Compatibility mechanisms for devices in a continuous analyte monitoring system and methods thereof

Information

  • Patent Grant
  • 9317656
  • Patent Number
    9,317,656
  • Date Filed
    Wednesday, November 21, 2012
    11 years ago
  • Date Issued
    Tuesday, April 19, 2016
    8 years ago
Abstract
Methods, devices, and kits are provided for determining a compatibility of one or more devices in an analyte monitoring system.
Description
BACKGROUND

The detection of the level of glucose or other analytes, such as lactate, oxygen or the like, in certain individuals is vitally important to their health. For example, the monitoring of glucose is particularly important to individuals with diabetes. Diabetics may need to monitor glucose levels to determine when insulin is needed to reduce glucose levels in their bodies or when additional glucose is needed to raise the level of glucose in their bodies.


Devices have been developed for continuous or automatic monitoring of analytes, such as glucose, in bodily fluid such as in the blood stream or in interstitial fluid. Some of these analyte measuring devices are configured so that at least a portion of the devices are positioned below a skin surface of a user, e.g., in a blood vessel or in the subcutaneous tissue of a user.


SUMMARY

Embodiments of the present disclosure include computer-implemented methods for determining a compatibility of one or more devices in an analyte monitoring system. Certain aspects include receiving identification code data related to a configuration of a first device, retrieving information including a predetermined list of one or more acceptable identification code data that is related to one or more first device configurations that are compatible with the analyte monitoring system, comparing the received identification code data with the one or more acceptable identification codes from the retrieved predetermined list and determining if the configuration of the first device is compatible with the analyte monitoring system based upon the received identification code data being identified in the predetermined list of acceptable identification code data.


Embodiments of the present disclosure include computer-implemented methods for determining a compatibility of one or more devices in an analyte monitoring system. Certain aspects include receiving identification code data related to a configuration of a first device, retrieving information including a predetermined list of one or more identification codes that are related to one or more first device configurations and one or more software functions relating to the one or more first device configurations, comparing the received identification code data with the one or more identification codes and determining an appropriate software function for processing analyte data obtained by the first device that is related to an analyte level of a user based upon a stored software function that corresponds to the received identification code data.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 shows a data monitoring and management system such as, for example, an analyte (e.g., glucose) monitoring system in accordance with certain embodiments of the present disclosure;



FIG. 2 illustrates a data monitoring and management system for real time glucose measurement data acquisition and processing in one aspect of the present disclosure;



FIG. 3 is a block diagram of a receiver/monitor unit such as that shown in FIG. 1 in accordance with certain embodiments;



FIG. 4 is a flowchart illustrating a method for determining a compatibility of one or more devices in an analyte monitoring system in accordance with certain embodiments of the present disclosure;



FIG. 5 is a flowchart illustrating a method for determining a compatibility of one or more devices in an analyte monitoring system in accordance with certain embodiments of the present disclosure; and



FIG. 6 is a flowchart illustrating a method for determining a compatibility of one or more devices in an analyte monitoring system in accordance with certain embodiments of the present disclosure.





DETAILED DESCRIPTION

Before the present disclosure is further described, it is to be understood that this disclosure is not limited to particular embodiments described, as such may, of course, vary. It is also to be understood that the terminology used herein is for the purpose of describing particular embodiments only, and is not intended to be limiting, since the scope of the present disclosure will be limited only by the appended claims.


As will be apparent to those of skill in the art upon reading this disclosure, each of the individual embodiments described and illustrated herein has discrete components and features which may be readily separated from or combined with the features of any of the other several embodiments without departing from the scope or spirit of the present disclosure.


Where a range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is encompassed within the disclosure. The upper and lower limits of these smaller ranges may independently be included in the smaller ranges, and are also encompassed within the disclosure, subject to any specifically excluded limit in the stated range. Where the stated range includes one or both of the limits, ranges excluding either or both of those included limits are also included in the disclosure.


Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this disclosure belongs. Although many methods and materials similar or equivalent to those described herein can also be used in the practice or testing of the present disclosure, exemplary methods and materials are now described. All publications mentioned herein are incorporated herein by reference to disclose and describe the methods and/or materials in connection with which the publications are cited.


As used herein and in the appended claims, the singular forms “a,” “an,” and “the” include plural referents unless the context clearly dictates otherwise. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.


The publications discussed herein are provided solely for their disclosure prior to the filing date of the present application. Nothing herein is to be construed as an admission that the present disclosure is not entitled to antedate such publication by virtue of prior disclosure. Further, the dates of publication provided may be different from the actual publication dates which may need to be independently confirmed.



