Compactor feeder

Information

  • Patent Grant
  • 7926750
  • Patent Number
    7,926,750
  • Date Filed
    Friday, February 27, 2009
    15 years ago
  • Date Issued
    Tuesday, April 19, 2011
    13 years ago
Abstract
A compactor feeder and methods for feeding relatively low-density biomass materials into a grinding device (such as a hammer mill) is described. The compactor feeder increases the density of the relatively low-density biomass materials in order to fill the grinding device with the biomass materials at a rate that is sufficient to substantially equal the design capacity of the grinding device.
Description
FIELD OF THE INVENTION

The invention generally relates to preparation of biomass and its use as a carbonaceous feedstock for catalytic gasification. More particularly, the invention provides a compactor feeder for compacting low-density biomass materials to increased density for feeding to a grinding device, such as a hammer mill.


BACKGROUND OF THE INVENTION

In view of numerous factors such as higher energy prices and environmental concerns, the production of value-added gaseous products from lower-fuel-value carbonaceous feedstocks, such as biomass, coal and petroleum coke, is receiving renewed attention. The catalytic gasification of such materials to produce methane and other value-added gases is disclosed, for example, in U.S. Pat. No. 3,828,474, U.S. Pat. No. 3,998,607, U.S. Pat. No. 4,057,512, U.S. Pat. No. 4,092,125, U.S. Pat. No. 4,094,650, U.S. Pat. No. 4,204,843, U.S. Pat. No. 4,468,231, U.S. Pat. No. 4,500,323, U.S. Pat. No. 4,541,841, U.S. Pat. No. 4,551,155, U.S. Pat. No. 4,558,027, U.S. Pat. No. 4,606,105, U.S. Pat. No. 4,617,027, U.S. Pat. No. 4,609,456, U.S. Pat. No. 5,017,282, U.S. Pat. No. 5,055,181, U.S. Pat. No. 6,187,465, U.S. Pat. No. 6,790,430, U.S. Pat. No. 6,894,183, U.S. Pat. No. 6,955,695, US2003/0167961A1, US2006/0265953A1, US2007/000177A1, US2007/083072A1, US2007/0277437A1 and GB1599932.


Treatment of biomass alone can have high theoretical carbon conversion, but has its own challenges regarding maintaining bed composition, fluidization of the bed in the gasification reactor, control of possible liquid phases and agglomeration of the bed in the gasification reactor and char withdrawal. Biomass also has inherently high moisture content, requiring additional handling and drying measures to provide an appropriate feedstock for gasification. One such handling measure is pulverizing or grinding the biomass prior to gasification.


A typical grinding device, such as a hammer mill, has a design operating capacity, defined in pounds per hour, that the device is capable of processing. A hammer mill is designed to be filled with materials at bulk density and fixed volumetric flow rate (cubic feet per minute) that will deliver a mass flow rate (pounds per minute). Ideally, the raw material would be fed to the mill at a rate that meets the hammer mill's design capacity; it is more economical to fill the hammer mill at a mass flow rate that meets the mill's design capacity than to fill the mill at a mass flow rate that is less than the design capacity.


In typical operation, a feeder, such as a single or double screw feeder, draws feed from a bin and discharges the feed into a feed chute connected to the hammer mill. It is possible to meet a hammer mill's design capacity in this manner if materials of high enough density (e.g., 30 to 50 pounds per cubic foot) are supplied to the hammer mill. However, feeders drawing low-density materials (e.g., 10 to 20 pounds per cubic foot) with gravity discharge into the hammer mill's feed chute cannot deliver a sufficient mass flow rate to meet a hammer mill's design capacity.


Therefore, typically, when feeding low-density materials to a grinding device such as a hammer mill, it is not possible to utilize the full design capacity of the grinding device. Running the mill while not providing feed at a mass flow rate that meets the design capacity of the mill wastes valuable power resources. Accordingly, it would be beneficial to densify low-density materials so that low-density materials could be fed into a hammer mill at a mass flow rate that substantially meets the mill's design capacity.


Methods and systems for compacting or densifying materials exist in the prior art. For instance, U.S. Pat. No. 3,920,229 discloses and apparatus for feeding polymeric material in flake form to an extruder, and U.S. Pat. No. 3,114,930 discloses an apparatus for densifying and granulating powdered materials. This apparatus is designed to feed fine, powdered materials to a roll compactor. In this design, a horizontal screw feeds directly into the side of a larger diameter tapered screw. While this prior art shares some of the general components related to the present invention, they do not achieve the goals of the invention, nor yield its advantages.


SUMMARY OF THE INVENTION

In a first aspect, the invention provides a compactor feeder for feeding relatively low-density biomass materials into a processing/grinder or grinder-like apparatus, such as a hammer mill, comprising: (a) a hopper (or the like) within which biomass feed is contained; (b) a feeder connected to the hopper having a first inlet and a charging end, wherein the biomass feed is conveyed from the hopper to the charging end; and (c) a compactor having a tapered conical-shaped interior sidewall with an interior top and bottom. The compactor top has an opening into which the feeder charging end communicates for receiving the charge of the feeder.


The compactor has a screw compactor member that has at least one flight that generally conforms to the interior sidewall. This provides a screw compactor member that has a first wide radial diameter at the top decreasing to a reduced diameter relative to the first diameter at the bottom. At the bottom is a discharge opening in communication with, most preferably, a hammer mill.


