced through evaporation to a desired concentration. Fresh or new liquid to be concentrated is input to the re-circulating circuit 42 through a liquid inlet 44. This new liquid may instead be injected directly into the flow corridor 24 upstream of the venturi plate 32. The rate of fresh liquid input into the re-circulating circuit 42 may be equal to the rate of evaporation of the liquid as the gas-liquid mixture flows through the flow corridor 24 plus the rate of liquid extracted through a concentrated fluid extraction port 46 located in or near the reservoir in the sump 40. The ratio of re-circulated liquid to fresh liquid may generally be in the range of approximately 1:1 to approximately 100:1, and is usually in the range of approximately 5:1 to approximately 25:1. For example, if the re-circulating circuit 42 circulates fluid at approximately 10 gal/min, fresh or new liquid may be introduced at a rate of approximately 1 gal/min (i.e., a 10:1 ratio). A portion of the liquid may be drawn off through the extraction port 46 when the liquid in the re-circulating circuit 42 reaches a desired concentration. The re-circulating circuit 42 acts as a buffer or shock absorber for the evaporation process ensuring that enough moisture is present in the flow corridor 24 to prevent the liquid from being completely evaporated and/or preventing the formation of dry particulate.
After passing through the demister 34 the gas stream passes through an induction fan 50 that draws the gas through the flow corridor 24 and demister gas-flow corridor under negative pressure. Of course, the concentrator 10 could operate under positive pressure produced by a blower (not shown) prior to the liquid inlet 30. Finally, the gas is vented to the atmosphere or directed for further processing through the gas exit 22.
The concentrator 10 may include a pre-treatment system 52 for treating the liquid to be concentrated, which may be a wastewater feed. For example, an air stripper may be used as a pre-treatment system 52 to remove substances that may produce foul odors or be regulated as air pollutants. In this case, the air stripper may be any conventional type of air stripper or may be a further concentrator of the type described herein, which may be used in series as the air stripper. The pre-treatment system 52 may, if desired, heat the liquid to be concentrated using any desired heating technique. Additionally, the gas and/or wastewater feed circulating through the concentrator 10 may be pre-heated in a pre-heater 54. Pre-heating may be used to enhance the rate of evaporation and thus the rate of concentration of the liquid. The gas and/or wastewater feed may be pre-heated through combustion of renewable fuels such as wood chips, bio-gas, methane, or any other type of renewable fuel or any combination of renewable fuels, fossil fuels and waste heat. Furthermore, the gas and/or wastewater may be pre-heated through the use of waste heat generated in a landfill flare or stack. Also, waste heat from an engine, such as an internal combustion engine, may be used to pre-heat the gas and/or wastewater feed. Still further, natural gas may be used as a source of waste heat, the natural gas may be supplied directly from a natural gas well head in an unrefined condition either immediately after completion of the natural gas well before the gas flow has stabilized or after the gas flow has stabilized in a more steady state natural gas well. Optionally, the natural gas may be refined before being combusted in the flare. Additionally, the gas streams ejected from the gas exit 22 of the concentrator 10 may be transferred into a flare or other post treatment device 56 which treats the gas before releasing the gas to the atmosphere.
The liquid concentrator 10 described herein may be used to concentrate a wide variety of wastewater streams, such as waste water from industry, runoff water from natural disasters (floods, hurricanes), refinery caustic, leachate such as landfill leachate, flowback water from completion of natural gas wells, produced water from operation of natural gas wells, etc. The liquid concentrator 10 is practical, energy efficient, reliable, and cost-effective. In order to increase the utility of this liquid concentrator, the liquid concentrator 10 is readily adaptable to being mounted on a trailer or a moveable skid to effectively deal with wastewater streams that arise as the result of accidents or natural disasters or to routinely treat wastewater that is generated at spatially separated or remote sites. The liquid concentrator 10 described herein has all of these desirable characteristics and provides significant advantages over conventional wastewater concentrators, especially when the goal is to manage a broad variety of wastewater streams.
Moreover, the concentrator 10 may be largely fabricated from highly corrosion resistant, yet low cost materials such as fiberglass and/or other engineered plastics. This is due, in part, to the fact that the disclosed concentrator is designed to operate under minimal differential pressure. For example, a differential pressure generally in the range of only 10 to 30 inches water column is required. Also, because the gas-liquid contact zones of the concentration processes generate high turbulence within narrowed (compact) passages at or directly after the venturi section of the flow path, the overall design is very compact as compared to conventional concentrators where the gas liquid contact occurs in large process vessels. As a result, the amount of high alloy metals required for the concentrator 10 is quite minimal. Also, because these high alloy parts are small and can be readily replaced in a short period of time with minimal labor, fabrication costs may be cut to an even higher degree by designing some or all of these parts to be wear items manufactured from lesser quality alloys that are to be replaced at periodic intervals. If desired, these lesser quality alloys (e.g., carbon steel) may be coated with corrosion and/or erosion resistant liners, such as engineered plastics including elastomeric polymers, to extend the useful life of such components. Likewise, the pump 40 may be provided with corrosion and/or erosion resistant liners to extend the life of the pump 40, thus further reducing maintenance and replacement costs.
As will be understood, the liquid concentrator 10 provides direct contact of the liquid to be concentrated and the hot gas, effecting highly turbulent heat exchange and mass transfer between hot gas and the liquid, e.g., wastewater, undergoing concentration. Moreover, the concentrator 10 employs highly compact gas-liquid contact zones, making it minimal in size as compared to known concentrators. The direct contact heat exchange feature promotes high energy efficiency and eliminates the need for solid surface heat exchangers as used in conventional, indirect heat transfer concentrators. Further, the compact gas-liquid contact zone eliminates the bulky process vessels used in both conventional indirect and direct heat exchange concentrators. These features allow the concentrator 10 to be manufactured using comparatively low cost fabrication techniques and with reduced weight as compared to conventional concentrators. Both of these factors favor portability and cost-effectiveness. Thus, the liquid concentrator 10 is more compact and lighter in weight than conventional concentrators, which make it ideal for use as a portable unit. Additionally, the liquid concentrator 10 is less prone to fouling and blockages due to the direct contact heat exchange operation and the lack of solid heat exchanger surfaces. The liquid concentrator 10 can also process liquids with significant amounts of suspended solids because of the direct contact heat exchange. As a result, high levels of concentration of the process fluids may be achieved without need for frequent cleaning of the concentrator 10.
More specifically, in liquid concentrators that employ indirect heat transfer, the heat exchangers are prone to fouling and are subject to accelerated effects of corrosion at the normal operating temperatures of the hot heat transfer medium that is circulated within them (steam or other hot fluid). Each of these factors places significant limits on the durability and/or costs of building conventional indirectly heated concentrators, and on how long they may be operated before it is necessary to shut down and clean or repair the heat exchangers. By eliminating the bulky process vessels, the weight of the liquid concentrators and both the initial costs and the replacement costs for high alloy components are greatly reduced. Moreover, due to the temperature difference between the gas and liquid, the relatively small volume of liquid contained within the system, the relatively large interfacial area between the liquid and the gas, and the reduced relative humidity of the gas prior to mixing with the liquid, the concentrator 10 approaches the adiabatic saturation temperature for the particular gas/liquid mixture, which is typically in the range of about 150 degrees Fahrenheit to about 215 degrees Fahrenheit (i.e., this concentrator is a “low momentum” concentrator).
Moreover, the concentrator 10 is designed to operate under negative pressure, a feature that greatly enhances the ability to use a very broad range of fuel or waste heat sources as an energy source to affect evaporation. In fact, due to the draft nature of these systems, pressurized or non-pressurized burners may be used to heat and supply the gas used in the concentrator 10. Further, the simplicity and reliability of the concentrator 10 is enhanced by the minimal number of moving parts and wear parts that are required. In general, only two pumps and a single induced draft fan are required for the concentrator when it is configured to operate on waste heat such as stack gases from engines (e.g., generators or vehicle engines), turbines, industrial process stacks, gas compressor systems, and flares, such as landfill gas flares. These features provide significant advantages that reflect favorably on the versatility and the costs of buying, operating and maintaining the concentrator 10.
The concentrator 10 may be run in a start up condition, or in a steady state condition. During the startup condition, the demister 34 sump and re-circulating circuit 42 may be filled with fresh wastewater. During initial processing, the fresh wastewater introduced into the inlet 30 is at least partially evaporated in the narrowed portion 26 and is deposited in the demister 34 sump in a more concentrated form than the fresh wastewater. Over time, the wastewater in the demister sump 34 and the re-circulating circuit 42 approaches a desired level of concentration. At this point, the concentrator 10 may be run in a continuous mode where the amount of solids drawn off in the extraction port 46 equals the amount of solids introduced in fresh wastewater through the inlet 30. Likewise, the amount of water evaporated within the concentrator 10 is replaced by an equal amount of water in the fresh wastewater. Thus, conditions within the concentrator 10 approach the adiabatic saturation point of the mixture of heated gas and wastewater. As a result, the concentrator 10 is highly efficient.
A typical trailer-mounted concentrator 10 may be capable of treating as much as one-hundred thousand gallons or more per day of wastewater, while larger, stationary units, such as those installed at landfills, sewage treatment plants, or natural gas or oil fields, may be capable of treating multiples of one-hundred thousand gallons of wastewater per day.
As illustrated in
If desired, the flare 130 may include an adapter section 138 including the primary combustion gas outlet 143 and a secondary combustion gas outlet 141 upstream of the primary combustion gas outlet 143. When the flare cap 130 is in the closed position, combustion gas is diverted through the secondary combustion gas outlet 141. The adapter section 138 may include a connector section 139 that connects the flare 130 (or exhaust stack) to the heat transfer section 117 using a 90 degree elbow or turn. Other connector arrangements are possible. For example, the flare 130 and heat transfer section 117 may be connected at virtually any angle between 0 degrees and 180 degrees. In this case, the flare cap assembly 132 is mounted on the top of the adaptor section 138 proximate the primary combustion gas outlet 143.
As illustrated in
The air pre-treatment assembly 119 includes a vertical piping section 150 and an ambient air valve (not shown explicitly in
Generally speaking, the air pre-treatment assembly 119 operates to mix ambient air provided through the ambient air valve beneath the screen 152 and the hot gas flowing from the flare 130 through the heat transfer pipe 140 to create a desired temperature of gas at the inlet of the concentrator assembly 120.
The liquid concentrator assembly 120 includes a lead-in section 156 having a reduced cross-section at the top end thereof which mates the bottom of the piping section 150 to a quencher 159 of the concentrator assembly 120. The concentrator assembly 120 also includes a first fluid inlet 160, which injects new or untreated liquid to be concentrated, such as landfill leachate, into the interior of the quencher 159. While not shown in
As shown in
A re-circulating pipe 166 extends around opposite sides of the entrance of the venturi section 162 and operates to inject partially concentrated (i.e., re-circulated) liquid into the venturi section 162 to be further concentrated and/or to prevent the formation of dry particulate within the concentrator assembly 120 through multiple fluid entrances located on one or more sides of the flow corridor. While not explicitly shown in
The combined hot gas and liquid flows in a turbulent manner through the venturi section 162. As noted above, the venturi section 162, which has a moveable venturi plate 163 disposed across the width of the concentrator assembly 120, causes turbulent flow and complete mixture of the liquid and gas, causing rapid evaporation of the discontinuous liquid phase into the continuous gas phase. Because the mixing action caused by the venturi section 162 provides a high degree of evaporation, the gas cools substantially in the concentrator assembly 120, and exits the venturi section 162 into a flooded elbow 164 at high rates of speed. In fact, the temperature of the gas-liquid mixture at this point may be about 160 degrees Fahrenheit.
