The detection of the level of glucose or other analytes, such as lactate, oxygen or the like, in certain individuals is vitally important to their health. For example, the monitoring of glucose is particularly important to individuals with diabetes. Diabetics may need to monitor glucose levels to determine when insulin is needed to reduce glucose levels in their bodies or when additional glucose is needed to raise the level of glucose in their bodies.
Devices have been developed for continuous or automatic monitoring of analytes, such as glucose, in bodily fluid such as in the blood stream or in interstitial fluid. Some of these analyte measuring devices are configured so that at least a portion of the devices are positioned below a skin surface of a user, e.g., in a blood vessel or in the subcutaneous tissue of a user.
Embodiments of the present disclosure include computer-implemented methods for determining a compatibility of one or more devices in an analyte monitoring system. Certain aspects include receiving identification code data related to a configuration of a first device, retrieving information including a predetermined list of one or more acceptable identification code data that is related to one or more first device configurations that are compatible with the analyte monitoring system, comparing the received identification code data with the one or more acceptable identification codes from the retrieved predetermined list and determining if the configuration of the first device is compatible with the analyte monitoring system based upon the received identification code data being identified in the predetermined list of acceptable identification code data.
Embodiments of the present disclosure include computer-implemented methods for determining a compatibility of one or more devices in an analyte monitoring system. Certain aspects include receiving identification code data related to a configuration of a first device, retrieving information including a predetermined list of one or more identification codes that are related to one or more first device configurations and one or more software functions relating to the one or more first device configurations, comparing the received identification code data with the one or more identification codes and determining an appropriate software function for processing analyte data obtained by the first device that is related to an analyte level of a user based upon a stored software function that corresponds to the received identification code data.
Before the present disclosure is further described, it is to be understood that this disclosure is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.
As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure.
Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.
Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although many methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, exemplary methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.
As used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.
Analytes that may be monitored include, but are not limited to, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored. In those embodiments that monitor more than one analyte, the analytes may be monitored at the same or different times.
Referring to
In certain embodiments, the primary receiver unit 104 may be further configured to transmit data to a data processing terminal 105 to evaluate or otherwise process or format data received by the primary receiver unit 104. The data processing terminal 105 may be configured to receive data directly from the data processing unit 102 via a communication link which may optionally be configured for bi-directional communication. Further, the data processing unit 102 may include a transmitter or a transceiver to transmit and/or receive data to and/or from the primary receiver unit 104, the data processing terminal 105 or optionally the secondary receiver unit 106.
Also shown in
Only one sensor 101, data processing unit 102 and data processing terminal 105 are shown in the embodiment of the analyte monitoring system 100 illustrated in
The analyte monitoring system 100 may be a continuous monitoring system, or semi-continuous, or a discrete monitoring system. In a multi-component environment, each component may be configured to be uniquely identified by one or more of the other components in the system so that communication conflict may be readily resolved between the various components within the analyte monitoring system 100. For example, unique IDs, communication channels, and the like, may be used.
In certain embodiments, the sensor 101 is physically positioned in or on the body of a user whose analyte level is being monitored. The sensor 101 may be configured to at least process and send data related to its configuration into a corresponding signal for transmission by the data processing unit 102.
The data processing unit 102 is coupleable to the sensor 101 so that both devices are positioned in or on the user's body, with at least a portion of the analyte sensor 101 positioned transcutaneously. The data processing unit 102 in certain embodiments may include a portion of the sensor 101 (proximal section of the sensor in electrical communication with the data processing unit 102) which is encapsulated within or on the printed circuit board of the data processing unit 102 with, for example, potting material or other protective material. The data processing unit 102 performs data processing functions, where such functions may include but are not limited to, filtering and encoding of data signals, each of which corresponds to a sampled analyte level of the user, for transmission to the primary receiver unit 104 via the communication link 103. In one embodiment, the sensor 101 or the data processing unit 102 or a combined sensor/data processing unit may be wholly implantable under the skin layer of the user.
In one aspect, the primary receiver unit 104 may include an analog interface section including an RF receiver and an antenna that is configured to communicate with the data processing unit 102 via the communication link 103, and a data processing section for processing the received data from the data processing unit 102 such as data decoding, error detection and correction, data clock generation, and/or data bit recovery.
In operation, the primary receiver unit 104 in certain embodiments is configured to synchronize with the data processing unit 102 to uniquely identify the data processing unit 102, based on, for example, identification information of the data processing unit 102, and thereafter, to periodically receive signals transmitted from the data processing unit 102 associated with the monitored analyte levels detected by the sensor 101. That is, when operating in the CGM mode, the receiver unit 104 in certain embodiments is configured to automatically receive data related to the configuration of the sensor from the analyte sensor/sensor electronics when the communication link (e.g., RF range) is maintained or opened between these components.
Referring again to
The data processing terminal 105 may include an infusion device such as an insulin infusion pump or the like, which may be configured to administer insulin to patients, and which may be configured to communicate with the primary receiver unit 104 for receiving, among others, the measured analyte level or configuration data. Alternatively, the primary receiver unit 104 may be configured to integrate an infusion device therein so that the primary receiver unit 104 is configured to administer insulin (or other appropriate drug) therapy to patients, for example, for administering and modifying basal profiles, as well as for determining appropriate boluses for administration based on, among others, the detected analyte levels received from the data processing unit 102. An infusion device may be an external device or an internal device (wholly implantable in a user).
In particular embodiments, the data processing terminal 105, which may include an insulin pump, may be configured to receive the configuration signals from the data processing unit 102, and thus, incorporate the functions of the primary receiver unit 104 including data processing for managing the patient's insulin therapy and analyte monitoring. In certain embodiments, the communication link 103 as well as one or more of the other communication interfaces shown in
As described in aspects of the present disclosure, the analyte monitoring system may include an on-body patch device with a thin profile that can be worn on the arm or other locations on the body (and under clothing worn by the user or the patient), the on-body patch device including an analyte sensor and circuitry and components for operating the sensor and processing and storing signals, including configuration signals, received from the sensor as well as for communication with the reader device. For example, one aspect of the on-body patch device may include electronics to sample the voltage signal received from the analyte sensor in fluid contact with the body fluid, and to process the sampled voltage signals into the corresponding glucose values and/or store the sampled voltage signal as raw data, or to send configuration information as a signal or data.
In certain embodiments, the on-body patch device includes an antenna such as a loop antenna to receive RF power from an external device such as the reader device/receiver unit described above, electronics to convert the RF power received via the antenna into DC (direct current) power for the on-body patch device circuitry, communication module or electronics to detect commands received from the reader device, and communication component to transmit data to the reader device, a low capacity battery for providing power to sensor sampling circuitry (for example, the analog front end circuitry of the on-body patch device in signal communication with the analyte sensor), one or more non-volatile memory or storage devices to store data including raw signals from the sensor or processed data based on the raw sensor signals. More specifically, in the on operation demand mode, the on-body patch device in certain embodiments is configured to transmit real time analyte related data and/or stored historical analyte related data, and/or configuration data when within the RF power range of the reader device. The configuration data can be transmitted prior to transmitting the real time analyte related data.
In certain embodiments, a data processing module/terminal may be provided in the analyte monitoring system that is configured to operate as a data logger, interacting or communicating with the on-body patch device by, for example, transmitting requests for configuration information to the on-body patch device, and storing the responsive configuration information received from the on-body patch device in one or more memory components of the data processing module (e.g., repeater unit). Further, data processing module may be configured as a compact on-body relay device to relay or retransmit the received analyte level information from the on-body patch device to the reader device/receiver unit or the remote terminal or both. The data processing module in one aspect may be physically coupled to the on-body patch device, for example, on a single adhesive patch on the skin surface of the patient. Alternatively, the data processing module may be positioned close to but not in contact with the on-body patch device. For example, when the on-body patch device is positioned on the abdomen of the patient, the data processing module may be worn on a belt of the patient or the user, such that the desired close proximity or predetermined distance of approximately 1-5 inches (or about 1-10 inches, for example, or more) between the on-body patch device and the data processing module may be maintained.
The various processes described above including the processes operating in the software application execution environment in the analyte monitoring system including the on-body patch device, the reader device, data processing module and/or the remote terminal performing one or more routines described above may be embodied as computer programs developed using an object oriented language that allows the modeling of complex systems with modular objects to create abstractions that are representative of real world, physical objects and their interrelationships. The software required to carry out the inventive process, which may be stored in a memory or storage device of the storage unit of the various components of the analyte monitoring system described above in conjunction to the Figures including the on-body patch device, the reader device, the data processing module, various described communication devices, or the remote terminal may be developed by a person of ordinary skill in the art and may include one or more computer program products.