A controller controls the rate of the feeder at the charging end into said compactor. Biomass feed is forced from the charging end of the feeder into the compactor at a rate so as to substantially fill the compactor at the top. The compactor member takes the biomass feed and compacts it to an increased density relative to a density at said top before discharge to the hammer mill. The amount of compaction is most preferably keyed to the maximum mass flow rate that the hammer mill can handle.


In another aspect, the invention provides a method for feeding relatively low-density biomass materials into a hammer mill. The method includes providing biomass feed to a compactor feeder, such as the compactor feeder described above. The method further includes controlling the rate of the feeder at the charging end into the compactor at a rate so as to substantially fill the compactor at the top. Still further, the method includes controlling the rate of the compactor at the discharge opening into the hammer mill so as to substantially fill the hammer mill such that the rate of the compactor substantially equals a design capacity of the hammer mill.


These and other objectives, aspects and advantages of the invention will be further understood and appreciated after consideration of the following detailed description taken in conjunction with the drawings, in which:





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a somewhat schematic cross-sectional view of a compactor feeder in accordance with an exemplary embodiment of the invention.



FIG. 2 is a somewhat schematic end sectional view of the apparatus of FIG. 1.





DETAILED DESCRIPTION

The present invention relates to methods and apparatuses for converting biomass having a relatively low density to biomass having an increased density, for feeding into a grinding, comminuting, pulverizing or other such apparatus (“grinding device”). Generally, the invention would include a compaction feeder having a hopper, a feeder connected to the hopper, a compactor including a screw compactor member, and some kind of controller to regulate and coordinate the rates of operation, as between the feeder, compactor and perhaps also the grinder. The method generally comprises providing biomass feed to a compaction feeder such as described by the apparatus. The resulting biomass feed has an increased density, such that the biomass may be fed to the grinding device, such as a hammer mill, at a rate sufficient to meet the operating capacity of the grinding device. In the environment where this invention has evolved (but is not necessarily so limited), the biomass can then be used in the preparation of a carbonaceous feedstock for catalytic gasification processes that generate gaseous products including, for example, methane.


Recent developments to catalytic gasification technology are disclosed in commonly owned US2007/0000177A1, US2007/0083072A1 and US2007/0277437A1; and U.S. patent application Ser. Nos. 12/178,380 (filed 23 Jul. 2008), 12/234,012 (filed 19 Sep. 2008) and 12/234,018 (filed 19 Sep. 2008). Further, the present invention can be practiced in conjunction with the subject matter of U.S. patent application Ser. No. 12/343,149, filed Dec. 28, 2008, entitled “STEAM GENERATING SLURRY GASIFIER FOR THE CATALYTIC GASIFICATION OF A CARBONACEOUS FEEDSTOCK”; and the following US Patent Applications, all filed concurrently herewith: Ser. No. 12/395,309, entitled “STEAM GENERATION PROCESSES UTILIZING BIOMASS FEEDSTOCKS”; Ser. No. 12/395,320, entitled “REDUCED CARBON FOOTPRINT STEAM GENERATION PROCESSES”; Ser. No. 12/395,372, entitled “CO-FEED OF BIOMASS AS SOURCE OF MAKEUP CATALYSTS FOR CATALYTIC COAL GASIFICATION”; Ser. No. 12/395,385, entitled “CARBONACEOUS FINES RECYCLE”; Ser. No. 12/395,429, entitled “BIOMASS CHAR COMPOSITIONS FOR CATALYTIC GASIFICATION”); Ser. No. 12/395,433, entitled “CATALYTIC GASIFICATION PARTICULATE COMPOSITIONS”; and Ser. No. 12/395,447, entitled “BIOMASS COMPOSITIONS FOR CATALYTIC GASIFICATION”. All of the above are incorporated herein by reference for all purposes as if fully set forth.


These publications, patent applications, patents and other references mentioned herein, may be referred to so those of skill in the art in their entirety for all purposes as if fully set forth in this application. Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. In case of conflict, the present specification, including definitions, will control.


Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present disclosure, suitable methods and materials are described herein.


Unless stated otherwise, all percentages, parts, ratios, etc., are by weight. When an amount, concentration, or other value or parameter is given as a range, or a list of upper and lower values, this is to be understood as specifically disclosing all ranges formed from any pair of any upper and lower range limits, regardless of whether ranges are separately disclosed. Where a range of numerical values is recited herein, unless otherwise stated, the range is intended to include the endpoints thereof, and all integers and fractions within the range. It is not intended that the scope of the present disclosure be limited to the specific values recited when defining a range, unless so stated in the claims.


When the term “about” is used in describing a value or an end-point of a range, the disclosure should be understood to include the specific value or end-point referred to.


As used herein, the terms “comprises,” “comprising,” “includes,” “including,” “has,” “having” or any other variation thereof, are intended to cover a non-exclusive inclusion. For example, a process, method, article, or apparatus that comprises a list of elements is not necessarily limited to only those elements but can include other elements not expressly listed or inherent to such process, method, article, or apparatus. Further, unless expressly stated to the contrary, “or” refers to an inclusive or and not to an exclusive or.


The use of “a” or “an” to describe the various elements and components herein is merely for convenience and to give a general sense of the disclosure. This description should be read to include one or at least one and the singular also includes the plural unless it is obvious that it is meant otherwise.


The materials, methods, and examples herein are illustrative only and, except as specifically stated, are not intended to be limiting.