FIG. 1 shows a data monitoring and management system such as, for example, an analyte (e.g., glucose) monitoring system in accordance with certain embodiments of the present disclosure. Embodiments of the subject disclosure are described primarily with respect to glucose monitoring devices and systems, and methods of using two or more devices in a glucose monitoring system to determine the compatibility of one or more devices in the glucose monitoring system.


Analytes that may be monitored include, but are not limited to, acetyl choline, amylase, bilirubin, cholesterol, chorionic gonadotropin, creatine kinase (e.g., CK-MB), creatine, DNA, fructosamine, glucose, glutamine, growth hormones, hormones, ketones, lactate, peroxide, prostate-specific antigen, prothrombin, RNA, thyroid stimulating hormone, and troponin. The concentration of drugs, such as, for example, antibiotics (e.g., gentamicin, vancomycin, and the like), digitoxin, digoxin, drugs of abuse, theophylline, and warfarin, may also be monitored. In those embodiments that monitor more than one analyte, the analytes may be monitored at the same or different times.


Referring to FIG. 1, the analyte monitoring system 100 includes a sensor 101, a data processing unit (e.g., sensor electronics) 102 connectable to the sensor 101, and a primary receiver unit 104 which is configured to communicate with the data processing unit 102 via a communication link 103. In aspects of the present disclosure, the sensor 101 and the data processing unit (sensor electronics) 102 may be configured as a single integrated assembly 110. In certain embodiments, the integrated sensor and sensor electronics assembly 110 may be configured as an on-body patch device. In such embodiments, the on-body patch device may be configured for, for example, RFID or RF communication with a reader device/receiver unit, and/or an insulin pump.


In certain embodiments, the primary receiver unit 104 may be further configured to transmit data to a data processing terminal 105 to evaluate or otherwise process or format data received by the primary receiver unit 104. The data processing terminal 105 may be configured to receive data directly from the data processing unit 102 via a communication link which may optionally be configured for bi-directional communication. Further, the data processing unit 102 may include a transmitter or a transceiver to transmit and/or receive data to and/or from the primary receiver unit 104, the data processing terminal 105 or optionally the secondary receiver unit 106.


Also shown in FIG. 1 is an optional secondary receiver unit 106 which is operatively coupled to the communication link and configured to receive data transmitted from the data processing unit 102. The secondary receiver unit 106 may be configured to communicate with the primary receiver unit 104, as well as the data processing terminal 105. The secondary receiver unit 106 may be configured for bi-directional wireless communication with each of the primary receiver unit 104 and the data processing terminal 105. As discussed in further detail below, in certain embodiments the secondary receiver unit 106 may be a de-featured receiver as compared to the primary receiver unit 104, i.e., the secondary receiver unit 106 may include a limited or minimal number of functions and features as compared with the primary receiver unit 104. As such, the secondary receiver unit 106 may include a smaller (in one or more, including all, dimensions), compact housing or embodied in a device such as a wrist watch, arm band, etc., for example. Alternatively, the secondary receiver unit 106 may be configured with the same or substantially similar functions and features as the primary receiver unit 104. The secondary receiver unit 106 may include a docking portion to be mated with a docking cradle unit for placement by, e.g., the bedside for night time monitoring, and/or bi-directional communication device.


Only one sensor 101, data processing unit 102 and data processing terminal 105 are shown in the embodiment of the analyte monitoring system 100 illustrated in FIG. 1. However, it will be appreciated by one of ordinary skill in the art that the analyte monitoring system 100 may include more than one sensor 101 and/or more than one data processing unit 102, and/or more than one data processing terminal 105.


The analyte monitoring system 100 may be a continuous monitoring system, or semi-continuous, or a discrete monitoring system. In a multi-component environment, each component may be configured to be uniquely identified by one or more of the other components in the system so that communication conflict may be readily resolved between the various components within the analyte monitoring system 100. For example, unique IDs, communication channels, and the like, may be used.


In certain embodiments, the sensor 101 is physically positioned in or on the body of a user whose analyte level is being monitored. The sensor 101 may be configured to at least process and send data related to its configuration into a corresponding signal for transmission by the data processing unit 102.