As is typical of flooded elbows, a weir arrangement (not shown) within the bottom of the flooded elbow 164 maintains a constant level of partially or fully concentrated re-circulated liquid disposed therein. Droplets of re-circulated liquid that are entrained in the gas phase as the gas-liquid mixture exits the venturi section 162 at high rates of speed are thrown outward onto the surface of the re-circulated liquid held within the bottom of the flooded elbow 164 by centrifugal force generated when the gas-liquid mixture is forced to turn 90 degrees to flow into the fluid scrubber 122. Significant numbers of liquid droplets entrained within the gas phase that impinge on the surface of the re-circulated liquid held in the bottom of the flooded elbow 164 coalesce and join with the re-circulated liquid thereby increasing the volume of re-circulated liquid in the bottom of the flooded elbow 164 causing an equal amount of the re-circulated liquid to overflow the weir arrangement and flow by gravity into the sump 172 at the bottom of the fluid scrubber 122. Thus, interaction of the gas-liquid stream with the liquid within the flooded elbow 164 removes liquid droplets from the gas-liquid stream, and also prevents suspended particles within the gas-liquid stream from hitting the bottom of the flooded elbow 164 at high velocities, thereby preventing erosion of the metal that forms the portions of side walls located beneath the level of the weir arrangement and the bottom of the flooded elbow 164.
After leaving the flooded elbow 164, the gas-liquid stream in which evaporated liquid and some liquid and other particles still exist, flows through the fluid scrubber 122 which is, in this case, a cross-flow fluid scrubber. The fluid scrubber 122 includes various screens or filters which serve to remove entrained liquids and other particles from the gas-liquid stream. In one particular example, the cross flow scrubber 122 may include an initial coarse impingement baffle 169 at the input thereof, which is designed to remove liquid droplets in the range of 50 to 100 microns in size or higher. Thereafter, two removable filters in the form of chevrons 170 are disposed across the fluid path through the fluid scrubber 122, and the chevrons 170 may be progressively sized or configured to remove liquid droplets of smaller and smaller sizes, such as 20-30 microns and less than 10 microns. Of course, more or fewer filters or chevrons could be used.
As is typical in cross flow scrubbers, liquid captured by the filters 169 and 170 and the overflow weir arrangement within the bottom of the flooded elbow 164 drain by gravity into a reservoir or sump 172 located at the bottom of the fluid scrubber 122. The sump 172, which may hold, for example approximately 200 gallons of liquid, thereby collects concentrated fluid containing dissolved and suspended solids removed from the gas-liquid stream and operates as a reservoir for a source of re-circulating concentrated liquid back to the concentrator assembly 120 to be further treated and/or to prevent the formation of dry particulate within the concentrator assembly 120 in the manner described above with respect to
As illustrated in
Concentrated liquid also may be removed from the bottom of the fluid scrubber 122 via the exit port 173 and may be further processed or disposed of in any suitable manner in a secondary re-circulating circuit 181. In particular, the concentrated liquid removed by the exit port 173 contains a certain amount of suspended solids, which preferably may be separated from the liquid portion of the concentrated liquid and removed from the system using the secondary re-circulating circuit 181. For example, concentrated liquid removed from the exit port 173 may be transported through the secondary re-circulating circuit 181 to one or more solid/liquid separating devices 183, such as settling tanks, vibrating screens, rotary vacuum filters, horizontal belt vacuum filters, belt presses, filter presses, and/or hydro-cyclones. After the suspended solids and liquid portion of the concentrated wastewater are separated by the solid/liquid separating device 183, the liquid portion of the concentrated wastewater with suspended particles substantially removed may be returned to the sump 172 for further processing in the first or primary re-circulating circuit connected to the concentrator.
The gas, which flows through and out of the fluid scrubber 122 with the liquid and suspended solids removed therefrom, exits out of piping or ductwork at the back of the fluid scrubber 122 (downstream of the chevrons 170) and flows through an induced draft fan 190 of the exhaust assembly 124, from where it is exhausted to the atmosphere in the form of the cooled hot inlet gas mixed with the evaporated water vapor. Of course, an induced draft fan motor 192 is connected to and operates the fan 190 to create negative pressure within the fluid scrubber 122 so as to ultimately draw gas from the flare 130 through the transfer pipe 140, the air pre-treatment assembly 119 and the concentrator assembly 120. As described above with respect to
While the speed of the induced draft fan 190 can be varied by a device such as a variable frequency drive operated to create varying levels of negative pressure within the fluid scrubber 122 and thus can usually be operated within a range of gas flow capacity to assure complete gas flow from the flare 130, if the gas being produced by the flare 130 is not of sufficient quantity, the operation of the induced draft fan 190 cannot necessarily be adjusted to assure a proper pressure drop across the fluid scrubber 122 itself. That is, to operate efficiently and properly, the gas flowing through the fluid scrubber 122 must be at a sufficient (minimal) flow rate at the input of the fluid scrubber 122. Typically this requirement is controlled by keeping at least a preset minimal pressure drop across the fluid scrubber 122. However, if the flare 130 is not producing at least a minimal level of gas, increasing the speed of the induced draft fan 190 will not be able to create the required pressure drop across the fluid scrubber 122.
To compensate for this situation, the cross flow scrubber 122 is designed to include a gas re-circulating circuit which can be used to assure that enough gas is present at the input of the fluid scrubber 122 to enable the system to acquire the needed pressure drop across the fluid scrubber 122. In particular, the gas re-circulating circuit includes a gas return line or return duct 196 which connects the high pressure side of the exhaust assembly 124 (e.g., downstream of the induced draft fan 190) to the input of the fluid scrubber 122 (e.g., a gas input of the fluid scrubber 122) and a baffle or control mechanism 198 disposed in the return duct 196 which operates to open and close the return duct 196 to thereby fluidly connect the high pressure side of the exhaust assembly 124 to the input of the fluid scrubber 122. During operation, when the gas entering into the fluid scrubber 122 is not of sufficient quantity to obtain the minimal required pressure drop across the fluid scrubber 122, the baffle 198 (which may be, for example, a gas valve, a damper such as a louvered damper, etc.) is opened to direct gas from the high pressure side of the exhaust assembly 124 (i.e., gas that has traveled through the induced draft fan 190) back to the input of the fluid scrubber 122. This operation thereby provides a sufficient quantity of gas at the input of the fluid scrubber 122 to enable the operation of the induced draft fan 190 to acquire the minimal required pressure drop across the fluid scrubber 122.
Each quick-release latch 206, one of which is shown in more detail in
The use of the easy opening doors 200 replaces the use of a plate with holes, wherein numerous bolts extending from the outer wall of the concentrator are fitted through the holes on the plate and wherein it is necessary to tighten nuts on the bolts to draw the plate against the wall of the concentrator. While such a nut and bolt type of securing mechanism, which is typically used in fluid concentrators to allow access to the interior of the concentrator, is very secure, operation of this configuration takes a long time and a lot of effort when opening or closing an access panel. The use of the quick opening doors 200 with the quick-release latches 206 of
Referring back to
The combination of features illustrated in
The fluid concentrator 110 is also a very fast-acting concentrator. Because the concentrator 110 is a direct contact type of concentrator, it is not subject to deposit buildup, clogging and fouling to the same extent as most other concentrators. Still further, the ability to control the flare cap 134 to open and close, depending on whether the concentrator 110 is being used or operated, allows the flare 130 to be used to burn landfill gas without interruption when starting and stopping the concentrator 110. More particularly, the flare cap 134 can be quickly opened at any time to allow the flare 130 to simply burn landfill gas as normal while the concentrator 110 is shut down. On the other hand, the flare cap 134 can be quickly closed when the concentrator 110 is started up, thereby diverting hot gasses created in the flare 130 to the concentrator 110, and allowing the concentrator 110 to operate without interrupting the operation of the flare 130. In either case, the concentrator 110 can be started and stopped based on the operation of the flare cap 134 without interrupting the operation of the flare 130.
If desired, the flare cap 134 may be opened to a partial amount during operation of the concentrator 110 to control the amount of gas that is transferred from the flare 130 to the concentrator 110. This operation, in conjunction with the operation of the ambient air valve, may be useful in controlling the temperature of the gas at the entrance of the venturi section 162.
Moreover, due to the compact configuration of the air pre-treatment assembly 119, the concentrator assembly 120 and the fluid scrubber 122, parts of the concentrator assembly 120, the fluid scrubber 122, the draft fan 190 and at least a lower portion of the exhaust section 124 can be permanently mounted on (connected to and supported by) a skid or plate 230, as illustrated in
Because most of the pumps, fluid lines, sensors and electronic equipment are disposed on or are connected to the fluid concentrator assembly 120, the fluid scrubber 122 or the draft fan assembly 190, setup of the concentrator 110 at a particular site does requires only minimal plumbing, mechanical, and electrical work at the site. As a result, the concentrator 110 is relatively easy to install and to set up at (and to disassemble and remove from) a particular site. Moreover, because a majority of the components of the concentrator 110 are permanently mounted to the skid 230, the concentrator 110 can be easily transported on a truck or other delivery vehicle and can be easily dropped off and installed at particular location, such as next to a landfill flare.
Additionally, the controller 302 is connected to and controls the ambient air inlet valve 306 disposed in the air pre-treatment assembly 119 of
During operation and at, for example, the initiation of the concentrator 110, when the flare 130 is actually running and is thus burning landfill gas, the controller 302 may first turn on the induced draft fan 190 to create a negative pressure within the fluid scrubber 122 and the concentrator assembly 120. The controller 302 may then or at the same time, send a signal to the motor 135 to close the flare cap 134 either partially or completely, to direct waste heat from the flare 130 into the transfer pipe 140 and thus to the air pre-treatment assembly 119. Based on the temperature signal from the temperature sensor 308, the controller 302 may control the ambient air valve 306 (typically by closing this valve partially or completely) and/or the flare cap actuator to control the temperature of the gas at the inlet of the concentrator assembly 120. Generally speaking, the ambient air valve 306 may be biased in a fully open position (i.e., may be normally open) by a biasing element such as a spring, and the controller 302 may begin to close the valve 306 to control the amount of ambient air that is diverted into the air pre-treatment assembly 119 (due to the negative pressure in the air pre-treatment assembly 119), so as to cause the mixture of the ambient air and the hot gases from the flare 130 to reach a desired temperature. Additionally, if desired, the controller 302 may control the position of the flare cap 134 (anywhere from fully open to fully closed) and may control the speed of the induced draft fan 190, to control the amount of gas that enters the air pre-treatment assembly 119 from the flare 130. As will be understood, the amount of gas flowing through the concentrator 110 may need to vary depending on ambient air temperature and humidity, the temperature of the flare gas, the amount of gas exiting the flare 130, etc. The controller 302 may therefore control the temperature and the amount of gas flowing through the concentrator assembly 120 by controlling one or any combination of the ambient air control valve 306, the position of the flare cap 134 and the speed of the induced draft fan 190 based on, for example, the measurement of the temperature sensor 308 at the inlet of the concentrator assembly 120. This feedback system is desirable because, in many cases, the air coming out of a flare 130 is between 1200 and 1800 degrees Fahrenheit, which may be too hot, or hotter than required for the concentrator 110 to operate efficiently and effectively.