Compactor Feeder


In general, according to the present invention, a compactor feeder may include a hopper within which biomass feed is contained. Some other kind of container or conveyor may be used in place of a hopper. A feeder is connected to the hopper, and the feeder has an inlet and a charging end. Relatively low-density materials are conveyed from the hopper to the charging end of the feeder. The compactor feeder further includes a compactor, into which the charging end of the feeder communicates with, for receiving the charge of the feeder. The compactor, such as a screw compactor, has a screw member with a wide radial diameter at the top that decreases to a reduced diameter at the bottom. The bottom of the compactor discharges into a pulverizer, grinder or the like, such as a hammer mill.


Relatively low-density biomass feed is forced from the charging end of the feeder into the compactor at a rate so as to substantially fill the compactor at the top. The compactor member takes the biomass feed and compacts it to an increased density relative to the density of the material at the top before discharge to the pulverizer. Preferably, the compactor feeder compacts the relatively low-density biomass material to a sufficient density and feeds the compacted material to the pulverizer at a rate that matches the pulverizer's design capacity.


Turning now to FIG. 1, a compactor feeder for feeding relatively low-density biomass materials into a pulverizer or grinding device, such as a hammer mill, is described. In operation, the compactor feeder compacts relatively low-density biomass material to a sufficient density to take advantage of a grinding device's design capacity, which is defined in pounds per hour.


Compactor feeder includes a feeder (102) connected to a hopper (100) within which biomass feed (101) is contained. Feeder (102) has an inlet (104) and a charging end (106). The inlet of the feeder may be connected to the hopper (100) by a suitable connection means. For example, the inlet (104) of the feeder (102) may be connected to a feed chute that extends from the hopper. Alternatively, the inlet (104) of the feeder (102) may be directly connected to the outlet of the hopper.


Biomass feed is conveyed from the hopper through inlet (104), and the feeder (102) conveys the biomass feed to the charging end (106). The feeder (102) is a double-screw feeder, but could be single-screw or same equivalent conveyance. Other feeders known in the art or later developed are possible as well. Feeder (102) has a drive motor (105).


A compactor (108) has a top (112) and a bottom (113). The compactor (108) has a tapered conical-shaped interior sidewall (110). Top (112) has an opening (114) that is in communication with the charging end (106) of feeder (102). The feeder (102) and the compactor (108) are mechanically attached such that the charging end (106) of the feeder (102) overlaps with an opening (114) at the top (112) of the compactor. Compactor (108) has a drive motor (109) for a screw member (116).


Therefore, when biomass feed is conveyed through feeder (102) to the charging end (106), the feeder charges the biomass feed to the opening (114). The compactor (108) further includes a screw compactor member (or auger) (116). Screw compactor member (116) preferably has at least one flight (120) that generally conforms to the interior sidewall (110). Additional flights on the screw compactor member are possible as well. Screw compactor member (116) has a first wide radial diameter (122) at the top (112) and a reduced diameter (124) relative to the first wide radial diameter (122) at bottom (113). The bottom (113) has a discharge opening (128) that is in communication with a pulverizer or other grinding device, such as hammer mill (126).


A controller (111) controls the rate of the feeder at charging end (106) of feeder (102). Further, the controller controls the rate of compactor (108). Still further, the controller may control the operation of the hammer mill's motor (130). The motors and such a controller are well known in the art, and need not be described in detail herein.


The feeder (102) is preferably positioned generally or essentially horizontal with respect to a vertical axis of the compactor (108). Similarly, the compactor is preferably generally or essentially vertical, with respect to the horizontal axis (142) of the feeder and the hammer mill, as depicted in FIG. 1. The aspects of horizontal and/or vertical are just typical for these components, but the invention need not be limited just to those orientations.


In operation, the compactor feeder preferably operates to compact or densify biomass feed that is forced through it. Compactor (108) of the compactor feeder accomplishes this compaction, or densification, by forcing an amount of biomass feed into a smaller area of compactor (108) as the material moves from the top (112) to the bottom (113) of the conical-shaped compactor. The greater the difference between the first wide radial diameter (122) at the top (112) to the reduced diameter (124) at the bottom (113), the greater the compaction or densification of the biomass material will be. Modifications of the pitch of the flight can also yield alterations in the manner of compaction.


In a preferred embodiment, the ratio between first wide radial diameter (122) at the top (112) to the reduced diameter (124) of the bottom (113) is within a range from about 1.5:1 and 3:1. Therefore, at the lower end of the range the top diameter (122) is about 1.5 times the bottom diameter (124). As an example, the top diameter (122) may be 3 feet, and the bottom diameter (124) may be 2 feet. At the high end of the preferred range, the top diameter (122) is about 3 times the bottom diameter (124). For example, the top diameter (122) may be 3 feet, and the bottom diameter (124) may be 1 foot. It should be understood that this range is set for as an example, and the ratio between the two diameters may fall above or below this preferred range.


In this embodiment, the amount of compaction of the biomass material depends on this ratio between first wide radial diameter (122) at the top (112) to the reduced diameter (124) of the bottom (113). The area of a cross-section of the compactor at the top (112) is πr2; similarly, the area of a cross section of the compactor at the bottom (113) is πr2. Since the bottom radius is smaller, as the screw compactor member (116) pushes biomass from the top (112) towards the bottom (113), the biomass will be forced into a reduced area and, therefore, will compact to a greater density.


For example, when a top diameter is two times a bottom diameter, biomass forced through such a compactor may be compacted by up to a factor of 4. Since the radius at the top is two times the radius at the bottom, the area at the top of the compactor is then four times greater than the area at the bottom. Since the same amount of biomass feed at a cross section of the top is forced into a cross section at the bottom, the feed must fit into an area that is ¼ the size of its original area. Therefore, the density of the biomass feed may quadruple. As another example, if the top diameter is three times the size, the biomass feed may become nine times as dense.