The data processing unit 102 is coupleable to the sensor 101 so that both devices are positioned in or on the user's body, with at least a portion of the analyte sensor 101 positioned transcutaneously. The data processing unit 102 in certain embodiments may include a portion of the sensor 101 (proximal section of the sensor in electrical communication with the data processing unit 102) which is encapsulated within or on the printed circuit board of the data processing unit 102 with, for example, potting material or other protective material. The data processing unit 102 performs data processing functions, where such functions may include but are not limited to, filtering and encoding of data signals, each of which corresponds to a sampled analyte level of the user, for transmission to the primary receiver unit 104 via the communication link 103. In one embodiment, the sensor 101 or the data processing unit 102 or a combined sensor/data processing unit may be wholly implantable under the skin layer of the user.


In one aspect, the primary receiver unit 104 may include an analog interface section including an RF receiver and an antenna that is configured to communicate with the data processing unit 102 via the communication link 103, and a data processing section for processing the received data from the data processing unit 102 such as data decoding, error detection and correction, data clock generation, and/or data bit recovery.


In operation, the primary receiver unit 104 in certain embodiments is configured to synchronize with the data processing unit 102 to uniquely identify the data processing unit 102, based on, for example, identification information of the data processing unit 102, and thereafter, to periodically receive signals transmitted from the data processing unit 102 associated with the monitored analyte levels detected by the sensor 101. That is, when operating in the CGM mode, the receiver unit 104 in certain embodiments is configured to automatically receive data related to the configuration of the sensor from the analyte sensor/sensor electronics when the communication link (e.g., RF range) is maintained or opened between these components.


Referring again to FIG. 1, the data processing terminal 105 may include a personal computer, portable data processing devices or computers such as a laptop computer or a handheld device (e.g., personal digital assistants (PDAs), communication devices such as a cellular phone (e.g., a multimedia and Internet-enabled mobile phone such as an iPhone, a Blackberry device, a Palm device such as Palm Pre, Treo, or similar phone), mp3 player, pager, and the like), drug delivery device, insulin pump, each of which may be configured for data communication with the receiver via a wired or a wireless connection. Additionally, the data processing terminal 105 may further be connected to a data network (not shown).


The data processing terminal 105 may include an infusion device such as an insulin infusion pump or the like, which may be configured to administer insulin to patients, and which may be configured to communicate with the primary receiver unit 104 for receiving, among others, the measured analyte level or configuration data. Alternatively, the primary receiver unit 104 may be configured to integrate an infusion device therein so that the primary receiver unit 104 is configured to administer insulin (or other appropriate drug) therapy to patients, for example, for administering and modifying basal profiles, as well as for determining appropriate boluses for administration based on, among others, the detected analyte levels received from the data processing unit 102. An infusion device may be an external device or an internal device (wholly implantable in a user).


In particular embodiments, the data processing terminal 105, which may include an insulin pump, may be configured to receive the configuration signals from the data processing unit 102, and thus, incorporate the functions of the primary receiver unit 104 including data processing for managing the patient's insulin therapy and analyte monitoring. In certain embodiments, the communication link 103 as well as one or more of the other communication interfaces shown in FIG. 1 may use one or more of an RF communication protocol, an infrared communication protocol, a Bluetooth enabled communication protocol, an 802.11x wireless communication protocol, or an equivalent wireless communication protocol which would allow secure, wireless communication of several units (for example, per HIPPA requirements) while avoiding potential data collision and interference.


As described in aspects of the present disclosure, the analyte monitoring system may include an on-body patch device with a thin profile that can be worn on the arm or other locations on the body (and under clothing worn by the user or the patient), the on-body patch device including an analyte sensor and circuitry and components for operating the sensor and processing and storing signals, including configuration signals, received from the sensor as well as for communication with the reader device. For example, one aspect of the on-body patch device may include electronics to sample the voltage signal received from the analyte sensor in fluid contact with the body fluid, and to process the sampled voltage signals into the corresponding glucose values and/or store the sampled voltage signal as raw data, or to send configuration information as a signal or data.


In certain embodiments, the on-body patch device includes an antenna such as a loop antenna to receive RF power from an external device such as the reader device/receiver unit described above, electronics to convert the RF power received via the antenna into DC (direct current) power for the on-body patch device circuitry, communication module or electronics to detect commands received from the reader device, and communication component to transmit data to the reader device, a low capacity battery for providing power to sensor sampling circuitry (for example, the analog front end circuitry of the on-body patch device in signal communication with the analyte sensor), one or more non-volatile memory or storage devices to store data including raw signals from the sensor or processed data based on the raw sensor signals. More specifically, in the on operation demand mode, the on-body patch device in certain embodiments is configured to transmit real time analyte related data and/or stored historical analyte related data, and/or configuration data when within the RF power range of the reader device. The configuration data can be transmitted prior to transmitting the real time analyte related data.