In any event, as illustrated in
If desired, one or both of the ambient air valve 306 and the flare cap 134 may be operated in a fail-safe open position, such that the flare cap 134 and the ambient air valve 306 open in the case of a failure of the system (e.g., a loss of control signal) or a shutdown of the concentrator 110. In one case, the flare cap motor 135 may be spring loaded or biased with a biasing element, such as a spring, to open the flare cap 134 or to allow the flare cap 134 to open upon loss of power to the motor 135. Alternatively, the biasing element may be the counter-weight 137 on the flare cap 134 may be so positioned that the flare cap 134 itself swings to the open position under the applied force of the counter-weight 137 when the motor 135 loses power or loses a control signal. This operation causes the flare cap 134 to open quickly, either when power is lost or when the controller 302 opens the flare cap 134, to thereby allow hot gas within the flare 130 to exit out of the top of the flare 130. Of course, other manners of causing the flare cap 134 to open upon loss of control signal can be used, including the use of a torsion spring on the pivot point 136 of the flare cap 134, a hydraulic or pressurized air system that pressurizes a cylinder to close the flare cap 134, loss of which pressure causes the flare cap 134 to open upon loss of the control signal, etc.
Thus, as will be noted from the above discussion, the combination of the flare cap 134 and the ambient air valve 306 work in unison to protect the engineered material incorporated into the concentrator 110, as whenever the system is shut down, the flare cap and the air valve 306 automatically immediately open, thereby isolating hot gas generated in the flare 130 from the process while quickly admitting ambient air to cool the process.
Moreover, in the same manner, the ambient air valve 306 may be spring biased or otherwise configured to open upon shut down of the concentrator 110 or loss of signal to the valve 306. This operation causes quick cooling of the air pre-treatment assembly 119 and the concentrator assembly 120 when the flare cap 134 opens. Moreover, because of the quick opening nature of the ambient air valve 306 and the flare cap 134, the controller 302 can quickly shut down the concentrator 110 without having to turn off or effect the operation of the flare 130.
Furthermore, as illustrated in the
The controller 302 may also be connected to a motor 312 which controls the operation of the damper 198 in the gas re-circulating circuit of the fluid scrubber 122. The controller 302 may cause the motor 312 or other type of actuator to move the damper 198 from a closed position to an open or to a partially open position based on, for example, signals from pressure sensors 313, 315 disposed at the gas entrance and the gas exit of the fluid scrubber 122. The controller 302 may control the damper 198 to force gas from the high pressure side of the exhaust section 124 (downstream of the induced draft fan 190) into the fluid scrubber entrance to maintain a predetermined minimum pressure difference between the two pressure sensors 313, 315. Maintaining this minimum pressure difference assures proper operation of the fluid scrubber 122. Of course, the damper 198 may be manually controlled instead or in addition to being electrically controlled.
Thus, as will be understood from the above discussion, the controller 302 may implement one or more on/off control loops used to start up or shut down the concentrator 110 without affecting the operation of the flare 130. For example, the controller 302 may implement a flare cap control loop which opens or closes the flare cap 134, a bleed valve control loop which opens or begins to close the ambient air valve 306, and an induced draft fan control loop which starts or stops the induced draft fan 190 based on whether the concentrator 110 is being started or stopped. Moreover, during operation, the controller 302 may implement one or more on-line control loops which may control various elements of the concentrator 110 individually or in conjunction with one another to provide for better or optimal concentration. When implementing these on-line control loops, the controller 302 may control the speed of induced draft fan 190, the position or angle of the venturi plate 163, the position of the flare cap 134 and or the position of the ambient air valve 306 to control the fluid flow through the concentrator 110, and/or the temperature of the air at the inlet of the concentrator assembly 120 based on signals from the temperature and pressure sensors. Moreover, the controller 302 may maintain the performance of the concentration process at steady-state conditions by controlling the pumps 184 and 182 which pump new and re-circulating fluid to be concentrated into the concentrator assembly 120. Still further, the controller 302 may implement a pressure control loop to control the position of the damper 198 to assure proper operation of the fluid scrubber 122. Of course, while the controller 302 is illustrated in
As will be understood, the concentrator 110 described herein directly utilizes hot waste gases in processes after the gases have been thoroughly treated to meet emission standards, and so seamlessly separates the operational requirements of the process that generates the waste heat from the process which utilizes the waste heat in a simple, reliable and effective manner.
In addition to being an important component of the concentrator 110 during operation of the concentrator 110, the automated or manually actuated flare cap 134 described herein can be used in a standalone situation to provide weather protection to a flare or to a flare and a concentrator combination when the flare stands idle. With the flare cap 134 closed, the interior of the metal shell of the flare 130 along with the refractory, burners and other critical components of the flare assembly 115 and the heat transfer assembly 117 are protected from corrosion and general deterioration related to exposure to the elements. In this case, the controller 302 may operate the flare cap motor 135 to keep the flare cap 134 fully open or partially closed during idling of the flare 130. Moreover, beyond using a flare cap 134 that closes automatically when the flare 130 shuts down or that opens automatically when the flare 130 is ignited, a small burner, such as the normal pilot light, may be installed inside of the flare 130 and may be run when the flare 130 is shut down but while the flare cap 134 held closed. This small burner adds further protection against deterioration of flare components caused by dampness, as it will keep the interior of the flare 130 dry. An example of a stand alone flare that may use the flare cap 134 described herein in a stand-alone situation is a stand-by flare installed at a landfill to ensure gas control when a landfill gas fueled power plant is off-line.
While the liquid concentrator 110 has been described above as being connected to a landfill flare to use the waste heat generated in the landfill flare, the liquid concentrator 110 can be easily connected to other sources of waste heat. For example,
Referring to
Generally, when controlling the liquid concentrator 110 of
As the gas-liquid mixture passes through the narrowed portion 526 of the flow corridor 524 and circulates in the cyclonic chamber 551, a portion of the liquid evaporates and is absorbed by the gas. Furthermore, centrifugal force accelerates movement of entrained liquid droplets in the gas towards the side wall 552 of the cyclonic chamber 551 where the entrained liquid droplets coalesce into a film on the side wall 552. Simultaneously, centripetal forces created by an induction fan 550 collect the demisted gas flow at the inlet 560 of the cylinder 556 and direct the flow to the gas outlet 522. Thus, the cyclonic chamber 551 functions both as a mixing chamber and a demisting chamber. As the liquid film flows towards the liquid outlet area 554 of the chamber due to the combined effects of the force of gravity and the cyclonic motion within cyclonic chamber 551 toward the liquid outlet area 554, the continuous circulation of the gas in the cyclonic chamber 551 further evaporates a portion of the liquid film. As the liquid film reaches the liquid outlet area 554 of the cyclonic chamber 551, the liquid is directed through a re-circulating circuit 542. Thus, the liquid is re-circulated through the concentrator 500 until a desired level of concentration is reached. A portion of the concentrated slurry may be drawn off through an extraction port 546 when the slurry reaches the desired concentration (this is called blowdown). Fresh liquid is added to the circuit 542 through a fresh liquid inlet 544 at a rate equal to the rate of evaporation plus the rate of slurry drawn off through the extraction port 546.
As the gas circulates in the cyclonic chamber 551, the gas is cleansed of entrained liquid droplets and drawn towards the liquid discharge area 554 of the cyclonic chamber 551 by the induction fan 550 and towards an inlet 560 of the hollow cylinder 556. The cleansed gas then travels through the hollow cylinder 556 and finally vents through the gas exit 522 to the atmosphere or further treatment (e.g., oxidization in a flare).
Generally speaking, the liquid concentrator 600 includes a gas inlet 620, a gas outlet or a gas exit 622, a flow corridor 624 connecting the gas inlet 620 to the gas exit 622 and a liquid re-circulating system 625. A concentrator section has a flow corridor 624 that includes a quencher section 659 including the gas inlet 620 and a fluid inlet 630, a venturi section 626 disposed downstream of the quencher section 659, and a blower or draft fan 650 connected downstream of the venturi section 626. The fan 650 and a flooded elbow 654 couple a gas outlet of the concentrator section (e.g., an outlet of the venturi section 626) to a piping section 652. The flooded elbow 654, in this case, forms a 90 degree turn in the flow corridor 624. However, the flooded elbow 654 could form a turn that is less than or more than 90 degrees if desired. The piping section 652 is connected to a demister, in this case illustrated in the form of a crossflow scrubber 634, which is, in turn, connected to a stack 622A having the gas exit 622.
The re-circulating system 625 includes a sump 636 coupled to a liquid outlet of the crossflow scrubber 634, and a re-circulating or recycle pump 640 coupled between the sump 636 and a piping section 642 which delivers re-circulated fluid to the fluid inlet 630. A process fluid feed 644 also delivers leachate or other liquid to be processed (e.g., concentrated) to the fluid inlet 630 to be delivered to the quencher section 659. The re-circulating system 625 also includes a liquid takeoff 646 connected to the piping section 642, which delivers some of the recycled fluid (or concentrated fluid) to a storage, settling and recycle tank 649. The heavier or more concentrated portions of the liquid in the settling tank 649 settle to the bottom of the tank 649 as sludge, and are removed and transported for disposal in concentrated form. Less concentrated portions of the liquid in the tank 649 are delivered back to the sump 636 for reprocessing and further concentration, as well as to assure that an adequate supply of liquid is available at the liquid inlet 630 at all times so to ensure that dry particulate is not formed. Dry particulate can form at reduced ratios of process fluid to hot gas volumes.
In operation, the quencher section 659 mixes fluid delivered from the liquid inlet 630 with gas containing waste heat collected from, for example, an engine muffler and stack 629 associated with an internal combustion engine (not shown). The liquid from the fluid inlet 630 may be, for example, leachate to be processed or concentrated. As illustrated in
As noted above, the quencher section 659 receives hot exhaust gas from the engine exhaust stack 629 and may be connected directly to any desired portion of the exhaust stack 629. In this illustrated embodiment, the engine exhaust stack 629 is mounted on an outside of a building 631 that houses one or more electric power generators that generate electric power using landfill gas as a combustion fuel. In this case, the quencher section 659 may be connected directly to a condensate take off (e.g., a weep leg) associated with the stack 629 (i.e., a lower portion of the exhaust stack 629). Here, the quencher section 659 may be mounted immediately below or adjacent to the stack 629 requiring only a few inches or at most a few feet of expensive, high temperature piping material to connect the two together. If desired, however, the quencher section 659 may be coupled any other portion of the exhaust stack 629, including, for example, to the top or to a middle portion of the stack 629 via appropriate elbows or takeoffs.