The biomass feed used in the compactor feeder may be any biomass feed of relatively low-density. For example, any biomass feed of a density of less than 20 pounds per cubic foot may be used. Examples of different biomass feeds of densities less than 20 pounds per cubic foot include coarsely chopped bagasse, cornstover, switchgrass, other grasses, and other herbaceous biomass materials. Other biomass feeds and biomass like feeds are possible as well.


In addition to depending on the ratio between the top and bottom diameter of the conical-shaped compactor, the compacted density also depends on the original density of the biomass feed. When biomass feed is sent through compactor feeder, the biomass feed preferably increases in density. For example, bagasse typically has a density of approximately 7-10 pounds per cubic foot. If bagasse is fed into a compactor, where the ratio of the top diameter of the compactor 108 to the bottom diameter is 2:1, the density of the bagasse could reach 28-40 pounds per cubic foot.


A conventional compactor that could be adapted for use in accordance with exemplary embodiments may be obtained from Anderson-Crane Conveyors of Minneapolis, Minn. and Orthman Conveying Systems of Columbia, Mo., for instance.


Increasing the density of low-density biomass feed is extremely beneficial because feeding biomass of increased density to a grinding device such as a hammer mill allows one to take advantage of the operating design capacity of the grinding device. The design capacity of a hammer mill may be defined in terms of how many pounds the hammer mill can process per hour (or minute).


A typical hammer mill may have an operating capacity of 25,000 to 35,000 pounds per hour (or, 416 to 583 pounds per minute). Accordingly, taking full advantage of the operating capacity requires supplying feed to the hammer mill at a flow rate sufficient to meet 25,000 to 35,000 pounds per hour.


The compactor feeder preferably operates to densify a stream of coarsely chopped biomass feed to a specified bulk density (e.g., 30 to 40 pounds per cubic foot) and feed the densified material to a hammer mill at a fixed volumetric flow rate (cubic feet per minute) that will deliver a mass flow rate (pounds per minute) required by the hammer mill to achieve its full design capacity. By increasing the density of a material (e.g., from 10 pounds per cubic foot to 40 pounds per cubic foot) with the compactor feeder, it is possible to feed the material to a hammer mill at more pounds per hour. It is typically not possible to meet 25,000 to 35,000 pounds per hour by discharging low density materials into the hammer mill's feed chute. When discharging a material having a density of 10 to 20 pounds per cubic foot into a hammer mill's feed chute, it may only be possible to achieve a flow rate sufficient to supply 2,000 to 10,000 pounds per hour to the hammer mill. However, if the density of the material is increased, it is possible to achieve a mass flow rate sufficient to meet the operating capacity.


Beneficially, the power sources expended (e.g., horsepower) per pound are less when material is supplied at a rate sufficient to meet the operating capacity. In other words, supplying material at a mass flow rate that is below the hammer mill's operating capacity wastes valuable power resources; it is inefficient.


These values of typical operating capacities and flow rates referred to above are set forth as examples only. Hammer mills and other pulverizers and grinding devices may have differing operating capacities and, therefore, may require different mass flow rates. For instance, larger hammer mills and other pulverizers and grinding devices may have operating capacities over 130,000 pounds per hour. Larger operating capacities are possible as well. Further, the flow rates may be different for different densities of materials. It should be understood the compaction and flow rates of the compactor feeder can be adjusted by the controller to work on other grinding devices with operating capacities not mentioned.


The controller for the compactor feeder may include a processor, and data storage, and a plurality of motors (105, 109, 130). For instance, the controller may coordinate a first motor (105) for controlling the rate of the feeder (102) at charging end (106) into the compactor (108) and a second motor (109) for controlling the rate of compactor (108) at the discharge opening (124) into hammer mill (126), and further hammer mill motor (130).


The controller preferably drives the screw member (116) of compactor (108) at a rate such that the discharge of the compactor into the hammer mill substantially fills the hammer mill to the design capacity of the hammer mill. The controller operates to deliver biomass feed in pounds per minute at a rate substantially equal to the design capacity. Therefore, if the design capacity is 500 pounds per minute, the controller drives the screw member of the compactor to deliver biomass at a rate of 500 pounds per minute.


The rate at which biomass is forced out of the compactor to deliver 500 pounds per minute will depend on how dense the biomass material is. For example, the controller will have to drive the screw member more quickly to deliver 500 pounds per minute for a material with a density at discharge from the compactor of 30 pounds per cubic foot than for a material with a density of 40 pounds per cubic foot.


Additionally, the rate at which biomass is forced out of the compactor will depend on the rate feed need to be supplied to the hammer mill. For example, the controller will have to drive the screw member more quickly to deliver 500 pounds per minute than 400 pounds per minute.


In practice, the controller coordinates the respective rates of at least the feeder and the compactor. Since the compactor will continually be forcing material from the top to the bottom, the feeder operates to keep the compactor full at the top.


As described above, the feeder (102) and compactor (108) communicate with each other at the charge end of the feeder and opening at the top of the compactor. Preferably, the compactor is enclosed above the top (112), and the feeder is operated so as to maintain the compactor substantially full above a beginning of screw flight (120) at the top (112). The compactor enclosure may be a housing (150). In operation, the controller may control the rate of the feeder (102) so as to keep housing (150) substantially full at all times during operation. When the housing (150) is substantially full, the feeder (102) will be full above a beginning of screw flight (120). Since the housing is preferably always substantially full, the compactor (108) will have enough material available to maintain the desired flow rate necessary to meet the operating capacity of the hammer mill.