In one embodiment, an apparatus for bi-directional communication with an analyte monitoring system may comprise a storage device having stored therein one or more routines, a processing unit operatively coupled to the storage device and configured to retrieve the stored one or more routines for execution, a data transmission component operatively coupled to the processing unit and configured to transmit data based at least in part on the one or more routines executed by the processing unit, and a data reception component operatively coupled to the processing unit and configured to receive configuration data from a remote location and to store the received configuration data in the storage device for retransmission, wherein the data transmission component is programmed to transmit a query to a remote location, and further wherein the data reception component receives the configuration data from the remote location in response to the transmitted query when one or more electronics in the remote location transitions from an inactive state to an active state upon detection of the query from the data transmission component.
Referring back to
In certain embodiments, the reader device/receiver unit 220 may include an RF power switch that is user activatable or activated upon positioning within a predetermined distance from the on-body patch device 211 to turn on the analyte sensor in the on-body patch device 211. That is, using the RF signal, the analyte sensor coupled to the sensor electronics in the on-body patch device 211 may be initialized or activated. In another embodiment, a passive RFID function may be provided or programmed such that upon receiving a “turn on” signal which, when authenticated, will turn on the electronic power switch that activates the on-body patch device 211. That is, the passive RFID configuration may include drawing energy from the RF field radiated from the reader device/receiver unit 220 so as to prompt for and/or detect the “turn on” signal which, upon authentication, activates the on-body patch device 211.
In one embodiment, communication and/or RF power transfer between the reader device/receiver unit 220 and the on-body patch device 211 may be automatically initiated when the reader device/receiver unit 220 is placed in close proximity to the on-body patch device 211 as discussed above. Alternatively, the reader device/receiver unit 220 may be configured such that user activation, such as data request initiation and subsequent confirmation by the user using, for example, the display 222 and/or input components 221 of the reader device/receiver unit 220, may be required prior to the initiation of communication and/or RF power transfer between the reader device/receiver unit 220 and the on-body patch device 211. In a further embodiment, the reader device/receiver unit 220 may be user configurable between multiple modes, such that the user may choose whether the communication between the reader device/receiver unit 220 and on-body patch device 211 is performed automatically or requires a user activation and/or confirmation.
As further shown in
As discussed, some or all of the electronics in the on-body patch device 211 in one embodiment may be configured to rely on the RF power received from the reader device/receiver unit 220 to perform transmission of the configuration information to the reader device/receiver unit 220. That is, the on-body patch device 211 may be discreetly worn on the body of the user or the patient, and under clothing, for example, and when desired, by positioning the reader device/receiver unit 220 within a predetermined distance from the on-body patch device 211, configuration information may be received by the reader device/receiver unit 220.
Referring still to
The data processing module 260 in one embodiment may be configured to communicate with the on-body patch device 211 in a similar manner as the reader device/receiver unit 220 and may include communication components such as antenna, power supply and memory, among others, for example, to allow provision of RF power to the on-body patch device 211 or to request or prompt the on-body patch device 211 to send the configuration data and optionally stored analyte related data. The data processing module 260 may be configured to interact with the on-body patch device 211 in a similar manner as the reader device/receiver unit 220 such that the data processing module 260 may be positioned within a predetermined distance from the on-body patch device 211 for communication with the on-body patch device 211.
In one aspect, the on-body patch device 211 and the data processing module 260 may be positioned on the skin surface of the user or the patient within the predetermined distance of each other (for example, within approximately 5 inches or less) such that the communication between the on-body patch device 211 and the data processing module 260 is maintained. In a further aspect, the housing of the data processing module 260 may be configured to couple to or cooperate with the housing of the on-body patch device 211 such that the two devices are combined or integrated as a single assembly and positioned on the skin surface.
Referring again to
As further shown in
In one aspect, the data processing module 260 may be configured to operate as a data logger configured or programmed to periodically request or prompt the on-body patch device 211 to transmit the configuration information, and to store the received information for later retrieval or subsequent transmission to the reader device/receiver unit 220 or to the remote terminal 270 or both, for further processing and analysis.
In a further aspect, the functionalities of the data processing module 260 may be configured or incorporated into a memory device such as an SD card, microSD card, compact flash card, XD card, Memory Stick card, Memory Stick Duo card, or USB memory stick/device including software programming resident in such devices to execute upon connection to the respective one or more of the on-body patch device 211, the remote terminal 270 or the reader device/receiver unit 220. In a further aspect, the functionalities of the data processing module 260, including executable software and programming, may be provided to a communication device such as a mobile telephone including, for example, iPhone, iPod Touch, Blackberry device, Palm based device (such as Palm Pre, Treo, Treo Pro, Centro), personal digital assistants (PDAs) or any other communication enabled operating system (such as Windows or Android operating systems) based mobile telephones as a downloadable application for execution by the downloading communication device. To this end, the remote terminal 270 as shown in
Depending upon the user setting or configuration on the communication device, the downloaded application may be programmed or customized using the user interface of the respective communication device (screen, keypad, and the like) to establish or program the desired settings such as a receiver alarm, an insulin pump alarm, sensor replacement alarm, or any other alarm or alert conditions as may be desired by the user. Moreover, the programmed notification settings on the communication device may be output using the output components of the respective communication devices, such as speaker, vibratory output component, or visual output/display. As a further example, the communication device may be provided with programming and application software to communicate with the on-body patch device 211 such that a frequency or periodicity of data acquisition is established. In this manner, the communication device may be configured to conveniently receive configuration information from the on-body patch device 211 at predetermined time periods such as, for example, but not limited to during an activation of the on-body patch device 211, once every minute, once every five minutes, or once every 10 or 15 minutes, and store the received information, as well as to provide a desired or appropriate warning indication or notification to the user or the patient.
In one aspect, the RF receiver 302 is configured to communicate, via the communication link 103 (
Each of the various components of the primary receiver unit 104 shown in
Serial communication section 104 can also be used to upload data to a computer, such as configuration data. The communication link with an external device (not shown) can be made, for example, by cable (such as USB or serial cable), infrared (IR) or RF link. The output/display 310 of the primary receiver unit 104 is configured to provide, among others, a graphical user interface (GUI), and may include a liquid crystal display (LCD) for displaying information. Additionally, the output/display 310 may also include an integrated speaker for outputting audible signals as well as to provide vibration output as commonly found in handheld electronic devices, such as mobile telephones, pagers, etc. In certain embodiments, the primary receiver unit 104 also includes an electro-luminescent lamp configured to provide backlighting to the output 310 for output visual display in dark ambient surroundings.
Referring back to
In further embodiments, the data processing unit 102 and/or the primary receiver unit 104 and/or the secondary receiver unit 106, and/or the data processing terminal/infusion section 105 of
Additional detailed descriptions are provided in U.S. Pat. Nos. 5,262,035; 5,264,104; 5,262,305; 5,320,715; 5,593,852; 6,175,752; 6,650,471; 6,746, 582, 6,284,478, 7,299,082, and 7,811,231, in application Ser. No. 11/060,365, filed Feb. 16, 2005 titled “Method and System for Providing Data Communication in Continuous Glucose Monitoring And Management System”, in application Ser. No. 12/698,124, filed Feb. 1, 2010, titled “Compact On-Body Physiological Monitoring Devices and Methods Thereof”, and in application Ser. No. 12/807,278, filed Aug. 31, 2010 titled “Medical Devices and Methods”, each of which is incorporated herein by reference.
Sensors for continuous glucose monitoring systems can be continually improved and these updated versions of the sensors will be made available to consumers. An important consideration for updated sensor products is to ensure that on market system components (e.g., receiver devices, repeater units, glucose meters, insulin pumps, etc.) will work with specific components of the sensor that has been updated. Another consideration is to exclude updated components from operation with certain components if such operation is not safe and effective. For instance, some CGM algorithms may be designed to work with a particular type of sensor but not with others.
In certain embodiments, electronic system update configuration requirements can be enforced using key codes that are incorporated in the communication messages sent between system components. Sensor configuration updates can be managed using a key code technique. Since sensors themselves may not be capable of interacting with other components using key codes, such features may be integrated along with the sensor or sensor delivery system. For instance, in some embodiments, the sensor may provide a radio ID or a resistive code to indicate its configuration to the other system components. The sensor electronics (e.g., transmitter) may use these means to detect the sensor version in order to further manage component configuration (e.g., communicating the sensor version information to other components using key codes). The sensor electronics may have a range of sensor codes that it can accept, or the sensor electronics may pass the sensor code data to the receiver device (or other device in the system) that can have a range of sensor codes that it accepts. Similarly, the transmitter can have a range of acceptable receiver codes and a receiver can have a range of acceptable transmitter codes. In certain embodiments, if the receiver device detects a sensor version that is not allowable or if the transmitter sends the receiver a message indicating that the attached sensor was not allowable, it can notify the user that the sensor version is not allowable. Moreover, the transmitter and/or receiver software can change algorithms or other software functions dependent on the detected software version.