As noted above, the liquid inlet 630 injects a liquid to be evaporated (e.g., landfill leachate) into the flow corridor 624 through the quencher section 659. If desired, the liquid inlet 630 may include a replaceable nozzle for spraying the liquid into the quencher section 659. The liquid inlet 630, whether or not equipped with a nozzle, may introduce the liquid in any direction, from perpendicular to parallel to the gas flow as the gas moves through the flow corridor 624. Moreover, as the gas (and the waste heat stored therein) and liquid flow through the venturi portion 626, the venturi principle creates an accelerated and turbulent flow that thoroughly mixes the gas and liquid in the flow corridor 624 immediately downstream of the venturi section 626. As a result of the turbulent mixing, a portion of the liquid rapidly vaporizes and becomes part of the gas stream. This vaporization consumes a large amount of the heat energy within the waste heat as latent heat that exits the concentrator system 600 as water vapor within the exhaust gas.
After leaving the narrowed portion of the venturi section 626, the gas/liquid mixture passes through the flooded elbow 654 where the flow corridor 624 turns 90 degrees to change from a vertical flow to a horizontal flow. The gas/liquid mixture flows past the fan 650 and enters a high pressure region at the downstream side of the fan 650, this high pressure region existing in the piping section 652. The use of a flooded elbow 654 at this point in the system is desirable for at least two reasons. First, the liquid at the bottom portion of the flooded elbow 654 reduces erosion at the turning point in the flow corridor 624, which erosion would normally occur due to suspended particles within the gas/liquid mixture flowing at high rates of speed through a 90 degree turn and impinging at steep angles directly on the bottom surfaces of a conventional elbow were the flooded elbow 654 not employed. The liquid in the bottom of the flooded elbow 654 absorbs the energy in these particles and therefore prevents erosion on the bottom surface of the flooded elbow 654. Still further, liquid droplets which still exist in the gas/liquid mixture as this mixture arrives at the flooded elbow 654 are more easily collected and removed from the flow stream if they impinge upon a liquid. That is, the liquid at the bottom of the flooded elbow 654 operates to collect liquid droplets impinging thereon because the liquid droplets within the flow stream are more easily retained when these suspended liquid droplets come into contact with a liquid. Thus, the flooded elbow 654, which may have a liquid takeoff (not shown) connected to, for example, the re-circulating circuit 625, operates to remove some of the process fluid droplets and condensation from the gas/liquid mixture exiting the venturi section 626.
Importantly, the gas/liquid mixture while passing through the venturi section 626 quickly approaches the adiabatic saturation point, which is at a temperature that is much lower than that of the gas exiting the stack 629. For example, while the gas exiting the stack 629 may be between about 900 and about 1800 degrees Fahrenheit, the gas/liquid mixture in all sections of the concentrator system 600 downstream of the venturi section 626 will generally be in the range of 150 degrees to 190 degrees Fahrenheit, although it can range higher or lower than these values based on the operating parameters of the system. As a result, sections of the concentrator system 600 downstream of the venturi section 626 do not need to be made of high temperature resistant materials and do not need to be insulated at all or to the degree that would be necessary for transporting higher temperature gases if insulation were to be applied for the purpose of more fully utilizing the waste heat content of the inlet hot gas. Still further the sections of the concentrator system 600 downstream of the venturi section 626 disposed in areas, such as along the ground that people will come into contact with, without significant danger, or with only minimal exterior protection. In particular, the sections of the concentrator system downstream of the venturi section 626 may be made of fiberglass and may need minimal or no insulation. Importantly, the gas/liquid stream may flow within the sections of the concentrator system downstream of the venturi section 626 over a relatively long distance while maintaining the gas/liquid mixture therein at close to the adiabatic saturation point, thereby allowing the piping section 652 to easily transport the flow stream away from the building 631 to a more easily accessible location, at which the other equipment associated with the concentrator 600 can be conveniently disposed. In particular, the piping section 652 may span 20 feet, 40 feet, or even longer while maintaining the flow therein at close to the adiabatic saturation point. Of course, these lengths may be longer or shorter based on ambient temperature, the type of piping and insulation used, etc. Moreover, because the piping section 652 is disposed on the high pressure side of the fan 650, it is easier to remove condensation from this stream. In the example embodiment of
In any event, the piping section 652 delivers the gas/liquid stream at close to the adiabatic saturation point to the demister 634, which may be, for example, a crossflow scrubber. The demister 634 operates to remove entrained liquid droplets from the gas/liquid stream. The removed liquid collects in the sump 636 which directs the liquid to the pump 640. The pump 640 moves the liquid through the return line 642 of the re-circulating circuit 625 back to the liquid inlet 630. In this manner, the captured liquid may be further reduced through evaporation to a desired concentration and/or re-circulated to prevent the formation of dry particulate. Fresh liquid to be concentrated is input through the fresh liquid inlet 644. The rate of fresh liquid input into the re-circulating circuit 625 should be equal to the rate of evaporation of the liquid as the gas-liquid mixture flows through the flow corridor 624 plus the rate of liquid or sludge extracted from the settling tank 649 (assuming the material within the settling tank 649 remains at a constant level). In particular, a portion of the liquid may be drawn off through an extraction port 646 when the liquid in the re-circulating circuit 625 reaches a desired concentration. The portion of liquid drawn off through the extraction port 646 may be sent to the storage and settling tank 649 where the concentrated liquid is allowed to settle and separate into its component parts (e.g., a liquid portion and a semi-solid portion). The semi-solid portion may be drawn from the tank 649 and disposed of or further treated.
As noted above, the fan 650 draws the gas through a portion of the flow corridor 624 under negative pressure and pushes gas through another portion of the flow corridor 624 under positive pressure. The quencher section 659, venturi section 626, and fan 650 may be attached to the building 631 with any type of connecting device and, as illustrated in
As the gas-liquid mixture passes through the venturi portion 726 of the flow corridor 724, a portion of the liquid evaporates and is absorbed by the gas, thus consuming a large portion of heat energy within the waste heat as latent heat that exits the concentrator system 700 as water vapor within the exhaust gas.
In the embodiment shown in
Embodiments of the devices and processes described above can be readily modified to accommodate the removal of pollutants from the wastewater being concentrated and also from the exhaust gas employed to concentrate that wastewater. Such modifications are contemplated to be particularly advantageous where the pollutants sought to be removed are among those whose emissions are typically regulated by governmental authorities. Examples of such pollutants include oxides of sulfur (SOx) commonly present in the exhaust gas from the combustion of landfill gas, and ammonia (NH3). Described below are modifications that may be made to the embodiments of the devices and processes described above to accommodate removal of SOx and NH3, but that description is not intended to be limiting to the removal of only those pollutants.
Removal of SOx
Hydrogen sulfide (H2S) is a known poisonous gas that can be generated by bacterial decomposition (chemical reduction) of compounds containing sulfur, sulfites, and sulfates that are present within wastes that have been placed in a landfill. Thus formed, H2S joins with other gases produced by all forms of bacterial action carried out in the landfill to form landfill gas. Generally, the greater the amount of wastes that contain sulfur, sulfites, and sulfates, the greater the amount of hydrogen sulfide that may be expected. For example, landfills may have quantities of sulfates from sources of calcium sulfate (e.g., gypsum wallboard materials) that contribute as much as 10,000 parts per million (weight basis) or greater H2S to the landfill gas. The hydrogen sulfide is part of the landfill gas that is burned in the landfill gas flare, as described herein, for example. Burning the H2S in a gas flare, reciprocating engine, or turbine is beneficial because the H2S is converted to oxides of sulfur (SOx), thus avoiding expensive pretreatment of the landfill gas to remove the H2S. However, the oxides of sulfur may be a regulated air pollutant in some countries. Another benefit of burning the H2S in a flare is that the H2S adds heat value to the flare exhaust that may be used to concentrate the landfill leachate, thus reducing the amount of overall fuel required.
Wet scrubbers are commonly employed to remove SOx from the exhaust gases produced by burning fuels that contain sulfur compounds including H2S. Examples of such scrubbers include spray- and packed-towers that contact (wet) alkaline materials (e.g., solutions or slurries of sodium hydroxide or lime (CaCO3)) directly with the exhaust gas to “scrub” (i.e., remove) SOx from the gas. The principle underlying wet scrubbing can be employed in the context of the wastewater concentrator described herein.
An alkaline material of known concentration can be added to the wastewater feed in a quantity sufficient to react with the SOx present in the exhaust gas and convert it to sodium sulfite and sodium sulfate (where the alkaline is NaOH) and calcium sulfate (CaSO4) where the alkaline is lime. Once formed, the sodium sulfite/sulfate and calcium sulfate salts will be removed from the process as part of the liquid concentrate. Ultimately, the sodium sulfite/sulfate and calcium sulfate salts can be disposed at chemical waste treatment facilities, or further converting into a higher-content solids stream (e.g., up to 100% solids) that can be placed into a special dedicated cell of the landfill to preclude recycling the sulfite/sulfate back into landfill gas as H2S. Because the volume of residual produced from landfill leachate, generally a very dilute aqueous waste stream, is typically only 3% or less of the feed volume, even with the added sulfite/sulfate salts the costs of transportation and disposal at off-site chemical waste treatment facilities, or the costs of building and operating special landfill cells to contain 100% solids should be quite economical, especially when compared to the costs of scrubbing the combustion gas emissions or removing the hydrogen sulfide prior to combustion without applying the waste heat from the combustion process as the principal energy source to treat the wastewater (e.g., leachate).
This dual purpose use for a wastewater treatment system offers tremendous benefits to landfill owners who find that emissions from their flare(s) or landfill gas fueled power plants exceed regulatory limits for SOx emissions. Conversion of the concentrator to function in the combined concentration/scrubbing modes involves only the addition of a metering system (e.g., a pump operatively connected to the controller of the concentrator) and supply tank for the selected alkaline reagent used for scrubbing. Likewise, operational changes to monitor the addition of an SOx removal stage to the concentration process does not add great complexity in that simple on-site analytical tests can be applied to monitor both the hydrogen sulfide levels in the landfill gas and the amount of sulfate in the concentrate produced in the process.
Referring again to
Removal of Ammonia
Ammonia is an air pollutant and a precursor of particulate formation in exhaust gases when released to atmosphere. Because ammonia is soluble in water, it is normally found in the wastewater (e.g., leachate) at landfill facilities, as opposed to the landfill gas
Known principles for the removal of ammonia from can be employed in the context of the concentrator and fluid scrubber described herein. For example, the wastewater feed containing ammonia can be treated with an agent (e.g., a caustic or alkali, such as sodium hydroxide or lime) capable of raising pH of the leachate. The increased-pH leachate can be passed into an air stripper where ammonia in the wastewater will migrate into the air stripper's exhaust air. The exhaust air from the air stripper can be combined with the combustion and excess air employed in the operation of a flare, reciprocating engine or turbine responsible for providing heat to the concentration process.
Within the flare, reciprocating engine or turbine, the ammonia introduced via the combustion air may beneficially reduce another pollutant, oxides of nitrogen (NOx), that may be present in the combustion. That reduction can be accomplished through a process known as selective non-catalytic reduction of NOx emissions. As ammonia passes from the waste heat source into the concentration process with the hot gas, a reagent suitable to convert the ammonia to a stable salt (as in the removal of SOx with alkaline scrubbing compounds) can be introduced to the process. For example, sulfuric acid can be introduced into the wastewater (e.g., leachate) after it exits the air stripper. That acid can be used to sequester the ammonia as ammonium sulfate (NH4)2SO4 within the concentrated liquid.