In addition, a method is described for feeding relatively low-density biomass materials into a pulverizer or grinding device. The method includes providing biomass feed to a compactor feeder, where the compactor feeder includes the features described above. The method further includes controlling the rate of the feeder (102) at charging end (106) into the compactor (108) at a rate so as to substantially fill compactor (108) at the top (112). The method further includes controlling the rate of compactor (108) at the discharge opening (124) into hammer mill (126) such that the rate of compactor (108) substantially equals a design capacity of hammer mill (126).


Biomass


The term “biomass” as used herein refers to carbonaceous materials derived from recently (for example, within the past 100 years) living organisms, including plant-based biomass, animal-based biomass, and catalytic biomass. For clarification, biomass does not include fossil-based carbonaceous materials, such as coal.


The term “plant-based biomass” as used herein means materials derived from green plants, crops, algae, and trees, such as, but not limited to, sweet sorghum, bagasse, sugarcane, bamboo, hybrid poplar, hybrid willow, albizia trees, eucalyptus, alfalfa, clover, oil palm, switchgrass, sudangrass, millet, jatropha, and miscanthus (e.g., Miscanthus×giganteus). Biomass further include wastes from agricultural cultivation, processing, and/or degradation such as corn cobs and husks, corn stover, straw, nut shells, vegetable oils, canola oil, rapeseed oil, biodiesels, tree bark, wood chips, sawdust, and yard wastes.


The term “animal-based biomass” as used herein means wastes generated from animal cultivation and/or utilization. For example, biomass includes, but is not limited to, wastes from livestock cultivation and processing such as animal manure, guano, poultry litter, animal fats, and municipal solid wastes (e.g., sewage).


The term “catalytic biomass” as used herein refers to biomass, as defined herein, whose combustion produces an ash comprising a combination of alkali metal compounds (e.g., K2O and/or Na2O) that can function as a gasification catalyst in the context of the present invention. For example, catalytic biomass includes, but is not limited to, switchgrass, hybrid poplar, hybrid willow, sugarcane, bamboo, miscanthus, cotton stalks, flax, verge grass, alfalfa, sunflower, poultry litter, kenaf (hibiscus cannabinus), thistle, and almond shells and husks.


Biomass can have a density that varies depending on its source. As used herein, the term “low-density biomass” or “low-density biomass materials” means biomass, such as described above, having a density up to about 20 pounds per cubic foot. Accordingly, the method or apparatus of the invention provides a biomass comprising an increased density. As used herein, the term “biomass having an increased density,” “high-density biomass,” “increased density biomass,” or “higher density biomass” means biomass having a density of about 30 to about 50 pounds per cubic foot.


An exemplary embodiment has been described above. Those skilled in the art will understand, however, that changes and modifications may be made to those examples without departing from the scope of the claims.

Claims
  • 1. A compactor feeder for feeding relatively low-density biomass materials into a grinding device, comprising: a hopper within which a biomass feed is contained;a feeder connected to said hopper having a first inlet and a charging end, wherein said biomass feed is conveyed from said hopper to said charging end;a compactor having a tapered conical-shaped interior sidewall with an interior top and bottom, said top having an opening into which said feeder charging end communicates for receiving the charge of said feeder, said compactor further including a screw compactor member that has at least one flight that generally conforms to said interior sidewall, such that said screw compactor member has a first wide radial diameter at said top decreasing to a reduced diameter relative to said first diameter at said bottom, said bottom further having a discharge opening in communication with a grinding device;a controller for controlling the rate of said feeder at said charging end into said compactor; anda grinding device in communication with said discharge opening;
  • 2. The compactor feeder of claim 1, wherein said grinding device is a hammer mill.
  • 3. The compactor feeder of claim 2, comprising: an essentially horizontal double-screw feeder having an first inlet and a charge end;an essentially vertical tapered screw conical compactor section having a compactor inlet and a discharge end, said first discharge end is coupled to said compactor inlet, a ratio of the diameter of said compactor at a top of said tapered screw to a diameter of said compactor discharge end is within a range of about 1.5:1 to about 3:1;a hammer mill having a feed chute, wherein said compactor discharge end is coupled to said feed chute, and wherein said hammer mill has an operating design capacity capable of processing material fed into said hammer mill that has a density within a range of about 30 pounds per cubic foot to about 50 pounds per cubic foot; anda first motor driving said horizontal double-screw feeder and a second motor driving said vertical tapered screw conical section, wherein said first and second motors are operated to keep said conical compactor section substantially completely filled with the biomass materials, and biomass compacted within said compactor is discharged at a rate that is substantially equal to the operating design capacity of said hammer mill.
  • 4. The compactor feeder of claim 1, wherein said feeder is a double-screw feeder.
  • 5. The compactor feeder of claim 4, wherein said double-screw feeder is positioned generally horizontally with respect to a vertical axis of said compactor.
  • 6. The compactor feeder of claim 1, wherein said compactor is enclosed at said top, and said feeder is operated so as to maintain said compactor full above a beginning of said screw flight at said top.
  • 7. The compactor feeder of claim 6, wherein said compactor enclosure is a housing and said housing is maintained substantially full during operation.
  • 8. The compactor feeder of claim 1, wherein the ratio of said first wide radial diameter at said top and said reduced diameter relative to said first diameter at said bottom is within a range from about 1.5:1 to about 3:1.
  • 9. A method for feeding relatively low-density biomass materials into a grinding device, the method comprising the steps of: providing a compactor feeder for feeding relatively low-density biomass materials into a grinding device;controlling the rate of said feeder at the charging end into said compactor at a rate so as to substantially fill said compactor at said top; andcontrolling the rate of said compactor at said discharge opening into said grinding device so as to substantially fill said grinding device such that the rate of said compactor substantially equals a design capacity of said grinding device,
  • 10. The method of claim 9, wherein said grinding device is a hammer mill.
  • 11. The method of claim 9, wherein the compactor feeder comprises: an essentially horizontal double-screw feeder having an first inlet and a charge end;an essentially vertical tapered screw conical compactor section having a compactor inlet and a discharge end, said first discharge end is coupled to said compactor inlet, a ratio of the diameter of said compactor at a top of said tapered screw to a diameter of said compactor discharge end is within a range of about 1.5:1 to about 3:1;a hammer mill having a feed chute, wherein said compactor discharge end is coupled to said feed chute, and wherein said hammer mill has an operating design capacity capable of processing material fed into said hammer mill that has a density within a range of about 30 pounds per cubic foot to about 50 pounds per cubic foot; anda first motor driving said horizontal double-screw feeder and a second motor driving said vertical tapered screw conical section, wherein said first and second motors are operated to keep said conical compactor section substantially completely filled with the biomass materials, and biomass compacted within said compactor is discharged at a rate that is substantially equal to the operating design capacity of said hammer mill.
  • 12. The method of claim 9, wherein providing biomass feed to a compactor feeder comprises providing at least one type of biomass feed selected from the group of chopped bagasse, cornstover, switchgrass, grasses and straw.
  • 13. The method of claim 9, wherein said increased density is about 40 pounds per cubic foot or greater.
  • 14. The method of claim 9, wherein said feeder is a double-screw feeder.
  • 15. The method of claim 9, wherein said compactor is enclosed at said top, and said feeder is operated so as to maintain said compactor full above a beginning of said screw flight at said top.
  • 16. The method of claim 15, wherein said compactor enclosure is a housing and said housing is maintained substantially full during operation.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 U.S.C. §119 from U.S. Provisional Application Ser. No. 61/032,709 (filed Feb. 29, 2008), the disclosure of which is incorporated by reference herein for all purposes as if fully set forth.