In certain embodiments, key codes can be incorporated in communication messages sent through the devices in the analyte monitoring system. Key codes are primarily available for access by electronic devices. The codes may be used as a book keeping tool to manage which version of the device may function with specific versions of a device application using a particular serial command. For example, a serial command may include a two byte key code that can be issued by a value of code=00 when it sends the command to a device. An original version of a device can be designed with a serial command function that will accept commands with a code range of 00 to 0F, for example. In this manner, if another version of the device has an updated serial command that allows a code range, e.g., of 00 to 1F, then the original device application can still work with the original device, as well as any newer version of the device application that has codes in this range (e.g., specifically to a particular serial command). If an updated devices application is not intended to be compatible with the original device version but only a new device version, then the code for the device application could be set between 10 to 1F. If the updated device is not intended to work with the original device application, then the code for the device can be set to 10 to 1F.
In certain embodiments, the key code mechanism includes a key code communicated in a pairing message exchange between two devices in the analyte monitoring system, in the same manner as described above for device serial commands accessed by a device application. In this case, the key code only needs to be included in a pairing message in order to enforce all communication restrictions between version of the device and the analyte monitoring system, since they may not communicate (e.g., except for pairing attempts) unless they are paired. This aspect can allow for full control over which device versions will work with the analyte monitoring system.
By way of example, in some embodiments, a device could be designed to accept serial commands with names $acona, $aconb, and $aconx, and the device application can issue $aconb. Moreover, the device could be designed to accept a serial command with three parameters and with five parameters.
In other embodiments, a configuration management mechanism is arranged to mechanically key the sensor to only function with a particular transmitter. For example, the sensor electrode contacts may be located in ways to allow some transmitters to properly connect and others to not. Additionally, the sensor can be incorporated into a transmitter mount that mechanically only fits the desired transmitter.
Certain embodiments allow interoperability of various sensor versions with common transmitters and receivers but enforce compatibility requirements at the receiver or other device in the system by requiring that a sensor code be entered prior to glucose calculation and display. The sensor code can be used to define a range of acceptable sensitivity of the device, and may be used to specify the sensitivity itself or contribute to the glucose calculation. Moreover, the sensor may have additional elements that identify the sensor version. Likewise, the sensor code may be used exclusively to identify the sensor version. Then the receiver device can compare the entered sensor code to a list of acceptable codes and if successful, allow glucose calculations or display. Otherwise, the receiver can notify the user that the sensor is not compatible. Furthermore, the receiver software can change algorithms or other software function dependent upon the entered sensor code.
Referring still to
Referring still to
Still referring to
In another embodiment, the compatibility data can be transmitted to and subsequently received by a third device (not shown), and the third device can annunciate or otherwise communicate an alarm to alert the user if the first device 502 is determined to not be compatible with the analyte monitoring system 500.
Referring still to
In another embodiment, the second device 604 can communicate data related to the software function associated with the configuration of the first device 602 to a third device (not shown). The analyte data can be communicated from the first device 602 to the third device, and the third device can process the analyte data using the data related to the software function received from the second device 604. The third device may also display the processed analyte data to the user.
In certain embodiments of the present disclosure, a computer-implemented method for determining a compatibility of one or more devices in an analyte monitoring system includes receiving identification code data related to a configuration of a first device, retrieving information including a predetermined list of one or more acceptable identification code data that is related to one or more first device configurations that are compatible with the analyte monitoring system, comparing the received identification code data with the one or more acceptable identification codes from the retrieved predetermined list, and determining if the configuration of the first device is compatible with the analyte monitoring system, based upon the received identification code data being identified in the predetermined list of acceptable identification code data.
Certain aspects include alerting a user if it is determined that the configuration of the first device is not compatible with the analyte monitoring system.
Certain aspects include communicating data related to the determination of the first device being compatible with the analyte monitoring system of a second device.
Certain aspects include the first device communicating the data related to the compatibility of the first device to the second device using at least one key code.
Certain aspects include the data related to the compatibility to the first device communicated using at least one of a radio-identification code or a resistive code or a combination thereof.
Certain aspects include the identification code data including information related to a range of acceptable sensitivity of the first device.
Certain aspects include the identification code data including information related to a version of the first device.
Certain aspects include the user being alerted with at least one of an auditory alarm, a vibratory alarm, and a visual alarm.
Certain aspects include the first device being in fluid contact with an interstitial fluid under a skin layer of a user.
Certain aspects include determining a suitable software function for processing analyte data obtained by the first device, based upon a stored software function that corresponds to the received identification code data, wherein the software function is included in the information related to a predetermined list of one or more acceptable identification code data.
Certain aspects include receiving analyte data obtained by the first device that is related to an analyte level of a user, if it is determined that the first device is compatible with the analyte monitoring system, processing the received analyte data using the determined appropriate software function, and displaying the processed analyte data to the user.
Certain aspects include the compatibility of the first device including a key code of the first device being included in the predetermined list.
Certain aspects include the first device including at least one of a continuous analyte monitor, an analyte sensor, a receiver device, a repeater device, or an insulin pump.
In certain embodiments of the present disclosure, a computer-implemented method for determining a compatibility of one or more devices in an analyte monitoring system includes receiving identification code data related to a configuration of a first device, retrieving information including a predetermined list of one or more identification codes that are related to one or more first device configurations and one or more software functions relating to the one or more first device configurations, comparing the received identification code data with the one or more identification codes, and determining an appropriate software function for processing analyte data obtained by the first device that is related to an analyte level of a user, based upon a stored software function that corresponds to the received identification code data.
Certain aspects include the software function including an algorithm.
Certain aspects include the first device including at least one of a continuous analyte monitor, an analyte sensor, a receiver device, a repeater device, or an insulin pump.
Certain aspects include the information including the predetermined list and the one or more software functions retrieved from at least one of a storage component, an online database, a central database, and a distributed database.
Certain aspects include the information including the predetermined list and the one or more software functions retrieved from different locations.
Various other modifications and alterations in the structure and method of operation of the embodiments of the present disclosure will be apparent to those skilled in the art without departing from the scope and spirit of the present disclosure. Although the present disclosure has been described in connection with certain embodiments, it should be understood that the present disclosure as claimed should not be unduly limited to such embodiments. It is intended that the following claims define the scope of the present disclosure and that structures and methods within the scope of these claims and their equivalents be covered thereby.