As illustrated in
One aspect of the process for removing sulfur from landfill gas described herein includes combining the heated gas and a liquid flow of wastewater under pressure to form a mixture, reducing the static pressure of the mixture to vaporize a portion of the liquid in the mixture yielding a partially vaporized mixture comprising entrained concentrated liquid and a liquid concentrate, contacting with the partially vaporized mixture an alkaline agent to reduce the oxides of sulfur in the partially vaporized mixture, and, removing a portion of the entrained concentrated liquid and reduced oxides of sulfur from the vaporized mixture to provide a demisted gas.
Another aspect of the process for removing sulfur from landfill gas described herein includes re-circulating and combining with the liquid flow of wastewater the liquid concentrate.
Yet another aspect of the process for removing sulfur from landfill gas described herein includes removing a portion of the entrained concentrated liquid and reduced oxides of sulfur from the partially vaporized mixture and passing the partially vaporized mixture through a cross flow scrubber operable to remove a portion of the entrained concentrated liquid and reduced oxides of sulfur from the partially vaporized mixture.
In yet another aspect of the process for removing sulfur from landfill gas described herein the partially vaporized mixture has a temperature of about 150° F. to about 190° F. (about 66° C. to about 88° C.).
Yet another aspect of the process for removing sulfur from landfill gas described herein includes producing an exhaust gas from the combustion of a fuel.
Yet another aspect of the process for removing sulfur from landfill gas described herein includes selecting the fuel from the group consisting of landfill gas, natural gas, propane, and combinations thereof.
Yet another aspect of the process for removing sulfur from landfill gas described herein includes combusting landfill gas.
Yet another aspect of the process for removing sulfur from landfill gas described herein includes combusting natural gas.
In yet another aspect of the process for removing sulfur from landfill gas described herein, the heated gas has a temperature of about 900° F. to about 1200° F. (about 482° C. to about 649° C.).
In yet another aspect of the process for removing sulfur from landfill gas described herein, the wastewater comprises about 1 wt. % to about 5 wt. % solids based on the total weight of the leachate.
In yet another aspect of the process for removing sulfur from landfill gas described herein, preferably the liquid concentrate comprises at least about 10 wt. % solids, based on the total weight of the concentrate, more preferably the liquid concentrate comprises at least about 20 wt. % solids, based on the total weight of the concentrate, even more preferably the liquid concentrate comprises at least about 30 wt. % solids, based on the total weight of the concentrate, and even more preferably the liquid concentrate comprises at least about 50 wt. % solids, based on the total weight of the concentrate.
In yet another aspect of the process for removing sulfur from landfill gas described herein, the partially vaporized mixture comprises about 5 wt. % to about 20 wt. % liquid, based on the total weight of the partially vaporized mixture, and more preferably the partially vaporized mixture in comprises about 10 wt. % to about 15 wt. % liquid, based on the total weight of the partially vaporized mixture.
Yet another aspect of the process for removing sulfur from landfill gas described herein includes combusting natural gas directly from a natural gas well head.
Yet another aspect of the process for removing sulfur from landfill gas described herein includes selecting the wastewater from the group consisting of leachate, flowback water, produced water, and combinations thereof.
Yet another aspect of the process for removing sulfur from landfill gas described herein includes selecting the alkaline agent from the group consisting of sodium hydroxide, calcium carbonate, and mixtures thereof.
Yet another aspect of the process for removing sulfur from landfill gas described herein includes combining the heated gas and a liquid flow of wastewater comprising an alkaline agent under pressure to form a mixture thereof and to reduce the oxides of sulfur, reducing the static pressure of the mixture to vaporize a portion of the liquid in the mixture yielding a partially vaporized mixture comprising entrained concentrated liquid and a liquid concentrate, and, removing a portion of the entrained concentrated liquid and reduced oxides of sulfur from the vaporized mixture to provide a demisted gas.
An aspect of the process for ammonia from landfill leachate described herein includes combining with a liquid flow of the wastewater a pH-raising agent to form a flow of increased-pH wastewater, contacting with the flow of increased-pH wastewater an air stream under conditions sufficient to remove ammonia from the wastewater yielding an ammonia-rich air exhaust stream and an ammonia-lean, increased-pH wastewater, combining the heated gas and a flow of the ammonia-lean, increased-pH wastewater under pressure to form a mixture thereof, reducing the static pressure of the mixture to vaporize a portion of the liquid in the mixture yielding a partially vaporized mixture comprising entrained concentrated liquid and a liquid concentrate, and, removing a portion of the entrained concentrated liquid from the vaporized mixture to provide a demisted gas.
Yet another aspect of the process for removing ammonia from landfill leachate includes combining the ammonia-rich air exhaust stream with a combustion air stream, and combusting a fuel in the presence of the combined air stream to form an exhaust gas comprising the heated gas.
Yet another aspect of the process for removing ammonia from landfill leachate includes selecting a caustic as the pH increasing agent.
Yet another aspect of the process for removing ammonia from landfill leachate includes selecting one of sodium hydroxide and lime as the caustic.
Yet another aspect of the process for concentrating wastewater according to the disclosure includes combining a heated gas and a liquid wastewater within a sealed section of duct to form a mixture that flows through the sealed duct under the influence of negative pressure applied by an induced draft fan located downstream of the sealed duct, drawing the flowing mixture through a section of duct with restricted cross-sectional area compared to the cross-sectional area where the mixture is created thereby accelerating the flow rate and creating turbulence that induces shearing forces between the continuous gas phase and surfaces of the restricted duct opening in contact with the discontinuous liquid phase that breaks droplets and other geometric shapes of the flowing liquid into very small droplets thereby creating extended interfacial surface area between the flowing gas and liquid wastewater that allows rapid approach to the adiabatic saturation temperature of the gas-liquid mixture through rapid heat and mass transfer from gas-to-liquid and liquid-to-gas, respectively, yielding a partially vaporized mixture comprising entrained concentrated liquid and a liquid concentrate, and removing a portion of the entrained concentrated liquid from the vaporized mixture to provide a demisted gas.
While certain representative embodiments and details have been shown for purposes of illustrating the invention, it will be apparent to those skilled in the art that various changes in the methods and apparatus disclosed herein may be made without departing from the scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 12/846,337, filed on Jul. 29, 2012, which is a continuation in part of U.S. patent application Ser. No. 12/705,462, filed on Feb. 12, 2010, which is a continuation in part of U.S. patent application Ser. No. 12/530,484, filed on Sep. 9, 2009, which is a U.S. national phase application of International (PCT) Patent Application No. PCT/US08/56702 filed Mar. 12, 2008 and which claims priority benefit of U.S. Provisional Patent Application No. 60/906,743, filed on Mar. 13, 2007. This application also claims priority benefit of U.S. Provisional Patent Application U.S. Provisional Patent Application No. 61/229,650, filed Jul. 29, 2009. The entire disclosures of each of application Ser. Nos. 12/846,337; 12/705,462; 12/530,484; 60/906,743; and 61/229,650 are hereby expressly incorporated by reference herein.
Number | Name | Date | Kind |
---|---|---|---|
2372846 | Frederick et al. | Apr 1945 | A |
2387818 | Wethly | Oct 1945 | A |
2468455 | Metziger | Apr 1949 | A |
2560226 | Joos et al. | Jul 1951 | A |
2619421 | Greenfield | Nov 1952 | A |
2651647 | Greenfield | Sep 1953 | A |
2658349 | Keller | Nov 1953 | A |
2658735 | Ybarrondo | Nov 1953 | A |
2721065 | Ingram | Oct 1955 | A |
2790506 | Vactor | Apr 1957 | A |
2867972 | Hokderreed et al. | Jan 1959 | A |
2879838 | Flynt et al. | Mar 1959 | A |
2890166 | Heinze | Jun 1959 | A |
2911421 | Greenfield | Nov 1959 | A |
2911423 | Greenfield | Nov 1959 | A |
2979408 | Greenfield | Apr 1961 | A |
2981250 | Steward | Apr 1961 | A |
3060921 | Luring et al. | Oct 1962 | A |
3076715 | Greenfield | Feb 1963 | A |
3203875 | Harris | Aug 1965 | A |
3211538 | Gross et al. | Oct 1965 | A |
3212235 | Markant | Oct 1965 | A |
3251398 | Greenfield | May 1966 | A |
3268443 | Cann | Aug 1966 | A |
3284064 | Kolm et al. | Nov 1966 | A |
3299651 | McGrath | Jan 1967 | A |
3304991 | Greenfield | Feb 1967 | A |