US Referenced Citations (213)
Number Name Date Kind
2813126 Tierney Nov 1957 A
2886405 Benson et al. May 1959 A
3034848 King May 1962 A
3114930 Oldham et al. Dec 1963 A
3164330 Neidl Jan 1965 A
3435590 Smith Apr 1969 A
3531917 Grunewald et al. Oct 1970 A
3594985 Ameen et al. Jul 1971 A
3615300 Holm et al. Oct 1971 A
3689240 Aldridge et al. Sep 1972 A
3740193 Aldridge et al. Jun 1973 A
3759036 White Sep 1973 A
3779725 Hegarty et al. Dec 1973 A
3828474 Quartulli Aug 1974 A
3833327 Pitzer et al. Sep 1974 A
3847567 Kalina et al. Nov 1974 A
3904386 Graboski et al. Sep 1975 A
3915670 Lacey et al. Oct 1975 A
3920229 Piggott Nov 1975 A
3929431 Koh et al. Dec 1975 A
3958957 Koh et al. May 1976 A
3969089 Moss et al. Jul 1976 A
3975168 Gorbaty Aug 1976 A
3985519 Kalina et al. Oct 1976 A
3998607 Wesselhoft et al. Dec 1976 A
3999607 Pennington et al. Dec 1976 A
4005996 Hausberger et al. Feb 1977 A
4021370 Harris et al. May 1977 A
4046523 Kalina et al. Sep 1977 A
4053554 Reed et al. Oct 1977 A
4057512 Vadovic et al. Nov 1977 A
4069304 Starkovich et al. Jan 1978 A
4077778 Nahas et al. Mar 1978 A
4091073 Winkler May 1978 A
4092125 Stambaugh et al. May 1978 A
4094650 Koh et al. Jun 1978 A
4100256 Bozzelli et al. Jul 1978 A
4101449 Noda et al. Jul 1978 A
4104201 Banks et al. Aug 1978 A
4118204 Eakman et al. Oct 1978 A
4152119 Schulz May 1979 A
4157246 Eakman et al. Jun 1979 A
4159195 Clavenna Jun 1979 A
4193771 Sharp et al. Mar 1980 A
4193772 Sharp Mar 1980 A
4200439 Lang Apr 1980 A
4204843 Neavel May 1980 A
4211538 Eakman et al. Jul 1980 A
4211669 Eakman et al. Jul 1980 A
4219338 Wolfs et al. Aug 1980 A
4235044 Cheung Nov 1980 A
4243639 Haas et al. Jan 1981 A
4260421 Brown et al. Apr 1981 A
4265868 Kamody May 1981 A
4284416 Nahas Aug 1981 A
4292048 Wesselhoft et al. Sep 1981 A
4315758 Patel et al. Feb 1982 A
4318712 Lang et al. Mar 1982 A
4330305 Kuessner et al. May 1982 A
4331451 Isogaya et al. May 1982 A
4334893 Lang Jun 1982 A
4336034 Lang et al. Jun 1982 A
4336233 Appl et al. Jun 1982 A
4347063 Sherwood et al. Aug 1982 A
4348486 Calvin et al. Sep 1982 A
4348487 Calvin et al. Sep 1982 A
4353713 Cheng Oct 1982 A
4365975 Williams et al. Dec 1982 A
4375362 Moss Mar 1983 A
4397656 Ketkar Aug 1983 A
4400182 Davies et al. Aug 1983 A
4407206 Bartok et al. Oct 1983 A
4428535 Venetucci Jan 1984 A
4432773 Euker, Jr. et al. Feb 1984 A
4433065 Van Der Burgt et al. Feb 1984 A
4436531 Estabrook et al. Mar 1984 A
4439210 Lancet Mar 1984 A
4444568 Beisswenger et al. Apr 1984 A
4459138 Soung Jul 1984 A
4462814 Holmes et al. Jul 1984 A
4466828 Tamai et al. Aug 1984 A
4468231 Bartok et al. Aug 1984 A
4500323 Siegfried et al. Feb 1985 A
4508544 Moss Apr 1985 A
4515604 Eisenlohr et al. May 1985 A
4515764 Diaz May 1985 A
4540681 Kustes et al. Sep 1985 A
4541841 Reinhardt Sep 1985 A
4551155 Wood et al. Nov 1985 A
4558027 McKee et al. Dec 1985 A
4597775 Billimoria et al. Jul 1986 A
4597776 Ullman et al. Jul 1986 A
4604105 Aquino et al. Aug 1986 A
4609456 Deschamps et al. Sep 1986 A
4617027 Lang Oct 1986 A
4619864 Hendrix et al. Oct 1986 A
4661237 Kimura et al. Apr 1987 A