The present application is a continuation of U.S. patent application Ser. No. 15/640,058, filed Jun. 30, 2017, which is a continuation of U.S. patent application Ser. No. 15/065,604, filed Mar. 9, 2016, now U.S. Pat. No. 9,721,063, which is a continuation of U.S. patent application Ser. No. 13/684,085, filed Nov. 21, 2012, now U.S. Pat. No. 9,317,656, which claims the benefit of U.S. Provisional Patent Application No. 61/563,517, filed Nov. 23, 2011, all of which are incorporated herein by reference in their entireties for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
3581062 | Aston | May 1971 | A |
3926760 | Allen et al. | Dec 1975 | A |
3949388 | Fuller | Apr 1976 | A |
4036749 | Anderson | Jul 1977 | A |
4055175 | Clemens et al. | Oct 1977 | A |
4129128 | McFarlane | Dec 1978 | A |
4245634 | Albisser et al. | Jan 1981 | A |
4327725 | Cortese et al. | May 1982 | A |
4344438 | Schultz | Aug 1982 | A |
4349728 | Phillips et al. | Sep 1982 | A |
4425920 | Bourland et al. | Jan 1984 | A |
4441968 | Emmer et al. | Apr 1984 | A |
4464170 | Clemens et al. | Aug 1984 | A |
4478976 | Goertz et al. | Oct 1984 | A |
4494950 | Fischell | Jan 1985 | A |
4509531 | Ward | Apr 1985 | A |
4527240 | Kvitash | Jul 1985 | A |
4538616 | Rogoff | Sep 1985 | A |
4619793 | Lee | Oct 1986 | A |
4671288 | Gough | Jun 1987 | A |
4703756 | Gough et al. | Nov 1987 | A |
4731726 | Allen, III | Mar 1988 | A |
4749985 | Corsberg | Jun 1988 | A |
4757022 | Shults et al. | Jul 1988 | A |
4759828 | Young et al. | Jul 1988 | A |
4777953 | Ash et al. | Oct 1988 | A |
4779618 | Mund et al. | Oct 1988 | A |
4847785 | Stephens | Jul 1989 | A |
4854322 | Ash et al. | Aug 1989 | A |
4890620 | Gough | Jan 1990 | A |
4925268 | Iyer et al. | May 1990 | A |
4953552 | DeMarzo | Sep 1990 | A |
4986271 | Wilkins | Jan 1991 | A |
4995402 | Smith et al. | Feb 1991 | A |
5000180 | Kuypers et al. | Mar 1991 | A |
5002054 | Ash et al. | Mar 1991 | A |
5019974 | Beckers | May 1991 | A |
5050612 | Matsumura | Sep 1991 | A |
5051688 | Murase et al. | Sep 1991 | A |
5055171 | Peck | Oct 1991 | A |
5082550 | Rishpon et al. | Jan 1992 | A |
5106365 | Hernandez | Apr 1992 | A |
5122925 | Inpyn | Jun 1992 | A |
5135004 | Adams et al. | Aug 1992 | A |
5165407 | Wilson et al. | Nov 1992 | A |
5202261 | Musho et al. | Apr 1993 | A |
5210778 | Massart | May 1993 | A |
5228449 | Christ et al. | Jul 1993 | A |
5231988 | Wernicke et al. | Aug 1993 | A |
5246867 | Lakowicz et al. | Sep 1993 | A |
5251126 | Kahn et al. | Oct 1993 | A |
5262035 | Gregg et al. | Nov 1993 | A |
5262305 | Heller et al. | Nov 1993 | A |
5264104 | Gregg et al. | Nov 1993 | A |
5264105 | Gregg et al. | Nov 1993 | A |
5279294 | Anderson et al. | Jan 1994 | A |
5285792 | Sjoquist et al. | Feb 1994 | A |
5293877 | O'Hara et al. | Mar 1994 | A |
5299571 | Mastrototaro | Apr 1994 | A |
5320725 | Gregg et al. | Jun 1994 | A |
5322063 | Allen et al. | Jun 1994 | A |
5340722 | Wolfbeis et al. | Aug 1994 | A |
5342789 | Chick et al. | Aug 1994 | A |
5356786 | Heller et al. | Oct 1994 | A |
5360404 | Novacek et al. | Nov 1994 | A |
5372427 | Padovani et al. | Dec 1994 | A |
5379238 | Stark | Jan 1995 | A |
5384547 | Lynk et al. | Jan 1995 | A |
5390671 | Lord et al. | Feb 1995 | A |
5391250 | Cheney, II et al. | Feb 1995 | A |
5394877 | Orr et al. | Mar 1995 | A |
5402780 | Faasse, Jr. | Apr 1995 | A |
5408999 | Singh et al. | Apr 1995 | A |
5410326 | Goldstein | Apr 1995 | A |
5411647 | Johnson et al. | May 1995 | A |
5431160 | Wilkins | Jul 1995 | A |
5431921 | Thombre | Jul 1995 | A |
5462645 | Albery et al. | Oct 1995 | A |
5472317 | Field et al. | Dec 1995 | A |
5489414 | Schreiber et al. | Feb 1996 | A |
5497772 | Schulman et al. | Mar 1996 | A |
5507288 | Bocker et al. | Apr 1996 | A |
5509410 | Hill et al. | Apr 1996 | A |
5514718 | Lewis et al. | May 1996 | A |
5531878 | Vadgama et al. | Jul 1996 | A |
5552997 | Massart | Sep 1996 | A |
5568806 | Cheney, II et al. | Oct 1996 | A |
5569186 | Lord et al. | Oct 1996 | A |
5582184 | Erickson et al. | Dec 1996 | A |
5586553 | Halili et al. | Dec 1996 | A |
5593852 | Heller et al. | Jan 1997 | A |
5601435 | Quv | Feb 1997 | A |
5609575 | Larson et al. | Mar 1997 | A |
5628310 | Rao et al. | May 1997 | A |
5640954 | Pfeiffer et al. | Jun 1997 | A |
5653239 | Pompei et al. | Aug 1997 | A |
5665222 | Heller et al. | Sep 1997 | A |
5711001 | Bussan et al. | Jan 1998 | A |
5711861 | Ward et al. | Jan 1998 | A |
5726646 | Bane et al. | Mar 1998 | A |
5735285 | Albert et al. | Apr 1998 | A |
5748103 | Flach et al. | May 1998 | A |
5771891 | Gozani | Jun 1998 | A |
5772586 | Heinonen et al. | Jun 1998 | A |
5791344 | Schulman et al. | Aug 1998 | A |
5807375 | Gross et al. | Sep 1998 | A |
5875186 | Belanger et al. | Feb 1999 | A |
5899855 | Brown | May 1999 | A |
5914026 | Blubaugh, Jr. et al. | Jun 1999 | A |
5925021 | Castellano et al. | Jul 1999 | A |
5942979 | Luppino | Aug 1999 | A |
5951521 | Mastrototaro et al. | Sep 1999 | A |
5957854 | Besson et al. | Sep 1999 | A |
5961451 | Reber et al. | Oct 1999 | A |
5964993 | Blubaugh, Jr. et al. | Oct 1999 | A |
5965380 | Heller et al. | Oct 1999 | A |
5971922 | Arita et al. | Oct 1999 | A |
5972199 | Heller et al. | Oct 1999 | A |
5987353 | Khatchatrian et al. | Nov 1999 | A |
5995860 | Sun et al. | Nov 1999 | A |
6001067 | Shults et al. | Dec 1999 | A |
6004278 | Botich et al. | Dec 1999 | A |
6022315 | Iliff | Feb 2000 | A |
6024699 | Surwit et al. | Feb 2000 | A |
6028413 | Brockmann | Feb 2000 | A |
6049727 | Crothall | Apr 2000 | A |
6052565 | Ishikura et al. | Apr 2000 | A |
6066243 | Anderson et al. | May 2000 | A |
6083710 | Heller et al. | Jul 2000 | A |
6088608 | Schulman et al. | Jul 2000 | A |
6091975 | Daddona et al. | Jul 2000 | A |
6091976 | Pfeiffer et al. | Jul 2000 | A |
6093172 | Funderburk et al. | Jul 2000 | A |
6096364 | Bok et al. | Aug 2000 | A |
6103033 | Say et al. | Aug 2000 | A |
6117290 | Say et al. | Sep 2000 | A |
6119028 | Schulman et al. | Sep 2000 | A |
6120676 | Heller et al. | Sep 2000 | A |
6121009 | Heller et al. | Sep 2000 | A |
6121611 | Lindsay et al. | Sep 2000 | A |
6122351 | Schlueter, Jr. et al. | Sep 2000 | A |
6129823 | Hughes et al. | Oct 2000 | A |
6134461 | Say et al. | Oct 2000 | A |
6141573 | Kurnik et al. | Oct 2000 | A |
6143164 | Heller et al. | Nov 2000 | A |
6159147 | Lichter et al. | Dec 2000 | A |
6162611 | Heller et al. | Dec 2000 | A |
6175752 | Say et al. | Jan 2001 | B1 |
6200265 | Walsh et al. | Mar 2001 | B1 |
6212416 | Ward et al. | Apr 2001 | B1 |
6219574 | Cormier et al. | Apr 2001 | B1 |
6223283 | Chaiken et al. | Apr 2001 | B1 |
6248067 | Causey, III et al. | Jun 2001 | B1 |
6254586 | Mann et al. | Jul 2001 | B1 |
6270455 | Brown | Aug 2001 | B1 |
6275717 | Gross et al. | Aug 2001 | B1 |
6283761 | Joao | Sep 2001 | B1 |
6284478 | Heller et al. | Sep 2001 | B1 |