3306039 | Peterson | Feb 1967 | A |
3323575 | Greenfield | Jun 1967 | A |
3405918 | Calaceto et al. | Oct 1968 | A |
3432399 | Schutt | Mar 1969 | A |
3488686 | Dunwoody et al. | Jan 1970 | A |
3539549 | Greenfield | Nov 1970 | A |
3546851 | Hardison et al. | Dec 1970 | A |
3578892 | Wilkinson | May 1971 | A |
3601374 | Wheeler | Aug 1971 | A |
3638924 | Calaceto et al. | Feb 1972 | A |
3704570 | Gardenier | Dec 1972 | A |
3713786 | Umstead | Jan 1973 | A |
3716458 | Greenfield et al. | Feb 1973 | A |
3730673 | Straitz, III | May 1973 | A |
3743483 | Shah | Jul 1973 | A |
3754869 | Van Raden | Aug 1973 | A |
3756580 | Dunn | Sep 1973 | A |
3756893 | Smith | Sep 1973 | A |
3762893 | Larsen | Oct 1973 | A |
3782300 | White et al. | Jan 1974 | A |
3789902 | Shah et al. | Feb 1974 | A |
3826096 | Hrusch | Jul 1974 | A |
3838974 | Hemsath et al. | Oct 1974 | A |
3838975 | Tabak | Oct 1974 | A |
3840002 | Douglas et al. | Oct 1974 | A |
3855079 | Greenfield et al. | Dec 1974 | A |
3870585 | Kearns et al. | Mar 1975 | A |
3876490 | Tsuruta | Apr 1975 | A |
3880756 | Raineri et al. | Apr 1975 | A |
3898134 | Greenfield et al. | Aug 1975 | A |
3901643 | Reed et al. | Aug 1975 | A |
3915620 | Reed | Oct 1975 | A |
3917508 | Greenfield et al. | Nov 1975 | A |
3925148 | Erwin | Dec 1975 | A |
3944215 | Beck | Mar 1976 | A |
3945331 | Drake et al. | Mar 1976 | A |
3947215 | Peterson et al. | Mar 1976 | A |
3947327 | Greenfield et al. | Mar 1976 | A |
3950230 | Greenfield et al. | Apr 1976 | A |
3994671 | Straitz, III | Nov 1976 | A |
4001077 | Kemper | Jan 1977 | A |
4007094 | Greenfield et al. | Feb 1977 | A |
4012191 | Lisankie et al. | Mar 1977 | A |
4013516 | Greenfield et al. | Mar 1977 | A |
4026682 | Pausch | May 1977 | A |
4036576 | McCracken | Jul 1977 | A |
4050912 | Hemsath | Sep 1977 | A |
4070423 | Pierce | Jan 1978 | A |
4079585 | Helleur | Mar 1978 | A |
4080883 | Zink et al. | Mar 1978 | A |
4092908 | Straitz, III | Jun 1978 | A |
4118173 | Shakiba | Oct 1978 | A |
4119538 | Yamauchi et al. | Oct 1978 | A |
4140471 | Straitz, III et al. | Feb 1979 | A |
4154570 | Schwartz | May 1979 | A |
4157239 | Reed | Jun 1979 | A |
4181173 | Pringle | Jan 1980 | A |
4185685 | Giberson | Jan 1980 | A |
4198198 | Straitz, III | Apr 1980 | A |
4227897 | Reed | Oct 1980 | A |
4230536 | Sech | Oct 1980 | A |
4257746 | Wells | Mar 1981 | A |
4259185 | Mixon | Mar 1981 | A |
4264826 | Ullmann | Apr 1981 | A |
4270974 | Greenfield et al. | Jun 1981 | A |
4273658 | Karman | Jun 1981 | A |
4276115 | Greenfield et al. | Jun 1981 | A |
4285578 | Yamashita et al. | Aug 1981 | A |
4300924 | Coyle | Nov 1981 | A |
4306858 | Simon | Dec 1981 | A |
4336101 | Greenfield et al. | Jun 1982 | A |
4346660 | McGill | Aug 1982 | A |
RE31185 | Greenfield et al. | Mar 1983 | E |
4430046 | Cirrito | Feb 1984 | A |
4432914 | Schifftner | Feb 1984 | A |
4440098 | Adams | Apr 1984 | A |
4445464 | Gerstmann et al. | May 1984 | A |
4445842 | Syska | May 1984 | A |
4450901 | Janssen | May 1984 | A |
4474477 | Smith et al. | Oct 1984 | A |
4485746 | Erlandsson | Dec 1984 | A |
4496314 | Clarke | Jan 1985 | A |
4518458 | Greenfield et al. | May 1985 | A |
4538982 | McGill et al. | Sep 1985 | A |
4583936 | Krieger | Apr 1986 | A |
4608120 | Greenfield et al. | Aug 1986 | A |
4613409 | Volland | Sep 1986 | A |
4642919 | Werner et al. | Feb 1987 | A |
4648973 | Hultholm et al. | Mar 1987 | A |
4652233 | Hamazaki et al. | Mar 1987 | A |
4658736 | Walter | Apr 1987 | A |
4683062 | Krovak et al. | Jul 1987 | A |
4689156 | Zibrida | Aug 1987 | A |
4693304 | Volland | Sep 1987 | A |
4761077 | Werner | Aug 1988 | A |
4771708 | Douglass, Jr. | Sep 1988 | A |
4818392 | Werner et al. | Apr 1989 | A |
4838184 | Young et al. | Jun 1989 | A |
4863644 | Harrington et al. | Sep 1989 | A |
4877532 | Haentjens et al. | Oct 1989 | A |
4882009 | Santoleri et al. | Nov 1989 | A |
4890672 | Hall | Jan 1990 | A |
4909730 | Roussakis et al. | Mar 1990 | A |
4913065 | Hemsath | Apr 1990 | A |
4917577 | Stirling | Apr 1990 | A |
4938899 | Oros et al. | Jul 1990 | A |
4952137 | Schwartz et al. | Aug 1990 | A |
4954147 | Galgon | Sep 1990 | A |
4961703 | Morgan | Oct 1990 | A |
4971214 | Lillywhite et al. | Nov 1990 | A |
5004484 | Stirling et al. | Apr 1991 | A |
5009511 | Sarko et al. | Apr 1991 | A |
5028298 | Baba et al. | Jul 1991 | A |
5030428 | Dorr et al. | Jul 1991 | A |
5032230 | Shepherd | Jul 1991 | A |
5043104 | Stirling | Aug 1991 | A |
5045202 | Stearns et al. | Sep 1991 | A |
5068092 | Aschauer | Nov 1991 | A |
5076895 | Greenfield et al. | Dec 1991 | A |
5085809 | Stirling | Feb 1992 | A |
5092909 | Werner et al. | Mar 1992 | A |
5102503 | Silinski et al. | Apr 1992 | A |
5131757 | Smith | Jul 1992 | A |
5132090 | Volland | Jul 1992 | A |
5154898 | Ajinkya et al. | Oct 1992 | A |
5167821 | Tanbo et al. | Dec 1992 | A |
5176798 | Rodden | Jan 1993 | A |
5183563 | Rodden | Feb 1993 | A |
5227017 | Tanaka et al. | Jul 1993 | A |
5230167 | Lahoda et al. | Jul 1993 | A |
5238580 | Singhvi | Aug 1993 | A |
5279356 | Bruhn | Jan 1994 | A |
5279646 | Schwab | Jan 1994 | A |
5300123 | Grott | Apr 1994 | A |
5314622 | Stirling | May 1994 | A |
5336284 | Schifftner | Aug 1994 | A |
5342482 | Duesel, Jr. | Aug 1994 | A |
D350838 | Johnson | Sep 1994 | S |
5347958 | Gordon, Jr. | Sep 1994 | A |
5423979 | Allen | Jun 1995 | A |
5460511 | Grahn | Oct 1995 | A |
5484471 | Schwab | Jan 1996 | A |
5512085 | Schwab | Apr 1996 | A |
5527984 | Stultz et al. | Jun 1996 | A |
5585005 | Smith et al. | Dec 1996 | A |
5630913 | Tajer-Ardebili | May 1997 | A |
5632864 | Enneper | May 1997 | A |
5636623 | Panz et al. | Jun 1997 | A |
5648048 | Kuroda et al. | Jul 1997 | A |
5656155 | Norcross et al. | Aug 1997 | A |
5662802 | Heins et al. | Sep 1997 | A |
5695614 | Hording et al. | Dec 1997 | A |
5695643 | Brandt et al. | Dec 1997 | A |
5735680 | Henkelmann | Apr 1998 | A |
5749719 | Rajewski | May 1998 | A |
5759233 | Schwab | Jun 1998 | A |
5810578 | Hystad et al. | Sep 1998 | A |
5865618 | Hiebert | Feb 1999 | A |
5879563 | Garbutt | Mar 1999 | A |
5925223 | Simpson et al. | Jul 1999 | A |
5934207 | Echols et al. | Aug 1999 | A |
5951743 | Hsieh et al. | Sep 1999 | A |
5958110 | Harris et al. | Sep 1999 | A |
5968320 | Sprague | Oct 1999 | A |
5968352 | Ditzler | Oct 1999 | A |
6007055 | Schifftner | Dec 1999 | A |
6085911 | Greenleigh et al. | Jul 2000 | A |
6119458 | Harris et al. | Sep 2000 | A |
6149137 | Johnson et al. | Nov 2000 | A |
6250916 | Philippe et al. | Jun 2001 | B1 |
6276872 | Schmitt | Aug 2001 | B1 |
6293277 | Panz et al. | Sep 2001 | B1 |
6332949 | Beckhaus et al. | Dec 2001 | B1 |
6345495 | Cummings | Feb 2002 | B1 |
6383260 | Schwab | May 2002 | B1 |
6391100 | Hogan | May 2002 | B1 |
6391149 | Calfee et al. | May 2002 | B1 |
6402816 | Trivett et al. | Jun 2002 | B1 |
6435860 | Brookshire et al. | Aug 2002 | B1 |
6468389 | Harris et al. | Oct 2002 | B1 |
6485548 | Hogan | Nov 2002 | B1 |
6500216 | Takayasu | Dec 2002 | B1 |
6585899 | Edvardsson et al. | Jul 2003 | B1 |
6616733 | Pellegrin | Sep 2003 | B1 |
6632083 | Bussman et al. | Oct 2003 | B1 |
6656250 | Listner | Dec 2003 | B1 |
6719829 | Schwab | Apr 2004 | B1 |
6733636 | Heins | May 2004 | B1 |
6742337 | Hays et al. | Jun 2004 | B1 |
6752920 | Harris et al. | Jun 2004 | B2 |
6913671 | Bolton et al. | Jul 2005 | B2 |
6919000 | Klausner et al. | Jul 2005 | B2 |
6926757 | Kalliokoski et al. | Aug 2005 | B2 |
6936140 | Paxton et al. | Aug 2005 | B2 |
7037434 | Myers et al. | May 2006 | B2 |
7069991 | Gudmestad et al. | Jul 2006 | B2 |
7073337 | Mangin | Jul 2006 | B2 |
7074339 | Mims | Jul 2006 | B1 |
7077201 | Heins | Jul 2006 | B2 |
7111673 | Hugill | Sep 2006 | B2 |
7142298 | Nuspliger | Nov 2006 | B2 |
7144555 | Squires et al. | Dec 2006 | B1 |
7150320 | Heins | Dec 2006 | B2 |
7156985 | Frisch | Jan 2007 | B1 |
7166188 | Kedem et al. | Jan 2007 | B2 |
7214290 | Duesel, Jr. et al. | May 2007 | B2 |
7225620 | Klausner et al. | Jun 2007 | B2 |
7288186 | Harris | Oct 2007 | B2 |
7332010 | Steiner | Feb 2008 | B2 |
7402247 | Sutton | Jul 2008 | B2 |
7416172 | Duesel, Jr. et al. | Aug 2008 | B2 |
7416177 | Suzuki et al. | Aug 2008 | B2 |
7424999 | Xu et al. | Sep 2008 | B2 |
7428926 | Heins | Sep 2008 | B2 |
7438129 | Heins | Oct 2008 | B2 |
7442035 | Duesel, Jr. et al. | Oct 2008 | B2 |
7459135 | Pieterse et al. | Dec 2008 | B2 |
7572626 | Frisch et al. | Aug 2009 | B2 |
7591309 | Minnich et al. | Sep 2009 | B2 |
7614367 | Frick | Nov 2009 | B1 |
7661662 | Forstmanis | Feb 2010 | B2 |
7681643 | Heins | Mar 2010 | B2 |
7717174 | Heins | May 2010 | B2 |
7758819 | Nagelhout | Jul 2010 | B2 |
7832714 | Duesel, Jr. et al. | Nov 2010 | B2 |
7955419 | Casella | Jun 2011 | B2 |
8066844 | Duesel, Jr. et al. | Nov 2011 | B2 |
8066845 | Duesel, Jr. et al. | Nov 2011 | B2 |
8114287 | Harris | Feb 2012 | B2 |
8136797 | Duesel, Jr. et al. | Mar 2012 | B2 |
8459984 | Duesel, Jr. et al. | Jun 2013 | B2 |
8518257 | Galgon et al. | Aug 2013 | B2 |
8535538 | Keeling et al. | Sep 2013 | B1 |
8557117 | Galgon et al. | Oct 2013 | B2 |
8568557 | Duesel, Jr. et al. | Oct 2013 | B2 |
8623174 | Duesel, Jr. et al. | Jan 2014 | B1 |
8679291 | Duesel, Jr. et al. | Mar 2014 | B2 |
8721771 | Duesel, Jr. et al. | May 2014 | B2 |
8741100 | Duesel, Jr. | Jun 2014 | B2 |
8790496 | Duesel, Jr. et al. | Jul 2014 | B2 |
8801897 | Duesel, Jr. et al. | Aug 2014 | B2 |
8821728 | Galgon et al. | Sep 2014 | B2 |
8882967 | Patel | Nov 2014 | B1 |
9199861 | Duesel, Jr. et al. | Dec 2015 | B2 |
9296624 | Duesel, Jr. et al. | Mar 2016 | B2 |
20010013666 | Nomura et al. | Aug 2001 | A1 |
20020069838 | Rautenbach et al. | Jun 2002 | A1 |
