The present invention relates to compact wireless sensors, and, particularly, for wireless security sensors for insertion within window and door frames as a means for detecting intrusion.
Sensors have been around for many years for detecting a change of state. Security sensors, which detect a change of state when a door or window has been opened during an unauthorized time, or in some other unauthorized conditions, have routinely been used as part of a security system. Traditionally, intrusion of a door or window has been sensed by a break in an electromagnetic circuit using a device, such as a reed switch installed in one portion of the window or door (the frame or closure between the frame) and a magnet installed in the other portion of the window or door.
Sensors can be either hard wired or wireless as part of the security system. Known wireless sensors, even those intended to be hidden to some degree, are quite large. For example, known wireless security sensors, such as the ITI Recessed Micro Door Window Sensor (model 60-741-95) [Interactive Technologies, Inc. of North Saint Paul, Minn.] or Ademco Recessed Transmitter (model no. 5818) [Alarm Device Manufacturing Company of Syosset, N.Y.] have overall lengths of 3.8 inches and 4⅞ inches, respectively.
The Applicant's co-pending U.S. patent application Ser. No. 09/994,048 (“'048”), filed Nov. 27, 2001, and entitled “Wireless Security Sensor System,” discloses a concealed, wireless security sensor positioned within windows and doors. The '048 patent application discloses a wireless security sensor system that has a wireless security sensor (in preferred form, a reed switch and magnet assembly) inserted into a hollow interior forming part of a window or door frame and that the exposed face of the sensor or the magnet assembly is nearly flush with the inner core of the frame that defines the hollow opening. The other complementary component (the reed switch or magnet assembly) is inserted within a closure device (the window or the door) to which the closure device moves relative to the frame between the open and closed positions.
The complementary component also has a face that is nearly flush with the perimeter surface of the closure such that the two faces of the complementary components are facing each other when the closure is in the closed position relative to the frame. When the face of the component containing the sensor is in the closed position and aligned with the face of the component containing the magnet assembly, the reed switch of the sensor closes in the presence of the magnetic field between the sensor and the magnetic assembly. A microprocessor monitors the state of the reed switch. When the closure is in the open position, the magnetic field is removed, and the reed switch opens, which in turn sends a signal to a wireless transmitter. The wireless transmitter may, in turn, transmit a signal to a receiving panel capable of emitting an audible alarm signal and/or a signal to security or police to indicate that the window/door has been opened.
The '048 patent application discloses that good placement of a wireless security sensor is within the inner and outer walls (or skins) of the window frame with a front face of the sensor housing positioned nearly flush with the inner wall of the window (or door) frame. In doing so, the sensor is hidden within the frame and is not readily seen to an intruder. Additionally, a wire antenna can be positioned within the hollow portion between the window or door frame so as to take up less space and be less conspicuous.
The afore-mentioned '048 patent application security system is useful for installation at the time of manufacturing where the size of the window may be made to accommodate the size of the wireless sensor. However, standard manufactured windows have a frame width between the interior and exterior wall or skins that are approximately ½ to 1 inch thick. Conventional wireless sensors, with lengths of 4-5 inches, can pierce the exterior skin of the frame when the face of the sensor is positioned nearly flush with the interior skin. And piercing the outer skin after the window/door leaves the manufacturer's shop may void window/door manufacturers' warranties by breaking the water seal provided by the manufacturers. Voiding a manufacturer's warranty is highly undesirable for security device manufacturers and installers. Such risk reduces the likelihood of obtaining after-market, concealed, wireless security systems.
Furthermore, size of the conventional wireless sensors is highly contingent on the sensor's power source. In the afore-mentioned ITI and Ademco wireless sensors, long life, high capacity, lithium batteries, namely, 3V lithium 123A batteries, such as Panasonic CR 123A or Duracell DL 123A models, are used as the power source. These lithium batteries have sufficient capacity to provide a long life, e.g., greater than 5 years, but are relatively large. These type batteries typically measure 60 mm long, (slightly under 2½ inches). In conjunction with the battery, the sensor switch and electronic components all add up to a sensor length of approximately 4 to 5 inches. If a smaller sized battery is used to create a smaller sensor, compensatory measures will need to be added if battery life span is not to be sacrificed.
The present invention is directed to a compact wireless sensor that is particularly applicable for wireless intrusion sensor systems that can be embedded within conventional window and door frames without piercing an outer wall of the frame.
The sensor unit has a housing that is no greater than 1 inch in length and is, in preferred form, less than ½ inch. The sensor components, including the sensor switch, microprocessor, wireless transmitter, timer, and power source all fit within a hollow interior of the sensor housing. To fit within the small-sized housing, the power source is a coin cell battery and is stacked with the microprocessor, switch, timer, and transmitter in such a way to fit within the sensor housing. An antenna extends from the wireless transmitter and externally of the housing to transmit a signal from the transmitter to an external source, such as an alarm system.