4668428 Najjar May 1987 A
4668429 Najjar May 1987 A
4675035 Apffel Jun 1987 A
4678480 Heinrich et al. Jul 1987 A
4682986 Lee et al. Jul 1987 A
4690814 Velenyi et al. Sep 1987 A
4704136 Weston et al. Nov 1987 A
4720289 Vaugh et al. Jan 1988 A
4747938 Khan May 1988 A
4781731 Schlinger Nov 1988 A
4803061 Najjar et al. Feb 1989 A
4822935 Scott Apr 1989 A
4848983 Tomita et al. Jul 1989 A
4854944 Strong Aug 1989 A
4861360 Apffel Aug 1989 A
4876080 Paulson Oct 1989 A
4960450 Schwarz et al. Oct 1990 A
4995193 Soga et al. Feb 1991 A
5017282 Delbianco et al. May 1991 A
5055181 Maa et al. Oct 1991 A
5057294 Sheth et al. Oct 1991 A
5059406 Sheth et al. Oct 1991 A
5093094 Van Kleeck et al. Mar 1992 A
5094737 Bearden, Jr. et al. Mar 1992 A
5132007 Meyer et al. Jul 1992 A
5223173 Jeffrey Jun 1993 A
5250083 Wolfenbarger et al. Oct 1993 A
5277884 Shinnar et al. Jan 1994 A
5435940 Doering et al. Jul 1995 A
5536893 Gudmundsson Jul 1996 A
5616154 Elliott et al. Apr 1997 A
5630854 Sealock, Jr. et al. May 1997 A
5641327 Leas Jun 1997 A
5720785 Baker Feb 1998 A
5733515 Doughty et al. Mar 1998 A
5776212 Leas Jul 1998 A
5855631 Leas Jan 1999 A
5865898 Holtzapple et al. Feb 1999 A
6013158 Wootten Jan 2000 A
6015104 Rich, Jr. Jan 2000 A
6028234 Heinemann et al. Feb 2000 A
6090356 Jahnke et al. Jul 2000 A
6180843 Heinemann et al. Jan 2001 B1
6187465 Galloway Feb 2001 B1
6389820 Rogers et al. May 2002 B1
6506349 Khanmamedov Jan 2003 B1
6506361 Machado et al. Jan 2003 B1
6602326 Lee et al. Aug 2003 B2
6641625 Clawson et al. Nov 2003 B1
6653516 Yoshikawa et al. Nov 2003 B1
6692711 Alexion et al. Feb 2004 B1
6790430 Lackner et al. Sep 2004 B1
6797253 Lyon Sep 2004 B2
6808543 Paisley Oct 2004 B2
6855852 Jackson et al. Feb 2005 B1
6894183 Choudhary et al. May 2005 B2
6955695 Nahas Oct 2005 B2
7074373 Warren et al. Jul 2006 B1
7132183 Galloway Nov 2006 B2
7205448 Gajda et al. Apr 2007 B2
7220502 Galloway May 2007 B2
7309383 Beech, Jr. et al. Dec 2007 B2
20030167691 Nahas Sep 2003 A1
20040020123 Kimura et al. Feb 2004 A1
20040180971 Inoue et al. Sep 2004 A1
20050107648 Kimura et al. May 2005 A1
20050137442 Gajda et al. Jun 2005 A1
20060265953 Hobbs Nov 2006 A1
20070000177 Hippo et al. Jan 2007 A1
20070051043 Schingnitz Mar 2007 A1
20070083072 Nahas Apr 2007 A1
20070180990 Downs et al. Aug 2007 A1
20070186472 Rabovitser et al. Aug 2007 A1
20070277437 Sheth Dec 2007 A1
20090048476 Rappas et al. Feb 2009 A1
20090090055 Ohtsuka Apr 2009 A1
20090090056 Ohtsuka Apr 2009 A1
20090165361 Rappas et al. Jul 2009 A1
20090165376 Lau et al. Jul 2009 A1
20090165379 Rappas Jul 2009 A1
20090165380 Lau et al. Jul 2009 A1
20090165381 Robinson Jul 2009 A1
20090165382 Rappas et al. Jul 2009 A1
20090165383 Rappas et al. Jul 2009 A1
20090165384 Lau et al. Jul 2009 A1
20090166588 Spitz et al. Jul 2009 A1
20090169448 Rappas et al. Jul 2009 A1
20090169449 Rappas et al. Jul 2009 A1
20090170968 Nahas et al. Jul 2009 A1
20090217575 Raman et al. Sep 2009 A1
20090217582 May et al. Sep 2009 A1
20090217584 Raman et al. Sep 2009 A1
20090217585 Raman et al. Sep 2009 A1
20090217586 Rappas et al. Sep 2009 A1