20030104778 | Liu | Jun 2003 | A1 |
20030127226 | Heins | Jul 2003 | A1 |
20040000515 | Harris et al. | Jan 2004 | A1 |
20040031424 | Pope | Feb 2004 | A1 |
20040040671 | Duesel et al. | Mar 2004 | A1 |
20040045681 | Bolton et al. | Mar 2004 | A1 |
20040045682 | Liprie | Mar 2004 | A1 |
20040079491 | Harris et al. | Apr 2004 | A1 |
20050022989 | Heins | Feb 2005 | A1 |
20050049449 | Forrester | Mar 2005 | A1 |
20050074712 | Brookshire et al. | Apr 2005 | A1 |
20050230238 | Klausner et al. | Oct 2005 | A1 |
20050242036 | Harris | Nov 2005 | A1 |
20050274669 | Marchesseault et al. | Dec 2005 | A1 |
20050279500 | Heins | Dec 2005 | A1 |
20060000355 | Ogura et al. | Jan 2006 | A1 |
20060032630 | Heins | Feb 2006 | A1 |
20070045100 | Wright | Mar 2007 | A1 |
20070051513 | Heins | Mar 2007 | A1 |
20070084808 | Williamson et al. | Apr 2007 | A1 |
20070102154 | Grott | May 2007 | A1 |
20070114683 | Duesel et al. | May 2007 | A1 |
20070175189 | Gomiciaga-Pereda et al. | Aug 2007 | A1 |
20070251650 | Duesel et al. | Nov 2007 | A1 |
20080110417 | Smith | May 2008 | A1 |
20080115361 | Santini et al. | May 2008 | A1 |
20080173176 | Duesel et al. | Jul 2008 | A1 |
20080173590 | Duesel et al. | Jul 2008 | A1 |
20080174033 | Duesel et al. | Jul 2008 | A1 |
20080213137 | Frisch et al. | Sep 2008 | A1 |
20080265446 | Duesel et al. | Oct 2008 | A1 |
20080272506 | Duesel et al. | Nov 2008 | A1 |
20080277262 | Harris | Nov 2008 | A1 |
20090014387 | Probst | Jan 2009 | A1 |
20090020481 | Bailie et al. | Jan 2009 | A1 |
20090078416 | Heins | Mar 2009 | A1 |
20090127091 | Heins | May 2009 | A1 |
20090294074 | Forstmanis | Dec 2009 | A1 |
20090294377 | Gallot | Dec 2009 | A1 |
20100038310 | Shafer et al. | Feb 2010 | A1 |
20100095763 | Harris | Apr 2010 | A1 |
20100125044 | Keister | May 2010 | A1 |
20100126931 | Capeau et al. | May 2010 | A1 |
20100139871 | Rasmussen et al. | Jun 2010 | A1 |
20100176042 | Duesel, Jr. et al. | Jul 2010 | A1 |
20100224364 | Heins | Sep 2010 | A1 |
20100224561 | Marcin | Sep 2010 | A1 |
20100236724 | Duesel, Jr. et al. | Sep 2010 | A1 |
20100264068 | Ikebe et al. | Oct 2010 | A1 |
20110005999 | Randal | Jan 2011 | A1 |
20110061816 | Duesel, Jr. et al. | Mar 2011 | A1 |
20110083556 | Duesel, Jr. et al. | Apr 2011 | A1 |
20110100924 | Duesel, Jr. et al. | May 2011 | A1 |
20110108471 | Page et al. | May 2011 | A1 |
20110132815 | Angelilli et al. | Jun 2011 | A1 |
20110137465 | Angelilli et al. | Jun 2011 | A1 |
20110147195 | Shapiro et al. | Jun 2011 | A1 |
20110168646 | Tafoya | Jul 2011 | A1 |
20110174447 | Duesel, Jr. et al. | Jul 2011 | A1 |
20110180470 | Harris | Jul 2011 | A1 |
20110240540 | Harris | Oct 2011 | A1 |
20120012309 | Noles, Jr. | Jan 2012 | A1 |
20120171091 | DiTommaso et al. | Jul 2012 | A1 |
20120186451 | Duesel, Jr. et al. | Jul 2012 | A1 |
20120205303 | Rosine et al. | Aug 2012 | A1 |
20120211441 | Harris | Aug 2012 | A1 |
20120273367 | Themy et al. | Nov 2012 | A1 |
20120279925 | Miller et al. | Nov 2012 | A1 |
20120292176 | Machhammmer et al. | Nov 2012 | A1 |
20130037223 | Duesel, Jr. | Feb 2013 | A1 |
20130048562 | Keister | Feb 2013 | A1 |
20130048575 | Gruber et al. | Feb 2013 | A1 |
20140041811 | Duesel, Jr. et al. | Feb 2014 | A1 |
20140083938 | Galgon et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
757-2004 | May 2007 | CL |
1262236 | Aug 2000 | CN |
101445290 | Jun 2009 | CN |
556 455 | Aug 1932 | DE |
1 173 429 | Jul 1964 | DE |
0 047 044 | Mar 1982 | EP |
1371790 | Dec 2003 | EP |
1 482 243 | Dec 2004 | EP |
2 441 817 | Jun 1980 | FR |
383570 | Nov 1932 | GB |
463770 | Apr 1937 | GB |
60257801 | Dec 1985 | JP |
62121687 | Jun 1987 | JP |
06-142448 | May 1994 | JP |
2003021471 | Jan 2003 | JP |
2004-097866 | Apr 2004 | JP |
2004-249226 | Sep 2004 | JP |
2007-117874 | May 2007 | JP |
200195548 | Sep 2000 | KR |
2090512 | Sep 1997 | RU |
808088 | Feb 1981 | SU |
1599031 | Oct 1990 | SU |
WO-9610544 | Apr 1996 | WO |
WO-2004022487 | Mar 2004 | WO |
WO-2005110608 | Nov 2005 | WO |
WO-2008112793 | Sep 2008 | WO |
WO-2009071763 | Jun 2009 | WO |
WO-2010092265 | Aug 2010 | WO |
WO-2011032275 | Mar 2011 | WO |
WO-2011042693 | Apr 2011 | WO |
WO-2011050317 | Apr 2011 | WO |
WO-2012100074 | Jul 2012 | WO |
Entry |
---|
Office Action for U.S. Appl. No. 13/649,535, dated Sep. 26, 2014, 8pgs. |
Japanese Office Action for Patent Application No. 2012-552886, dated Jan. 7, 2015. |
Search Report for PCT/US2014/015007, dated Nov. 12, 2014. |
Written Opinion for PCT/US2014/015007, dated Nov. 12, 2014. |
English Translation of First Office Action in Russian Application No. 2012104408 dated Aug. 12, 2014. |
English Translation of Office Action in Japanese Application No. 2012-523026 dated Jul. 2, 2014. |
Japanese Office Action for Patent Application No. 2011-550282, dated May 14, 2014. |
International Search Report and Written Opinion for Application No. PCT/US2013/074971, dated May 22, 2014. |
English translation of Chinese Office Action for Application No. 2010800343800, dated Jul. 1, 2014. |
“Gas Atomized Venturi Scrubbers,” Bionomic Industries, copyright 2008, printed from www.bionomicind.com_http://www.bionomicind.com on May 25, 2011. |
International Preliminary Report on Patentability for International application No. PCT/US2013/051315, dated Jan. 20, 2015. |
International Search Report and Written Opinion for Application No. PCT/US2013/051315, dated Nov. 26, 2013. |
Office Action for U.S. Appl. No. 11/625,024, dated Nov. 27, 2009. |
Supplementary Partial European Search Report for Application No. EP13820641.2, dated Feb. 11, 2016. |
International Preliminary Report on Patentability for Application No. PCT/US2014/022307, dated Sep. 15, 2015. |
Jones, “Liquid Circulation in a Draft-Tube Bubble Column,” Chemical Engineering Science, 40(3):449-462 (1985). |
Talbert et al., “The Elecrospouted Bed,” IEEE Transactions on Industry Applications, vol. 1A-20, No. 5, pp. 1220-1223 (1984). |
Fox et al., “Control Mechanisms of Flulidized Solids Circulation Between Adjacent Vessels,” AlChE Journal, 35(12):1933-1941 (1989). |
Smith, “Sludge-U-Like, As the Ban on Sea Disposal of Sewage Waste Looms, Technologies That Can Deliver Cleaner, Thicker and More Farmer-Friendly Sludges Are Gaining Popularity,” Water Bulletin, 708 (1996). |
Durkee et al., “Field Tests of Salt Recovery System for Spent Pickle Brine,” Journal of Food Service, 38:507-511 (1973). |
English language translation of an office action from Chilean Patent Application No. 237-2007, (dated 2007). |
English-language translation of Hage, H., “The MeMon Experiment: A Step towards Large-Scale Processing of Manure,” Applied Science, 4 (1988). |
St. Onge et al., “Start-Up, Testing, and Performance of the First Bulb-Type Hydroelectric Project in The U.S.A.,” IEEE Transactions on Power Apparatus Systems, PAS-101(6):1313-1321 (1982). |
German Kurz, “Immersion Heater,” OI U. Gasfeuerung, 18(3):171-180 (1973). English-language abstract only. |
Hattori et al., “Fluid and Solids Flow Affecting the Solids Circulation Rate in Spouted Beds with a Draft Tube,” Journal of Chemical Engineering of Japan, 37(9):1085-1091 (2004). |
Yeh et al., “Double-Pass Heat or Mass Transfer Through a Parallel-Plate Channel with Recycle,” International Journal of Hat and Mass Transfer, 43:487-491 (2000). |
International Preliminary Report on Patentability for Application No. PCT/US2007/001487, dated Jul. 21, 2009. |
International Preliminary Report on Patentability for Application No. PCT/US2007/001632, dated Jul. 21, 2009. |
International Preliminary Report on Patentability for Application No. PCT/US2007/001633, dated Jul. 21, 2009. |
International Preliminary Report on Patentability for Application No. PCT/US2007/001634, dated Jul. 21, 2009. |
International Preliminary Report on Patentability for Application No. PCT/US2008/056702, dated Sep. 15, 2009. |
International Search Report and Written Opinion for Application No. PCT/US08/56702, dated Jun. 10, 2008. |
International Search Report and Written Opinion for Application No. PCT/US2010/024143, dated Oct. 12, 2010. |
International Search Report for Application No. PCT/US2006/028515, dated Nov. 14, 2006. |
Mueller et al., “Rotating Disk Looks Promising for Plant Wastes,” (2007). |
Claflin, “Intraparticle Conduction Effects on the Temperature Profiles in Spouted Beds,” Chemeca 85, paper D9b, The Thirteenth Australasian Conference on Chemical Engineering, Perth, Australia, pp. 471-475 (1985). |
Dunn, “Incineration's Role in Ultimate Disposal of Process Wastes,” Chemical Engineering, Deskbook Issue, pp. 141-150 (1975). |
Fan et al., “Some Remarks on Hydrodynamic Behavior of a Draft Tube Gas-Liquid-Solid Fluidized Bed,” AlChE Symposium Series, No. 234(80):91-97 (1985). |
Etzensperger et al., “Phenol Degradation in a Three-Phase Biofilm Fluidized Sand Bed Reactor,” Bioprocess Engineering, 4:175-181 (1989). |
Yoshino et al., “Removal and Recovery of Phosphate and Ammonium as Struvite from Supernatant in Anaerobic Digestion,” Water Science and Technology, 48(1):171-178 (2003). |
Hocevar et al., “The Influence of Draft-Tube Pressure Pulsations on the Cavitation-Vortex Dynamics in a Francis Turbine,” Journal of Mechanical Engineering, 49:484-498 (2003). |
Padial et al., “Three-Dimensional Simulation of a Three-Phase Draft-Tube Bubble Column,” Chemical Engineering Science, 55:3261-3273 (2000). |
Office action from Chilean Patent Application No. 238-2007, (dated 2007). |
Swaminathan et al., “Some Aerodynamic Aspects of Spouted Beds of Grains,” Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada, pp. 197-204 (2007). |