6293925 | Safabash et al. | Sep 2001 | B1 |
6295506 | Heinonen et al. | Sep 2001 | B1 |
6306104 | Cunningham et al. | Oct 2001 | B1 |
6309884 | Cooper et al. | Oct 2001 | B1 |
6314317 | Willis | Nov 2001 | B1 |
6329161 | Heller et al. | Dec 2001 | B1 |
6348640 | Navot et al. | Feb 2002 | B1 |
6359270 | Bridson | Mar 2002 | B1 |
6359444 | Grimes | Mar 2002 | B1 |
6360888 | McIvor et al. | Mar 2002 | B1 |
6366794 | Moussy et al. | Apr 2002 | B1 |
6377828 | Chaiken et al. | Apr 2002 | B1 |
6379301 | Worthington et al. | Apr 2002 | B1 |
6418332 | Mastrototaro et al. | Jul 2002 | B1 |
6424847 | Mastrototaro et al. | Jul 2002 | B1 |
6427088 | Bowman, IV et al. | Jul 2002 | B1 |
6440068 | Brown et al. | Aug 2002 | B1 |
6471689 | Joseph et al. | Oct 2002 | B1 |
6478736 | Mault | Nov 2002 | B1 |
6484045 | Holker et al. | Nov 2002 | B1 |
6484046 | Say et al. | Nov 2002 | B1 |
6493069 | Nagashimada et al. | Dec 2002 | B1 |
6498043 | Schulman et al. | Dec 2002 | B1 |
6514718 | Heller et al. | Feb 2003 | B2 |
6546268 | Ishikawa et al. | Apr 2003 | B1 |
6551494 | Heller et al. | Apr 2003 | B1 |
6554798 | Mann et al. | Apr 2003 | B1 |
6558321 | Burd et al. | May 2003 | B1 |
6558351 | Steil et al. | May 2003 | B1 |
6560471 | Heller et al. | May 2003 | B1 |
6561978 | Conn et al. | May 2003 | B1 |
6562001 | Lebel et al. | May 2003 | B2 |
6564105 | Starkweather et al. | May 2003 | B2 |
6565509 | Say et al. | May 2003 | B1 |
6571128 | Lebel et al. | May 2003 | B2 |
6572542 | Houben et al. | Jun 2003 | B1 |
6574490 | Abbink et al. | Jun 2003 | B2 |
6576101 | Heller et al. | Jun 2003 | B1 |
6577899 | Lebel et al. | Jun 2003 | B2 |
6579690 | Bonnecaze et al. | Jun 2003 | B1 |
6585644 | Lebel et al. | Jul 2003 | B2 |
6591125 | Buse et al. | Jul 2003 | B1 |
6595919 | Bemer et al. | Jul 2003 | B2 |
6605200 | Mao et al. | Aug 2003 | B1 |
6605201 | Mao et al. | Aug 2003 | B1 |
6607509 | Bobroff et al. | Aug 2003 | B2 |
6610012 | Mault | Aug 2003 | B2 |
6633772 | Ford et al. | Oct 2003 | B2 |
6635014 | Starkweather et al. | Oct 2003 | B2 |
6648821 | Lebel et al. | Nov 2003 | B2 |
6654625 | Say et al. | Nov 2003 | B1 |
6658396 | Tang et al. | Dec 2003 | B1 |
6659948 | Lebel et al. | Dec 2003 | B2 |
6668196 | Villegas et al. | Dec 2003 | B1 |
6675030 | Ciurczak et al. | Jan 2004 | B2 |
6676816 | Mao et al. | Jan 2004 | B2 |
6687546 | Lebel et al. | Feb 2004 | B2 |
6689056 | Kilcoyne et al. | Feb 2004 | B1 |
6694191 | Starkweather et al. | Feb 2004 | B2 |
6695860 | Ward et al. | Feb 2004 | B1 |
6702857 | Brauker et al. | Mar 2004 | B2 |
6728877 | Mackin et al. | Apr 2004 | B2 |
6733446 | Lebel et al. | May 2004 | B2 |
6740075 | Lebel et al. | May 2004 | B2 |
6741877 | Shults et al. | May 2004 | B1 |
6743635 | Neel et al. | Jun 2004 | B2 |
6746582 | Heller et al. | Jun 2004 | B2 |
6758810 | Lebel et al. | Jul 2004 | B2 |
6770030 | Schaupp et al. | Aug 2004 | B1 |
6789195 | Prihoda et al. | Sep 2004 | B1 |
6790178 | Mault et al. | Sep 2004 | B1 |
6809653 | Mann et al. | Oct 2004 | B1 |
6810290 | Lebel et al. | Oct 2004 | B2 |
6811533 | Lebel et al. | Nov 2004 | B2 |
6811534 | Bowman, IV et al. | Nov 2004 | B2 |
6813519 | Lebel et al. | Nov 2004 | B2 |
6837858 | Cunningham et al. | Jan 2005 | B2 |
6862465 | Shults et al. | Mar 2005 | B2 |
6873268 | Lebel et al. | Mar 2005 | B2 |
6881551 | Heller et al. | Apr 2005 | B2 |
6892085 | McIvor et al. | May 2005 | B2 |
6895265 | Silver | May 2005 | B2 |
6923763 | Kovatchev et al. | Aug 2005 | B1 |
6931327 | Goode, Jr. et al. | Aug 2005 | B2 |
6932894 | Mao et al. | Aug 2005 | B2 |
6936006 | Sabra | Aug 2005 | B2 |
6942518 | Liamos et al. | Sep 2005 | B2 |
6950708 | Bowman, IV et al. | Sep 2005 | B2 |
6958705 | Lebel et al. | Oct 2005 | B2 |
6968294 | Gutta et al. | Nov 2005 | B2 |
6971274 | Olin | Dec 2005 | B2 |
6974437 | Lebel et al. | Dec 2005 | B2 |
6990366 | Say et al. | Jan 2006 | B2 |
6997907 | Safabash et al. | Feb 2006 | B2 |
6998247 | Monfre et al. | Feb 2006 | B2 |
6999854 | Roth | Feb 2006 | B2 |
7003336 | Holker et al. | Feb 2006 | B2 |
7003340 | Say et al. | Feb 2006 | B2 |
7003341 | Say et al. | Feb 2006 | B2 |
7015817 | Copley et al. | Mar 2006 | B2 |
7016713 | Gardner et al. | Mar 2006 | B2 |
7024245 | Lebel et al. | Apr 2006 | B2 |
7025774 | Freeman et al. | Apr 2006 | B2 |
7027848 | Robinson et al. | Apr 2006 | B2 |
7027931 | Jones et al. | Apr 2006 | B1 |
7041068 | Freeman et al. | May 2006 | B2 |
7041468 | Drucker et al. | May 2006 | B2 |
7046153 | Oja et al. | May 2006 | B2 |
7052483 | Woicik | May 2006 | B2 |
7056302 | Douglas | Jun 2006 | B2 |
7074307 | Simpson et al. | Jul 2006 | B2 |
7081195 | Simpson et al. | Jul 2006 | B2 |
7092891 | Maus et al. | Aug 2006 | B2 |
7098803 | Mann et al. | Aug 2006 | B2 |
7108778 | Simpson et al. | Sep 2006 | B2 |
7110803 | Shults et al. | Sep 2006 | B2 |
7113821 | Sun et al. | Sep 2006 | B1 |
7123950 | Mannheimer | Oct 2006 | B2 |
7134999 | Brauker et al. | Nov 2006 | B2 |
7136689 | Shults et al. | Nov 2006 | B2 |
7153265 | Vachon | Dec 2006 | B2 |
7155290 | Von Arx et al. | Dec 2006 | B2 |
7171274 | Starkweather et al. | Jan 2007 | B2 |
7179226 | Crothall et al. | Feb 2007 | B2 |
7190988 | Say et al. | Mar 2007 | B2 |
7192450 | Brauker et al. | Mar 2007 | B2 |
7198606 | Boecker et al. | Apr 2007 | B2 |
7207974 | Safabash et al. | Apr 2007 | B2 |
7226442 | Sheppard et al. | Jun 2007 | B2 |
7226978 | Tapsak et al. | Jun 2007 | B2 |
7276029 | Goode, Jr. et al. | Oct 2007 | B2 |
7278983 | Ireland et al. | Oct 2007 | B2 |
7286894 | Grant et al. | Oct 2007 | B1 |
7299082 | Feldman et al. | Nov 2007 | B2 |
7310544 | Brister et al. | Dec 2007 | B2 |
7324012 | Mann et al. | Jan 2008 | B2 |
7329239 | Safabash et al. | Feb 2008 | B2 |
7346766 | Mackin et al. | Mar 2008 | B2 |
7364592 | Carr-Brendel et al. | Apr 2008 | B2 |
7366556 | Brister et al. | Apr 2008 | B2 |
7379765 | Petisce et al. | May 2008 | B2 |
7381184 | Funderburk et al. | Jun 2008 | B2 |
7402153 | Steil et al. | Jul 2008 | B2 |
7424318 | Brister et al. | Sep 2008 | B2 |
7429258 | Angel et al. | Sep 2008 | B2 |
7455663 | Bikovsky | Nov 2008 | B2 |
7460898 | Brister et al. | Dec 2008 | B2 |
7462264 | Heller et al. | Dec 2008 | B2 |
7467003 | Brister et al. | Dec 2008 | B2 |
7471972 | Rhodes et al. | Dec 2008 | B2 |
7494465 | Brister et al. | Feb 2009 | B2 |
7497827 | Brister et al. | Mar 2009 | B2 |
7499002 | Blasko et al. | Mar 2009 | B2 |
7519408 | Rasdal et al. | Apr 2009 | B2 |
7583990 | Goode, Jr. et al. | Sep 2009 | B2 |
7591801 | Brauker et al. | Sep 2009 | B2 |
7599726 | Goode, Jr. et al. | Oct 2009 | B2 |
7613491 | Boock et al. | Nov 2009 | B2 |
7615007 | Shults et al. | Nov 2009 | B2 |
7632228 | Brauker et al. | Dec 2009 | B2 |
7635594 | Holmes et al. | Dec 2009 | B2 |
7637868 | Saint et al. | Dec 2009 | B2 |
7640048 | Dobbles et al. | Dec 2009 | B2 |
7651596 | Petisce et al. | Jan 2010 | B2 |
7651845 | Doyle, III et al. | Jan 2010 | B2 |