In certain embodiments, a data processing module/terminal may be provided in the analyte monitoring system that is configured to operate as a data logger, interacting or communicating with the on-body patch device by, for example, transmitting requests for configuration information to the on-body patch device, and storing the responsive configuration information received from the on-body patch device in one or more memory components of the data processing module (e.g., repeater unit). Further, data processing module may be configured as a compact on-body relay device to relay or retransmit the received analyte level information from the on-body patch device to the reader device/receiver unit or the remote terminal or both. The data processing module in one aspect may be physically coupled to the on-body patch device, for example, on a single adhesive patch on the skin surface of the patient. Alternatively, the data processing module may be positioned close to but not in contact with the on-body patch device. For example, when the on-body patch device is positioned on the abdomen of the patient, the data processing module may be worn on a belt of the patient or the user, such that the desired close proximity or predetermined distance of approximately 1-5 inches (or about 1-10 inches, for example, or more) between the on-body patch device and the data processing module may be maintained.


The various processes described above including the processes operating in the software application execution environment in the analyte monitoring system including the on-body patch device, the reader device, data processing module and/or the remote terminal performing one or more routines described above may be embodied as computer programs developed using an object oriented language that allows the modeling of complex systems with modular objects to create abstractions that are representative of real world, physical objects and their interrelationships. The software required to carry out the inventive process, which may be stored in a memory or storage device of the storage unit of the various components of the analyte monitoring system described above in conjunction to the Figures including the on-body patch device, the reader device, the data processing module, various described communication devices, or the remote terminal may be developed by a person of ordinary skill in the art and may include one or more computer program products.


In one embodiment, an apparatus for bi-directional communication with an analyte monitoring system may comprise a storage device having stored therein one or more routines, a processing unit operatively coupled to the storage device and configured to retrieve the stored one or more routines for execution, a data transmission component operatively coupled to the processing unit and configured to transmit data based at least in part on the one or more routines executed by the processing unit, and a data reception component operatively coupled to the processing unit and configured to receive configuration data from a remote location and to store the received configuration data in the storage device for retransmission, wherein the data transmission component is programmed to transmit a query to a remote location, and further wherein the data reception component receives the configuration data from the remote location in response to the transmitted query when one or more electronics in the remote location transitions from an inactive state to an active state upon detection of the query from the data transmission component.



FIG. 2 illustrates a data monitoring and management system for device configuration related data acquisition and processing in one aspect of the present disclosure. More specifically, as shown in FIG. 2, the on-body patch device 211 including sensor electronics coupled to an analyte sensor 250 is positioned on a skin surface 210 of a patient or a user.


Referring back to FIG. 2, as shown, when the reader device/receiver unit 220 is positioned or placed in close proximity and within a predetermined range of the on-body patch device 211, the RF power supply in the reader device/receiver unit 220 may be configured to provide the necessary power to operate the electronics in the on-body patch device 211, and the on-body patch device 211 may be configured to, upon detection of the RF power from the reader device/receiver unit 220, perform preprogrammed routines including, for example, transmitting one or more signals 240 to the reader device/receiver unit 220 indicative of the configuration of the analyte sensor 250.


In certain embodiments, the reader device/receiver unit 220 may include an RF power switch that is user activatable or activated upon positioning within a predetermined distance from the on-body patch device 211 to turn on the analyte sensor in the on-body patch device 211. That is, using the RF signal, the analyte sensor coupled to the sensor electronics in the on-body patch device 211 may be initialized or activated. In another embodiment, a passive RFID function may be provided or programmed such that upon receiving a “turn on” signal which, when authenticated, will turn on the electronic power switch that activates the on-body patch device 211. That is, the passive RFID configuration may include drawing energy from the RF field radiated from the reader device/receiver unit 220 so as to prompt for and/or detect the “turn on” signal which, upon authentication, activates the on-body patch device 211.


In one embodiment, communication and/or RF power transfer between the reader device/receiver unit 220 and the on-body patch device 211 may be automatically initiated when the reader device/receiver unit 220 is placed in close proximity to the on-body patch device 211 as discussed above. Alternatively, the reader device/receiver unit 220 may be configured such that user activation, such as data request initiation and subsequent confirmation by the user using, for example, the display 222 and/or input components 221 of the reader device/receiver unit 220, may be required prior to the initiation of communication and/or RF power transfer between the reader device/receiver unit 220 and the on-body patch device 211. In a further embodiment, the reader device/receiver unit 220 may be user configurable between multiple modes, such that the user may choose whether the communication between the reader device/receiver unit 220 and on-body patch device 211 is performed automatically or requires a user activation and/or confirmation.