The microprocessor samples the switch state, as opposed to continuous monitoring, in order to conserve the battery power. Various electrical components and circuits allow the microprocessor to sample the switch state at select intervals, but allow the microprocessor to sleep or be nearly idle during non-sampling periods. During the idle periods, the power draw on the battery is negligible. Thus, the smaller size coin cell battery's life is extended several fold over the anticipated life of the battery during continuous monitoring.
Like reference numerals are used to designate like parts throughout the several views of the drawings, wherein:
The present invention is directed to a compact wireless sensor, and, particularly, for use in wireless security systems, such as the system disclosed in the afore-mentioned '048 patent application and which is incorporated herein by reference. In addition to being of size that fits within a standard window frame having a width of approximately ½ to 1 inch between an exterior wall and an interior wall, the sensor may have a long life span by being able to conserve power consumption through sampling the state of the sensor, as opposed to continuous monitoring.
The preferred embodiment of the compact wireless sensor 10 of the present invention is illustrated in
The overall length×of the side wall 16 is approximately ½ inch or less. This compact size over known prior art wireless sensors (roughly {fraction (1/10)}th or less of the afore-mentioned Ademco wireless sensor and roughly ⅛th or less of the afore-mentioned ITI wireless sensor) can be attained by the use of a different and smaller type power source, namely, a coin cell battery 24. In preferred form, the coin cell battery is a round 3V lithium ion CR1620 coin cell battery, which is a shelf good item.
Referring particularly to
In preferred form, the sensing switch 28 is a reed switch, although other switching mechanisms can be used, such as physical contact switches or a magnetic sphere switches (e.g., as manufactured by Magnasphere Corp. of Brookfield, Wis.).
The negative terminal of the battery 24 is connected to the PCB 27, preferably by a second battery clip 34. The battery clips 32 and 34 may be soldered to the PCB. The battery 24 is thereby retained in an adjacent position relative to the wireless transmitter 30. The small power source (battery) in conjunction with the microprocessor, transmitter, and switch, all stacked together, allows the components to fit within the compact housing interior.
In preferred form, the positive battery clip 32 is a c-shaped clip in which it is attached to the PCB on two sides. In this manner, the battery stays in place even without the body attached (see
Antenna 36 (illustrated in
The preferred antenna is a nearly ¼ wavelength dipole wire antenna. This is preferred over magnetic loop antenna or helical antenna, although both of these other type antennas will work with the present invention. The nearly ¼ wave wire antenna is preferred because it is a more efficient antenna than the smaller magnetic loop and helical antenna. As a more efficient antenna requires less transmit power to achieve a comparable range, it reduces the transmission pulse current requirements demanded on the smaller coin cell battery without sacrificing performance.
The sensor 10 also may include a snap-in closure or cap 38 for closing the bottom of the housing 12. In the preferred embodiment, wire antenna 36 extends from the housing 12 through a hole 40 (
The cap 13 is preferably made of a hard plastic, but the body 15 is preferably made out of a synthetic resilient material, such as Santaprene. When the cap is twisted onto the body to complete the housing, the Santaprene and hard plastic combination form a cam lock fit, analogous to an O-ring gasket. This combination provides better resistance to moisture. However, the housing still functions sufficiently for the purposes identified herein when manufactured of a solid plastic material or other hard man-made material.
Now referring to
Inside the housing 44 is magnet 52, which is a shelf good item.
The preferred application of the present invention is within a window or door frame 54, such as a vinyl extruded window or door, and complementary closure device 62 (e.g., window or door). Referring to
Referring also to
Oppositely situated from the sensor face 14 is the face 48 of the magnet assembly housing, which is embedded within the closure 62. When the magnet assembly 42 is brought into close proximity with the sensor unit 10, the magnetic field activates the switch to change state. Similarly, when the closure device (e.g., window) is opened relative to the frame, the switch cannot receive the magnetic signal and the switch changes state.
Referring also to
Alternatively, any magnet that can be aligned so as to provide the magnetic field for closing the switch can be used.
Although the above discussed sensor unit 10 will function nicely in the afore-mentioned '048 patent, as shown schematically in
To accomplish the sampling function, the microprocessor is programmed to have a standby mode in which the microprocessor reduces current consumption from the power source (the coin cell battery), a monitoring mode (the monitoring of the state of the switch), and a transmit mode where the state of the switch is transmitted via the wireless transmitter/antenna to an alarm or external device (e.g., a receiving panel).
The brownout detector 70 in the alternate circuit is used to ensure that the microprocessor 26 does not “hang up” due to mechanical bounce when the battery 24 is inserted and the battery voltage to the microprocessor 26 is briefly interrupted. The brownout detector, which is a shelf good item, should use approximately 200 nanoamps of current.