7654956 | Brister et al. | Feb 2010 | B2 |
7657297 | Simpson et al. | Feb 2010 | B2 |
7697967 | Stafford | Apr 2010 | B2 |
7699775 | Desai et al. | Apr 2010 | B2 |
7711402 | Shults et al. | May 2010 | B2 |
7713574 | Brister et al. | May 2010 | B2 |
7715893 | Karnath et al. | May 2010 | B2 |
7727147 | Osorio et al. | Jun 2010 | B1 |
7731657 | Stafford | Jun 2010 | B2 |
7736310 | Taub | Jun 2010 | B2 |
7736344 | Moberg et al. | Jun 2010 | B2 |
7763042 | Iio et al. | Jul 2010 | B2 |
7766829 | Sloan et al. | Aug 2010 | B2 |
7811231 | Jin et al. | Oct 2010 | B2 |
7813809 | Strother et al. | Oct 2010 | B2 |
7822454 | Alden et al. | Oct 2010 | B1 |
7889069 | Fifolt et al. | Feb 2011 | B2 |
7899545 | John | Mar 2011 | B2 |
7914460 | Melker et al. | Mar 2011 | B2 |
7938797 | Estes | May 2011 | B2 |
7941200 | Weinert et al. | May 2011 | B2 |
7946985 | Mastrototaro et al. | May 2011 | B2 |
7969307 | Peeters | Jun 2011 | B2 |
7972296 | Braig et al. | Jul 2011 | B2 |
7976466 | Ward et al. | Jul 2011 | B2 |
7978063 | Baldus et al. | Jul 2011 | B2 |
8010174 | Goode, Jr. et al. | Aug 2011 | B2 |
8010256 | Oowada | Aug 2011 | B2 |
8192394 | Estes et al. | Jun 2012 | B2 |
8255026 | Al-Ali | Aug 2012 | B1 |
8282549 | Brauker et al. | Oct 2012 | B2 |
8597570 | Terashima et al. | Dec 2013 | B2 |
9317656 | Hayter et al. | Apr 2016 | B2 |
9721063 | Hayter et al. | Aug 2017 | B2 |
11205511 | Hayter | Dec 2021 | B2 |
20010020124 | Tamada | Sep 2001 | A1 |
20010037060 | Thompson et al. | Nov 2001 | A1 |
20010037366 | Webb et al. | Nov 2001 | A1 |
20010047604 | Valiulis | Dec 2001 | A1 |
20020019022 | Dunn et al. | Feb 2002 | A1 |
20020054320 | Ogino | May 2002 | A1 |
20020095076 | Krausman et al. | Jul 2002 | A1 |
20020103499 | Perez et al. | Aug 2002 | A1 |
20020106709 | Potts et al. | Aug 2002 | A1 |
20020111832 | Judge | Aug 2002 | A1 |
20020128594 | Das et al. | Sep 2002 | A1 |
20020133107 | Darcey | Sep 2002 | A1 |
20020147135 | Schnell | Oct 2002 | A1 |
20020161288 | Shin et al. | Oct 2002 | A1 |
20020188748 | Blackwell et al. | Dec 2002 | A1 |
20030005464 | Gropper et al. | Jan 2003 | A1 |
20030021729 | Moller et al. | Jan 2003 | A1 |
20030023461 | Quintanilla et al. | Jan 2003 | A1 |
20030028089 | Galley et al. | Feb 2003 | A1 |
20030060692 | Ruchti et al. | Mar 2003 | A1 |
20030060753 | Starkweather et al. | Mar 2003 | A1 |
20030114897 | Von Arx et al. | Jun 2003 | A1 |
20030147515 | Kai et al. | Aug 2003 | A1 |
20030163351 | Brown | Aug 2003 | A1 |
20030168338 | Gao et al. | Sep 2003 | A1 |
20030199790 | Boecker et al. | Oct 2003 | A1 |
20030208113 | Mault et al. | Nov 2003 | A1 |
20030212379 | Bylund et al. | Nov 2003 | A1 |
20040010207 | Flaherty et al. | Jan 2004 | A1 |
20040015102 | Cummings et al. | Jan 2004 | A1 |
20040041749 | Dixon | Mar 2004 | A1 |
20040054263 | Moerman et al. | Mar 2004 | A1 |
20040060818 | Feldman et al. | Apr 2004 | A1 |
20040063435 | Sakamoto et al. | Apr 2004 | A1 |
20040064068 | DeNuzzio et al. | Apr 2004 | A1 |
20040073266 | Haefner et al. | Apr 2004 | A1 |
20040078215 | Dahlin et al. | Apr 2004 | A1 |
20040106858 | Say et al. | Jun 2004 | A1 |
20040122353 | Shahmirian et al. | Jun 2004 | A1 |
20040133390 | Osorio et al. | Jul 2004 | A1 |
20040135684 | Steinthal et al. | Jul 2004 | A1 |
20040138588 | Saikley et al. | Jul 2004 | A1 |
20040147872 | Thompson | Jul 2004 | A1 |
20040152622 | Keith et al. | Aug 2004 | A1 |
20040167801 | Say et al. | Aug 2004 | A1 |
20040171921 | Say et al. | Sep 2004 | A1 |
20040176672 | Silver et al. | Sep 2004 | A1 |
20040204687 | Mogensen et al. | Oct 2004 | A1 |
20040204868 | Maynard et al. | Oct 2004 | A1 |
20040223985 | Dunfiled et al. | Nov 2004 | A1 |
20040249253 | Racchini et al. | Dec 2004 | A1 |
20040254433 | Bandis et al. | Dec 2004 | A1 |
20040254434 | Goodnow et al. | Dec 2004 | A1 |
20040260478 | Schwamm | Dec 2004 | A1 |
20040267300 | Mace | Dec 2004 | A1 |
20050001024 | Kusaka et al. | Jan 2005 | A1 |
20050003470 | Nelson et al. | Jan 2005 | A1 |
20050004494 | Perez et al. | Jan 2005 | A1 |
20050027177 | Shin et al. | Feb 2005 | A1 |
20050031689 | Shults et al. | Feb 2005 | A1 |
20050038680 | McMahon | Feb 2005 | A1 |
20050049179 | Davidson et al. | Mar 2005 | A1 |
20050070774 | Addison et al. | Mar 2005 | A1 |
20050090607 | Tapsak et al. | Apr 2005 | A1 |
20050096511 | Fox et al. | May 2005 | A1 |
20050096516 | Soykan et al. | May 2005 | A1 |
20050113886 | Fischell et al. | May 2005 | A1 |
20050114068 | Chey et al. | May 2005 | A1 |
20050116683 | Cheng et al. | Jun 2005 | A1 |
20050137530 | Campbell et al. | Jun 2005 | A1 |
20050173245 | Feldman et al. | Aug 2005 | A1 |
20050176136 | Burd et al. | Aug 2005 | A1 |
20050182306 | Sloan | Aug 2005 | A1 |
20050184153 | Auchinleck | Aug 2005 | A1 |
20050187442 | Cho et al. | Aug 2005 | A1 |
20050195930 | Spital et al. | Sep 2005 | A1 |
20050204134 | Von Arx et al. | Sep 2005 | A1 |
20050214892 | Kovatchev et al. | Sep 2005 | A1 |
20050245799 | Brauker et al. | Nov 2005 | A1 |
20050251033 | Scarantino et al. | Nov 2005 | A1 |
20050277912 | John | Dec 2005 | A1 |
20060001538 | Kraft et al. | Jan 2006 | A1 |
20060001551 | Kraft et al. | Jan 2006 | A1 |
20060010098 | Goodnow et al. | Jan 2006 | A1 |
20060015020 | Neale et al. | Jan 2006 | A1 |
20060015024 | Brister et al. | Jan 2006 | A1 |
20060017923 | Ruchti et al. | Jan 2006 | A1 |
20060020300 | Nghiern et al. | Jan 2006 | A1 |
20060031094 | Cohen et al. | Feb 2006 | A1 |
20060079740 | Silver et al. | Apr 2006 | A1 |
20060091006 | Wang et al. | May 2006 | A1 |
20060142651 | Brister et al. | Jun 2006 | A1 |
20060154642 | Scannell | Jul 2006 | A1 |
20060166629 | Reggiardo | Jul 2006 | A1 |
20060173406 | Haves et al. | Aug 2006 | A1 |
20060189863 | Peyser et al. | Aug 2006 | A1 |
20060193375 | Lee et al. | Aug 2006 | A1 |
20060222566 | Brauker et al. | Oct 2006 | A1 |
20060224141 | Rush et al. | Oct 2006 | A1 |
20060226985 | Goodnow et al. | Oct 2006 | A1 |
20060247508 | Fennell | Nov 2006 | A1 |
20060247985 | Liamos et al. | Nov 2006 | A1 |
20060258929 | Goode et al. | Nov 2006 | A1 |
20060272652 | Stocker et al. | Dec 2006 | A1 |
20060290496 | Peeters et al. | Dec 2006 | A1 |
20060293607 | Alt et al. | Dec 2006 | A1 |
20070010950 | Abensour et al. | Jan 2007 | A1 |
20070016381 | Karnath et al. | Jan 2007 | A1 |
20070017983 | Frank et al. | Jan 2007 | A1 |
20070027381 | Stafford | Feb 2007 | A1 |
20070033074 | Nitzan et al. | Feb 2007 | A1 |
20070060869 | Tolle et al. | Mar 2007 | A1 |
20070060979 | Strother et al. | Mar 2007 | A1 |
20070066956 | Finkel | Mar 2007 | A1 |
20070073129 | Shah et al. | Mar 2007 | A1 |
20070078320 | Stafford | Apr 2007 | A1 |
20070078321 | Mazza et al. | Apr 2007 | A1 |
20070078322 | Stafford | Apr 2007 | A1 |
20070078818 | Zvitz et al. | Apr 2007 | A1 |
20070093786 | Goldsmith et al. | Apr 2007 | A1 |
20070149875 | Ouyang et al. | Jun 2007 | A1 |
20070173706 | Neinast et al. | Jul 2007 | A1 |