As further shown in FIG. 2, the display 222 of the reader device/receiver unit 220 may be configured to provide the functionalities of a user interface to present information such as alarm or alert notification to the user. In one aspect, the reader device/receiver unit 220 may include other output components such as a speaker, vibratory output component and the like to provide audible and/or vibratory output indication to the user in addition to the visual output indication provided on the display 222.


As discussed, some or all of the electronics in the on-body patch device 211 in one embodiment may be configured to rely on the RF power received from the reader device/receiver unit 220 to perform transmission of the configuration information to the reader device/receiver unit 220. That is, the on-body patch device 211 may be discreetly worn on the body of the user or the patient, and under clothing, for example, and when desired, by positioning the reader device/receiver unit 220 within a predetermined distance from the on-body patch device 211, configuration information may be received by the reader device/receiver unit 220.


Referring still to FIG. 2, also shown are a data processing module/terminal 260 and a remote terminal 270. In one aspect, data processing module 260 may include a stand alone device configured for bi-directional communication to communicate with the on-body patch device 211, the reader device/receiver unit 220 and/or the remote terminal 270. More specifically, data processing module 260 may include one or more microprocessors or similar data processing components configured to execute one or more software routines for communication, as well as data storage and retrieval to and from one or more memory components provided in the housing of the data processing module 260.


The data processing module 260 in one embodiment may be configured to communicate with the on-body patch device 211 in a similar manner as the reader device/receiver unit 220 and may include communication components such as antenna, power supply and memory, among others, for example, to allow provision of RF power to the on-body patch device 211 or to request or prompt the on-body patch device 211 to send the configuration data and optionally stored analyte related data. The data processing module 260 may be configured to interact with the on-body patch device 211 in a similar manner as the reader device/receiver unit 220 such that the data processing module 260 may be positioned within a predetermined distance from the on-body patch device 211 for communication with the on-body patch device 211.


In one aspect, the on-body patch device 211 and the data processing module 260 may be positioned on the skin surface of the user or the patient within the predetermined distance of each other (for example, within approximately 5 inches or less) such that the communication between the on-body patch device 211 and the data processing module 260 is maintained. In a further aspect, the housing of the data processing module 260 may be configured to couple to or cooperate with the housing of the on-body patch device 211 such that the two devices are combined or integrated as a single assembly and positioned on the skin surface.


Referring again to FIG. 2, the data processing module 260 may be configured or programmed to prompt or ping the on-body patch device 211 at a predetermined time interval such as upon activation of the on-body patch device 211, or once every five minutes or once every 30 minutes or any other suitable or desired programmable time interval to request configuration data from the on-body patch device 211 which is received and is stored in one or more memory devices or components of the data processing module 260. In another embodiment, the data processing module 260 is configured to prompt or ping the on-body patch device 211 when desired by the patient or the user on-demand, and not based on a predetermined time interval.


As further shown in FIG. 2, the data processing module 260 in one aspect may be configured to transmit the stored data received from the on-body patch device 211 to the reader device/receiver unit 220 when communication between the data processing module 260 and the reader device/receiver unit 220 is established. More specifically, in addition to RF antenna and RF communication components described above, data processing module 260 may include components to communicate using one or more wireless communication protocols such as, for example, but not limited to, infrared (IR) protocol, Bluetooth protocol, Zigbee protocol, and 802.11 wireless LAN protocol. Additional description of communication protocols including those based on Bluetooth protocol and/or Zigbee protocol can be found in U.S. Patent Publication No. 2006/0193375 incorporated herein by reference for all purposes. The data processing module 260 may further include communication ports, drivers or connectors to establish wired communication with one or more of the reader device/receiver unit 220, on-body patch device 211, or the remote terminal 270 including, for example, but not limited to USB connector and/or USB port, Ethernet connector and/or port, FireWire connector and/or port, or RS-232 port and/or connector.


In one aspect, the data processing module 260 may be configured to operate as a data logger configured or programmed to periodically request or prompt the on-body patch device 211 to transmit the configuration information, and to store the received information for later retrieval or subsequent transmission to the reader device/receiver unit 220 or to the remote terminal 270 or both, for further processing and analysis.