Williams et al., “Aspects of Submerged Combustion As a Heat Exchange Method,” Trans IChemE, 71(A):308-309 (1993). |
Sathyanarayana et al., Circular C.W. Intake System—A Research Opinion, Seventh Technical Conference of the British Pump Manufacturer's Association, paper 21, pp. 293-313, 1981. |
Schone, “Oil Removal from Exhaust Steam and Condensate of Piston-Powered Steam Engines,” Braunkohle, 31:82-92 (1932). English-language abstract only. |
Shaw LFG Specialties, LLC, 2006 Product Catalog, (2006). |
Cross et al., “Leachate Evaporation by Using Landfill Gas,” Proceedings Sardinia 97, Sixth Landfill Symposium, S. Margherita di Pula, Cagliari, Italy, pp. 413-422 (1997). |
Genck, “Guidelines for Crystallizer Selection and Operation,” CEP, pp. 26-32 (2004). www.cepmagazine.org. |
Written Opinion for Application No. PCT/US2010/024143, dated Oct. 12, 2010. |
Shimizu et al., “Filtration Characteristics of Hollow Fiber Microfiltration Membranes Used in Membrane Bioreactor for Domestic Wastewater Treatment,” Wat. Res., 30(10):2385-2392 (1996). |
Miyake et al., “Performance Characteristics of High Speed-Type Cross Flow Turbine,” 83-0047:2575-2583 (1993). |
Ye et al., “Removal and Distribution of Iron, Manganese, Cobalt, and Nickel Within a Pennsylvania Constructed Wetland Treating Coal Combustion By-Product Leachate,” J. Environ. Qual., 30:1464-1473 (2001). |
International Search Report and Written Opinion for Application PCT/US2011/021811, dated Mar. 21, 2011. |
MikroPul, “Wet Scrubbers,” (2009). www.mikropul.com. |
International Search Report and Written Opinion for Application No. PCT/US10/043647, dated Apr. 27, 2011. |
International Search Report and Written Opinion for Application No. PCT/US10/043648, dated Apr. 27, 2011. |
EVRAS—Evaporative Reduction and Solidification Systems; Brochure for Web. Believed to be publically available as early as Mar. 5, 2010. |
Hill et al., “Produced Water and Process heat Combined Provide Opportunities for Shell CO2”; EVRAS; Facilities 2000: Facilities Engineering in the Next Millennium. |
Layne Evaporative Reduction and Solidification System Brochure (2010). |
Intevras Technologies, LLC—Innovative solutions for water purification, remediation and process improvement; Power Point Presentation, Oct. 2009. |
Office Action issued for U.S. Appl. No. 12/705,462, dated Nov. 6, 2012. |
Office Action issued for U.S. Appl. No. 12/846,257, dated Nov. 16, 2012. |
International Preliminary Report on Patentability and Written Opinion issued for International Patent application No. PCT/US2011/021811, dated Aug. 14, 2012. |
International Search Report for Application No. PCT/US2012/021897, dated Oct. 8, 2012. |
Written Opinion for Application No. PCT/US2012/021897, dated Sep. 28, 2012. |
English translation of Chinese First Office Action for Application No. 201080012067.7, dated Oct. 12, 2012. |
English translation of Chinese Search Report for Application No. 201080012067.7, dated Sep. 12, 2012. |
U.S. Office Action for U.S. Appl. No. 12/530,484, dated Apr. 16, 2013. |
U.S. Office Action for U.S. Appl. No. 12/846,337, dated Apr. 17, 2013. |
Rule 62 EPC Communication issued from the European Patent Office for Application No. 10741828.7, dated Jan. 31, 2013. |
Rule 62 EPC Communication issued from the European Patent Office for Application No. 10805027.9, dated Feb. 5, 2013. |
Rule 62 EPC Communication issued from the European Patent Office for Application No. 10805026.1, dated Feb. 27, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2010/043647, dated Feb. 9, 2012. |
International Preliminary Report on Patentability for Application No. PCT/US2010/043648, dated Feb. 9, 2012. |
Shaw LFG Specialties, LCC “Waste Heat Leachate Evaporator System” (2011). |
Mussatti, Daniel, Section 6, Particulate Matter Controls. Chapter 2 Wet Scrubbers for Particulate Matter. Innovative Strategies and Economics Group. United States Environmental Protection Agency. Jul. 2002. |
Office Action for U.S. Appl. No. 12/530,484, dated Feb. 29, 2012. |
Office Action for U.S. Appl. No. 12/530,484, dated Oct. 17, 2012. |
Office Action for U.S. Appl. No. 12/530,484, dated Apr. 16, 2013. |
Office Action for U.S. Appl. No. 12/846,337, dated Apr. 17, 2013. |
Chinese Office Action for Application No. 201180014846.5, dated Jun. 18, 2013. |
Gaudlip et al; “Marcellus Shale Water Management Challenges in Pennsylvania,” SPE Shale Gas Production Conference, Fort Worth (2008). |
Search Report for Chinese Patent Application No. 201180014846.5, dated Jun. 8, 2013. |
Alabovskij et al., “Concentration of Boiler Washing Water in Submerged-Combustion Devices,” Promyshl. Energet, 4:38-39 (1975). English-lanuage abstract only. |
Bachand et al., “Denitrification in Constructed Free-Water Surface Wetlands: II. Effects of Vegetation and Temperature,” Ecological Engineering, 14:17-32 (2000). |
Barrett et al., “The Industrial Potential and Economic Viability of Spouted Bed Processes,” Chemeca 85, paper D4c, The Thirteenth Australasian Conference on Chemical Engineering, Perth, Australia, pp. 401-405 (1985). |
Bennett et al., “Design of a Software Application for the Simulation and Control of Continuous and Batch Crystallizer Circuits,” Advances in Engineering Software, 33:365-374 (2002). |
Berg, “The Development of the Controlled Buoyancy System for Installation of Submerged Pipelines,” Journal AWWA, Water Technology/Quality, pp. 214-218 (1977). |
Brandt et al., “Treatment Process for Waste Water Disposal of the “Morcinek” Mine Using Coalbed Methane,” Conference on Coalbed Methane Utilization, Oct. 5-7, 1994. |
Cherednichenko et al., “Disposal of Saline Wastes From Petroleum Refineries, All-Union Scientific-Research and Planning-Design Institute of the Petroleum Refining and Petrochemical Industry,” Khimiya I Tekhnologiya Topliv I Masel, 9:37-39 (1974). Translated. |
Claflin et al., “The Use of Spouted Beds for the Heat Treatment of Grains,” Chemeca 81, The 9th Australasian Conference on Chemical Engineering, Christchurch, New Zealand, 4:65-72 (1981). |
Final Office Action for U.S. Appl. No. 11/625,002, dated May 26, 2010. |
Final Office Action for U.S. Appl. No. 11/625,022, dated Jan. 24, 2011. |
Final Office Action for U.S. Appl. No. 11/625,024, dated Dec. 8, 2010. |
International Preliminary Report on Patentability for Application No. PCT/US2006/015803, dated Nov. 13, 2007. |
International Preliminary Report on Patentability for Application No. PCT/US2006/028515, dated Jan. 22, 2008. |
International Preliminary Report on Patentability for Application No. PCT/US2012/021897, dated Aug. 1, 2013. |
International Preliminary Report on Patentability for Application No. PCT/US2012/021897, dated Jul. 23, 2013. |
International Search Report and Written Opinion for Application No. PCT/US2006/015803, dated Oct. 30, 2007. |
LFG Specialties, LLC, Waste Heat Leachate Evaporator System, Jan. 14, 2011. |
Notice of Allowance for U.S. Appl. No. 11/625,159, dated Jul. 9, 2010. |
Office Action for U.S. Appl. No. 11/625,002, dated Jan. 6, 2010. |
Office Action for U.S. Appl. No. 11/625,022, dated Jun. 22, 2010. |
Office Action for U.S. Appl. No. 11/625,024, dated Jun. 18, 2010. |
Screen shots from video on LFG website taken Jan. 18, 2011 (http://www.shawgrp.com/markets/envservices/envsolidwaste/swlfg). |
English translation of Chinese Office Action for Application No. 201080034380.0., dated Nov. 11, 2013. |
Notice of Reasons for Refusal for Japanese Application No. 2012-523025, dated Apr. 15, 2015. |
Notice of Reasons for Refusal for Japanese Application No. 2012-523026, dated Apr. 15, 2015. |
English translation of Decision to Grant for Russian Application No. 2012137951/05, dated Apr. 1, 2015. |
“Waste Heat Recovery Systems,” Bionomic Industries, copyright 2008, printed from www.bionomicind.com_http://www.bionomicind.com on May 25, 2011. |
Alabovskij et al., “Concentration of Boiler Washing Water in Submerged-Combustion Devices,” Promyshl Energet, 4:38-39 (1975). English-language abstract only. |
International Preliminary Report on Patentability for application No. PCT/US2014/063818, dated May 10, 2016. |
International Preliminary Report on Patentability for International application No. PCT/US2013/074971, dated Jun. 16, 2015. |
International Preliminary Report on Patentability for International application No. PCT/US2014/022307, dated Sep. 15, 2015. |
International Search Report for International application No. PCT/US2014/063818, dated Feb. 25, 2015. |
Partial International Search Report for Application No. PCT/US2016/029434, dated Jul. 15, 2016. |
Search Report for PCT/US2014/022307, dated Jun. 10, 2014. |
Supplementary European Search Report for Application No. 13820641, dated Jun. 6, 2016. |
U.S. Appl. No. 13/849,274, filed Mar. 22, 2013. |
Written Opinion for International application No. PCT/US2014/063818, dated Feb. 25, 2015. |
Written Opinion for PCT/US2014/022307, dated Jun. 10, 2014. |
Canadian Office Action for Application No. 2,751,720, dated Nov. 14, 2016. |
Search Report for International application No. PCT/US2016/029434, dated Oct. 4, 2016. |
Written Opinion for International application No. PCT/US2016/029434, dated Oct. 4, 2016. |
European Examination Report for Application No. 13820641.2, dated Apr. 6, 2017. |
Number | Date | Country | |
---|---|---|---|
20140332454 A1 | Nov 2014 | US |
Number | Date | Country | |
---|---|---|---|
60906743 | Mar 2007 | US | |
61229650 | Jul 2009 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12846337 | Jul 2010 | US |
Child | 14337997 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12705462 | Feb 2010 | US |
Child | 12846337 | US | |
Parent | 12530484 | US | |
Child | 12705462 | US |