20090217587 Raman et al. Sep 2009 A1
20090217588 Hippo et al. Sep 2009 A1
20090217589 Robinson Sep 2009 A1
20090217590 Rappas et al. Sep 2009 A1
20090218424 Hauserman Sep 2009 A1
20090220406 Rahman Sep 2009 A1
20090229182 Raman et al. Sep 2009 A1
20090246120 Raman et al. Oct 2009 A1
20090259080 Raman et al. Oct 2009 A1
20090260287 Lau Oct 2009 A1
20090324458 Robinson et al. Dec 2009 A1
20090324459 Robinson et al. Dec 2009 A1
20090324460 Robinson et al. Dec 2009 A1
20090324461 Robinson et al. Dec 2009 A1
20090324462 Robinson et al. Dec 2009 A1
20100071262 Robinson et al. Mar 2010 A1
20100076235 Reiling et al. Mar 2010 A1
20100120926 Robinson et al. May 2010 A1
20100121125 Hippo et al. May 2010 A1
20100168494 Rappas et al. Jul 2010 A1
20100168495 Rappas et al. Jul 2010 A1
20100179232 Robinson et al. Jul 2010 A1
Foreign Referenced Citations (90)
Number Date Country
966660 Apr 1975 CA
1003217 Jan 1977 CA
1106178 Aug 1981 CA
1187702 Jun 1985 CA
1477090 Feb 2004 CN
2210891 Sep 1972 DE
2852710 Jun 1980 DE
3422202 Dec 1985 DE
100610607 Jun 2002 DE
819 Apr 2000 EA
0 067 580 Dec 1982 EP
102828 Mar 1984 EP
0 138 463 Apr 1985 EP
0 225 146 Jun 1987 EP
0 259 927 Mar 1988 EP
0 723 930 Jul 1996 EP
1 001 002 May 2000 EP
1 741 673 Jun 2006 EP
797 089 Apr 1936 FR
593910 Oct 1947 GB
640907 Aug 1950 GB
676615 Jul 1952 GB
701 131 Dec 1953 GB
760627 Nov 1956 GB
798741 Jul 1958 GB
996327 Jun 1965 GB
1033764 Jun 1966 GB
1448562 Sep 1976 GB
1453081 Oct 1976 GB
1467219 Mar 1977 GB
1467995 Mar 1977 GB
1 599 932 Jul 1977 GB
2078251 Jan 1982 GB
2154600 Sep 1985 GB
54020003 Feb 1979 JP
56157493 Dec 1981 JP
62241991 Oct 1987 JP
62 257985 Nov 1987 JP
2000290659 Oct 2000 JP
2000290670 Oct 2000 JP
2002105467 Apr 2002 JP
2004292200 Oct 2004 JP
2004298818 Oct 2004 JP
WO 0043468 Jul 2000 WO
WO 0240768 May 2002 WO
WO 02079355 Oct 2002 WO
WO 03033624 Apr 2003 WO
WO 2004072210 Aug 2004 WO
WO 2006031011 Mar 2006 WO
WO 2007005284 Jan 2007 WO
WO 2007047210 Apr 2007 WO
WO 2007076363 Jul 2007 WO
WO 2007128370 Nov 2007 WO
WO 2007143376 Dec 2007 WO
WO 2008073889 Jun 2008 WO
WO 2009018053 Feb 2009 WO
WO 2009048723 Apr 2009 WO
WO 2009048724 Apr 2009 WO
WO 2009086361 Jul 2009 WO
WO 2009086362 Jul 2009 WO
WO 2009086363 Jul 2009 WO
WO 2009086366 Jul 2009 WO
WO 2009086367 Jul 2009 WO
WO 2009086370 Jul 2009 WO
WO 2009086372 Jul 2009 WO
WO 2009086374 Jul 2009 WO
WO 2009086377 Jul 2009 WO
WO 2009086383 Jul 2009 WO
WO 2009086407 Jul 2009 WO
WO 2009086408 Jul 2009 WO
WO 2009111330 Sep 2009 WO
WO 2009111331 Sep 2009 WO
WO 2009111332 Sep 2009 WO
WO 2009111335 Sep 2009 WO
WO 2009111342 Sep 2009 WO
WO 2009111345 Sep 2009 WO
WO 2009124017 Oct 2009 WO
WO 2009124019 Oct 2009 WO
WO 2009158576 Dec 2009 WO
WO 2009158579 Dec 2009 WO
WO 2009158580 Dec 2009 WO
WO 2009158582 Dec 2009 WO
WO 2009158583 Dec 2009 WO
WO 2010033846 Mar 2010 WO
WO 2010033848 Mar 2010 WO
WO 2010033850 Mar 2010 WO
WO 2010033852 Mar 2010 WO
WO 2010048493 Apr 2010 WO
WO 2010078297 Jul 2010 WO
WO 2010078298 Jul 2010 WO
Related Publications (1)
Number Date Country
20090218424 A1 Sep 2009 US
Provisional Applications (1)
Number Date Country
61032709 Feb 2008 US