20070173709 | Petisce et al. | Jul 2007 | A1 |
20070173710 | Petisce et al. | Jul 2007 | A1 |
20070191702 | Yodfat et al. | Aug 2007 | A1 |
20070203407 | Hoss et al. | Aug 2007 | A1 |
20070203539 | Stone et al. | Aug 2007 | A1 |
20070203966 | Brauker et al. | Aug 2007 | A1 |
20070208246 | Brauker et al. | Sep 2007 | A1 |
20070228071 | Kamen et al. | Oct 2007 | A1 |
20070231846 | Cosentino et al. | Oct 2007 | A1 |
20070232878 | Kovatchev et al. | Oct 2007 | A1 |
20070235331 | Simpson et al. | Oct 2007 | A1 |
20070249922 | Peyser et al. | Oct 2007 | A1 |
20070255321 | Gerber et al. | Nov 2007 | A1 |
20070255348 | Holtzclaw | Nov 2007 | A1 |
20080004904 | Tran | Jan 2008 | A1 |
20080009692 | Stafford | Jan 2008 | A1 |
20080033254 | Karnath et al. | Feb 2008 | A1 |
20080039702 | Hayter et al. | Feb 2008 | A1 |
20080045824 | Tapsak et al. | Feb 2008 | A1 |
20080060955 | Goodnow | Mar 2008 | A1 |
20080061961 | John | Mar 2008 | A1 |
20080083617 | Simpson et al. | Apr 2008 | A1 |
20080092638 | Brenneman et al. | Apr 2008 | A1 |
20080114228 | McCluskey et al. | May 2008 | A1 |
20080125636 | Ward et al. | May 2008 | A1 |
20080127052 | Rostoker | May 2008 | A1 |
20080177149 | Weinert et al. | Jul 2008 | A1 |
20080194934 | Ray et al. | Aug 2008 | A1 |
20080194938 | Brister et al. | Aug 2008 | A1 |
20080197024 | Simpson et al. | Aug 2008 | A1 |
20080200788 | Brister et al. | Aug 2008 | A1 |
20080200789 | Brister et al. | Aug 2008 | A1 |
20080200791 | Simpson et al. | Aug 2008 | A1 |
20080201325 | Doniger et al. | Aug 2008 | A1 |
20080208025 | Shults et al. | Aug 2008 | A1 |
20080214918 | Brister et al. | Sep 2008 | A1 |
20080228051 | Shults et al. | Sep 2008 | A1 |
20080228054 | Shults et al. | Sep 2008 | A1 |
20080228055 | Sher | Sep 2008 | A1 |
20080234943 | Ray et al. | Sep 2008 | A1 |
20080242961 | Brister et al. | Oct 2008 | A1 |
20080242963 | Essenpreis et al. | Oct 2008 | A1 |
20080254544 | Modzelewski et al. | Oct 2008 | A1 |
20080262469 | Brister et al. | Oct 2008 | A1 |
20080269714 | Mastrototaro et al. | Oct 2008 | A1 |
20080269723 | Mastrototaro et al. | Oct 2008 | A1 |
20080287764 | Rasdal et al. | Nov 2008 | A1 |
20080296155 | Shults et al. | Dec 2008 | A1 |
20080300572 | Rankers et al. | Dec 2008 | A1 |
20080306434 | Dobbles et al. | Dec 2008 | A1 |
20080306435 | Karnath et al. | Dec 2008 | A1 |
20080306444 | Brister et al. | Dec 2008 | A1 |
20080312859 | Skyggebjerg et al. | Dec 2008 | A1 |
20080319085 | Wright et al. | Dec 2008 | A1 |
20090006061 | Thukral et al. | Jan 2009 | A1 |
20090012377 | Jennewine et al. | Jan 2009 | A1 |
20090018424 | Karnath et al. | Jan 2009 | A1 |
20090030294 | Petisce et al. | Jan 2009 | A1 |
20090036758 | Brauker et al. | Feb 2009 | A1 |
20090036763 | Brauker et al. | Feb 2009 | A1 |
20090040022 | Finkenzeller | Feb 2009 | A1 |
20090043181 | Brauker et al. | Feb 2009 | A1 |
20090048503 | Dalal et al. | Feb 2009 | A1 |
20090054747 | Fennell | Feb 2009 | A1 |
20090062633 | Brauker et al. | Mar 2009 | A1 |
20090076356 | Simpson et al. | Mar 2009 | A1 |
20090076360 | Brister et al. | Mar 2009 | A1 |
20090082693 | Stafford | Mar 2009 | A1 |
20090085873 | Betts et al. | Apr 2009 | A1 |
20090088787 | Koike et al. | Apr 2009 | A1 |
20090093687 | Telfort et al. | Apr 2009 | A1 |
20090099436 | Brister et al. | Apr 2009 | A1 |
20090124879 | Brister et al. | May 2009 | A1 |
20090124964 | Leach et al. | May 2009 | A1 |
20090131768 | Simpson et al. | May 2009 | A1 |
20090131769 | Leach et al. | May 2009 | A1 |
20090131776 | Simpson et al. | May 2009 | A1 |
20090131777 | Simpson et al. | May 2009 | A1 |
20090131860 | Nielsen | May 2009 | A1 |
20090137886 | Shariati et al. | May 2009 | A1 |
20090137887 | Shariati et al. | May 2009 | A1 |
20090143659 | Li et al. | Jun 2009 | A1 |
20090156924 | Shariati et al. | Jun 2009 | A1 |
20090163791 | Brister et al. | Jun 2009 | A1 |
20090178459 | Li et al. | Jul 2009 | A1 |
20090182217 | Li et al. | Jul 2009 | A1 |
20090192366 | Mensinger et al. | Jul 2009 | A1 |
20090192380 | Shariati et al. | Jul 2009 | A1 |
20090192722 | Shariati et al. | Jul 2009 | A1 |
20090192724 | Brauker et al. | Jul 2009 | A1 |
20090192745 | Karnath et al. | Jul 2009 | A1 |
20090192751 | Karnath et al. | Jul 2009 | A1 |
20090216100 | Ebner et al. | Aug 2009 | A1 |
20090216103 | Brister et al. | Aug 2009 | A1 |
20090240120 | Mensinger et al. | Sep 2009 | A1 |
20090240128 | Mensinger et al. | Sep 2009 | A1 |
20090240193 | Mensinger et al. | Sep 2009 | A1 |
20090242399 | Karnath et al. | Oct 2009 | A1 |
20090242425 | Karnath et al. | Oct 2009 | A1 |
20090247855 | Boock et al. | Oct 2009 | A1 |
20090247856 | Boock et al. | Oct 2009 | A1 |
20090298182 | Schulat et al. | Dec 2009 | A1 |
20090299155 | Yang et al. | Dec 2009 | A1 |
20090299156 | Simpson et al. | Dec 2009 | A1 |
20090299162 | Brauker et al. | Dec 2009 | A1 |
20090299276 | Brauker et al. | Dec 2009 | A1 |
20100076283 | Simpson et al. | Mar 2010 | A1 |
20100093786 | Watanabe et al. | Apr 2010 | A1 |
20100096259 | Zhang et al. | Apr 2010 | A1 |
20100105999 | Dixon et al. | Apr 2010 | A1 |
20100113897 | Brenneman et al. | May 2010 | A1 |
20100141656 | Krieftewirth | Jun 2010 | A1 |
20100146300 | Brown | Jun 2010 | A1 |
20100152554 | Steine et al. | Jun 2010 | A1 |
20100160759 | Celentano et al. | Jun 2010 | A1 |
20100168538 | Keenan et al. | Jul 2010 | A1 |
20100168540 | Karnath et al. | Jul 2010 | A1 |
20100168541 | Karnath et al. | Jul 2010 | A1 |
20100168542 | Karnath et al. | Jul 2010 | A1 |
20100168543 | Karnath et al. | Jul 2010 | A1 |
20100168544 | Karnath et al. | Jul 2010 | A1 |
20100168545 | Karnath et al. | Jul 2010 | A1 |
20100168546 | Karnath et al. | Jul 2010 | A1 |
20100168657 | Karnath et al. | Jul 2010 | A1 |
20100174168 | Goode, Jr. et al. | Jul 2010 | A1 |
20100174266 | Estes | Jul 2010 | A1 |
20100179399 | Goode, Jr. et al. | Jul 2010 | A1 |
20100179402 | Goode, Jr. et al. | Jul 2010 | A1 |
20100179405 | Goode, Jr. et al. | Jul 2010 | A1 |
20100179408 | Karnath et al. | Jul 2010 | A1 |
20100179409 | Karnath et al. | Jul 2010 | A1 |
20100185065 | Goode, Jr. et al. | Jul 2010 | A1 |
20100185071 | Simpson et al. | Jul 2010 | A1 |
20100185072 | Goode, Jr. et al. | Jul 2010 | A1 |
20100185073 | Goode, Jr. et al. | Jul 2010 | A1 |
20100185074 | Goode, Jr. et al. | Jul 2010 | A1 |
20100185075 | Brister et al. | Jul 2010 | A1 |
20100185175 | Kamen et al. | Jul 2010 | A1 |
20100198034 | Thomas et al. | Aug 2010 | A1 |
20100198035 | Karnath et al. | Aug 2010 | A1 |
20100198142 | Sloan et al. | Aug 2010 | A1 |
20100213080 | Celentano et al. | Aug 2010 | A1 |
20100217105 | Yodfat et al. | Aug 2010 | A1 |
20100262201 | He et al. | Oct 2010 | A1 |
20100313105 | Nekoomaram et al. | Dec 2010 | A1 |
20100331642 | Bruce et al. | Dec 2010 | A1 |
20110024043 | Boock et al. | Feb 2011 | A1 |
20110024307 | Simpson et al. | Feb 2011 | A1 |