Referring to
The first output is designated MOT1 and provides a brief high to low set of pulses, one per time period (once every 2 seconds in the preferred embodiment), in order to wake up the microprocessor and check whether a change of the sensor switch (e.g., reed switch) state has occurred. This time period is very small (e.g., on the order of 1 millisecond). The microprocessor is put back to sleep as soon as it has finished checking the status of the sensor switch and attended to the ministerial duties of timekeeping and clock adjustments.
The second output is designated as MOT2, which provides the same brief approximately 1 millisecond duration interrupt pulse. MOT2 replicates what is done with MOT1. The two MOT signals are separated by ½ time period, thereby resulting in a sample time equal to ½ the total period. In the preferred embodiment, this equates to checking the reed switch for a change of state once every second. MOT2 is further used to eliminate the brownout detector and supervisory timer of
The last output is the clock output, which is used as the preferred way to sample the reed switch state.
The microprocessor does not have to be in its “on state” to allow its counter to operate. If the reed switch is closed, the counter will count to a maximum value of 32 (in the preferred embodiment) by the time the sample period occurs. If the reed switch opens in between sample times, the counter will not have reached the maximum value. Thus, an “open” will be identified and signaled accordingly. This method allows the current consumption to be kept low (due to only sampling once per second), yet still monitors a change to the reed switch (in the closed to open state) at a rate effectively equal to approximately {fraction (1/32)}nd of a second. The change from an open to closed state is not considered to be critical. For example, if the sensor is installed within a window, and the window was open, it would be assumed that the security system would not need to be armed. In such a case, the method samples a change of state only once per second.
The alternate circuit embodiment illustrated in
An alternate embodiment for sampling the reed switch circuit exists in
As discussed above, the microprocessor samples the sensor switch state rather than continuously monitoring it. In doing this, the microprocessor is virtually turned off and run only during sample time, which provides the majority of the power savings over continuous monitoring.
Referring again to the alternate circuit of
The real-time chip 78 is used as an interrupt source rather than its main function as a real-time clock circuit. This is due to its specially optimized low power operation, which enables it to operate at a current consumption of less than 200 nanoamps. The tamper switch 76, which is optional, is connected between ports I/O(2) and I/O(3).
Thus, the real-time chip 78 can send an interrupt pulse to the microprocessor 26, the latter awakes from its RAM retention mode and starts operating using an internal clock. The microprocessor 26 checks the reed switch 28 by turning the I/O(1) port to an output HIGH, I/O(2) port to input, and the I/O(3) port to input. If there is a HIGH signal present at the I/O(2) port, then the reed switch 28 is closed, and otherwise it is open.
The microprocessor 26 then checks the tamper switch 76 by setting the I/O(1) port to input and the I/O(3) port to an output HIGH. If there is a HIGH signal present at the I/O(2) port, the tamper switch 76 is closed.
After the reed switch 28 and the tamper switch 76 have been checked, all three of the I/O(1), I/O(2) and I/O(3) ports are set to LOW, thus ensuring that during the standby mode no current draw occurs through the pull down resistor R1. All the circuitry in
The RF transmitter 30 uses a Melexis single chip ASK transmitter in the preferred embodiment. This chip was chosen for its ability to vary the output power level into the antenna based on a single resistor on the PCB. It also allows transmission down to below 2.0 Volts.
A main reconsideration for maintaining long battery life is the ability of the wireless security sensor to operate at a reduced voltage. This reduced voltage occurs when there is a voltage supply drop due to the combination of the battery self-impedance and to the current draw required during transmit mode. The greater the current draw, the greater is the voltage supply drop.
The low battery voltage detect circuit is shown in greater detail in
Since the MSP430 microprocessor used in the present embodiment is not very accurate over temperature variation, and may consequently cause a low battery threshold measurement to occur at low temperature, the circuit shown in
While the sensor described above is ideally applicable for intrusion security systems, the sensor may be used for other applications such as glass break sensing, temperature sensing, humidity sensing, and water intrusion sensing. Moreover, even installed in the intrusion security system for plastic window frame extrusions described above, it is to be understood that the present sensor invention not be restricted to such applications. Rather, the sensor according to the present invention may be employed in wooden windows and doors where the antenna can be run along a window frame or sash and hidden, for example, by weather-stripping, paint or other means.
The illustrated embodiments are only examples of the present invention and, therefore, are non-limitive. It is to be understood that many changes in the particular structure, materials, and features of the invention may be made without departing from the spirit and scope of the invention. Therefore, it is the Applicant's intention that its patent rights not be limited by the particular embodiments illustrated and described herein, but rather by the following claims interpreted according to accepted doctrines of claim interpretation, including the Doctrine of Equivalents and Reversal of Parts.
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/476,198, filed Jun. 6, 2003, invented by Dean D. Schebel, and entitled “Wireless Security Sensors.”
Number | Date | Country | |
---|---|---|---|
60476198 | Jun 2003 | US |