20110027127 | Simpson et al. | Feb 2011 | A1 |
20110027453 | Boock et al. | Feb 2011 | A1 |
20110027458 | Boock et al. | Feb 2011 | A1 |
20110028815 | Simpson et al. | Feb 2011 | A1 |
20110028816 | Simpson et al. | Feb 2011 | A1 |
20110031986 | Bhat et al. | Feb 2011 | A1 |
20110077490 | Simpson et al. | Mar 2011 | A1 |
20110112696 | Yodfat et al. | May 2011 | A1 |
20110148905 | Simmons et al. | Jun 2011 | A1 |
20110178461 | Chong et al. | Jul 2011 | A1 |
20110208027 | Wagner et al. | Aug 2011 | A1 |
20110213225 | Bernstein et al. | Sep 2011 | A1 |
20110257895 | Brauker et al. | Oct 2011 | A1 |
20110287528 | Fern et al. | Nov 2011 | A1 |
20110320130 | Valdes | Dec 2011 | A1 |
20120078071 | Bohm et al. | Mar 2012 | A1 |
20120108934 | Valdes et al. | May 2012 | A1 |
20120165626 | Irina et al. | Jun 2012 | A1 |
20120165640 | Galley et al. | Jun 2012 | A1 |
20130035575 | Mayou et al. | Feb 2013 | A1 |
20130235166 | Jones et al. | Sep 2013 | A1 |
Number | Date | Country |
---|---|---|
0098592 | Jan 1984 | EP |
0127958 | Dec 1984 | EP |
0320109 | Jun 1989 | EP |
0390390 | Oct 1990 | EP |
0396788 | Nov 1990 | EP |
WO-0059370 | Oct 2000 | WO |
WO-0152935 | Jul 2001 | WO |
WO-0154753 | Aug 2001 | WO |
WO-0382091 | Oct 2003 | WO |
WO-2008001366 | Jan 2008 | WO |
Entry |
---|
Ancora Technologies, Inc. v. HTC America, Inc., U.S. Court of Appeals for the Federal Circuit, Opinion, Appeal No. 18-1404, Nov. 16, 2018, pp. 1-13. |
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526. |
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1070. |
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics. vol. 4, No. 1, 2002, pp. 25-33. |
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10. |
Brooks, S. L., et al., “Development of an On-line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987, pp. 45-56. |
Cass, A. E.G., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56, No. 4, 1984, pp. 667-671. |
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on “Wired” Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244. |
El-Khatib, F. H., et al., “Adaptive Closed-Loop Control Provides Blood-Glucose Regulation Using Subcutaneous Insulin and Glucagon Infusion in Diabetic Swine”, Journal of Science and Technology, vol. 1, No. 2, 2007, pp. 181-192. |
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5 No. 5, 2003, pp. 769-779. |
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004. |
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652. |
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719. |
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, p. 198. |
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients With Type 1 Diabetes?”, Diabetologia, vol. 45, 2002, pp. 250. |
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304. |
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549. |
Lortz, J., et al., “What is Bluetooth? We Explain The Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-74. |
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658. |
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages. |
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376. |
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532. |
Morbiducci, U., et al., “Improved usability of the minimal model of insulin sensitivity based on an automated approach and genetic algorithms for parameter estimation”, Clinical Science, vol. 112, 2007, pp. 257-263. |
Mougiakakou, S.G., et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients”, Proceedings of the 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, 2005, pp. 298-301. |
Parker, R., et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model”, AIChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549. |
Pickup, J. C., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”, Biosensors, vol. 3, 1987/88, pp. 335-346. |
Pickup, J. C., et al., “In vivo molecular sensing in diabetes mellitus: an implantable glucose sensor with direct electron transfer”, Diabetologia, vol. 32, 1989, pp. 213-217. |
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272. |
Quinn, C. P., et al., “Kinetics of glucose delivery to subcutaneous tissue in rats measured with 0.3-mm amperometric microsensors”, American Journal of Physiology, vol. 269, No. 1, 1995, E155-E161. |
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Reviews™ in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241. |
Sakakida, M., et al., “Development of ferrocene-mediated needle-type glucose sensor as a measure of true subcutaneous tissue glucose concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158. |
Sakakida, M., et al., “Ferrocene-mediated needle-type glucose sensor covered with newly designed biocompatible membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322. |
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308. |
Schmidtke, D. W., et al., “Measurement and modeling of the transient difference between blood and subcutaneous glucose concentrations in the rat after injection of insulin”, Proceedings ofthe National Academy of Sciences, vol. 95, 1998, pp. 294-299. |
Shaw, G. W., et al., “In Vitro testing of a simply constructed, highly stable glucose sensor suitable for implantation in diabetic patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406. |
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184. |
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor-Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20. |
Shichiri, M., et al., “Membrane design for extending the long-life of an implantable glucose sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313. |
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210. |
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301. |
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131. |
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942. |
Sternberg, R., et al., “Study and Development of Multilayer Needle-type Enzyme-based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40. |
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261. |
Turner, A.P.F., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115. |
Updike, S. J., et al., “Principles of Long-term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous In vivo Monitoring, Chapter 4, 1997, pp. 117-137. |
Velho, G., et al., “Strategies for calibrating a subcutaneous glucose sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964. |
Wilson, G. S., et al., “Progress toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617. |
Number | Date | Country | |
---|---|---|---|
20220181013 A1 | Jun 2022 | US |
Number | Date | Country | |
---|---|---|---|
61563517 | Nov 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15640058 | Jun 2017 | US |
Child | 17523527 | US | |
Parent | 15065604 | Mar 2016 | US |
Child | 15640058 | US | |
Parent | 13684085 | Nov 2012 | US |
Child | 15065604 | US |