In a further aspect, the functionalities of the data processing module 260 may be configured or incorporated into a memory device such as an SD card, microSD card, compact flash card, XD card, Memory Stick card, Memory Stick Duo card, or USB memory stick/device including software programming resident in such devices to execute upon connection to the respective one or more of the on-body patch device 211, the remote terminal 270 or the reader device/receiver unit 220. In a further aspect, the functionalities of the data processing module 260, including executable software and programming, may be provided to a communication device such as a mobile telephone including, for example, iPhone, iPod Touch, Blackberry device, Palm based device (such as Palm Pre, Treo, Treo Pro, Centro), personal digital assistants (PDAs) or any other communication enabled operating system (such as Windows or Android operating systems) based mobile telephones as a downloadable application for execution by the downloading communication device. To this end, the remote terminal 270 as shown in FIG. 2 may include a personal computer, or a server terminal that is configured to provide the executable application software to the one or more of the communication devices described above when communication between the remote terminal 270 and the devices are established.


Depending upon the user setting or configuration on the communication device, the downloaded application may be programmed or customized using the user interface of the respective communication device (screen, keypad, and the like) to establish or program the desired settings such as a receiver alarm, an insulin pump alarm, sensor replacement alarm, or any other alarm or alert conditions as may be desired by the user. Moreover, the programmed notification settings on the communication device may be output using the output components of the respective communication devices, such as speaker, vibratory output component, or visual output/display. As a further example, the communication device may be provided with programming and application software to communicate with the on-body patch device 211 such that a frequency or periodicity of data acquisition is established. In this manner, the communication device may be configured to conveniently receive configuration information from the on-body patch device 211 at predetermined time periods such as, for example, but not limited to during an activation of the on-body patch device 211, once every minute, once every five minutes, or once every 10 or 15 minutes, and store the received information, as well as to provide a desired or appropriate warning indication or notification to the user or the patient.



FIG. 3 is a block diagram of a receiver/monitor unit or insulin pump such as that shown in FIG. 1 in accordance with certain embodiments. The primary receiver unit 104 (FIG. 1) includes one or more of: a blood glucose test strip interface 301, an RF receiver 302, an input 303, a temperature detection section 304, and a clock 305, each of which is operatively coupled to a processing and storage section 307. The primary receiver unit 104 also includes a power supply 306 operatively coupled to a power conversion and monitoring section 308. Further, the power conversion and monitoring section 308 is also coupled to the receiver processor 307. Moreover, also shown are a receiver serial communication section 309, and an output 310, each operatively coupled to the processing and storage unit 307. The receiver may include user input and/or interface components or may be free of user input and/or interface components.


In one aspect, the RF receiver 302 is configured to communicate, via the communication link 103 (FIG. 1) with the data processing unit (sensor electronics) 102, to receive encoded data from the data processing unit 102 for, among others, signal mixing, demodulation, and other data processing. The input 303 of the primary receiver unit 104 is configured to allow the user to enter information into the primary receiver unit 104 as needed. In one aspect, the input 303 may include keys of a keypad, a touch-sensitive screen, and/or a voice-activated input command unit, and the like. The temperature monitor section 304 may be configured to provide temperature information of the primary receiver unit 104 to the processing and control section 307, while the clock 305 provides, among others, real time or clock information to the processing and storage section 307.


Each of the various components of the primary receiver unit 104 shown in FIG. 3 is powered by the power supply 306 (or other power supply) which, in certain embodiments, includes a battery. Furthermore, the power conversion and monitoring section 308 is configured to monitor the power usage by the various components in the primary receiver unit 104 for effective power management and may alert the user, for example, in the event of power usage which renders the primary receiver unit 104 in sub-optimal operating conditions. The serial communication section 309 in the primary receiver unit 104 is configured to provide a bi-directional communication path from the testing and/or manufacturing equipment for, among others, initialization, testing, and configuration determination of the primary receiver unit 104.


Serial communication section 104 can also be used to upload data to a computer, such as configuration data. The communication link with an external device (not shown) can be made, for example, by cable (such as USB or serial cable), infrared (IR) or RF link. The output/display 310 of the primary receiver unit 104 is configured to provide, among others, a graphical user interface (GUI), and may include a liquid crystal display (LCD) for displaying information. Additionally, the output/display 310 may also include an integrated speaker for outputting audible signals as well as to provide vibration output as commonly found in handheld electronic devices, such as mobile telephones, pagers, etc. In certain embodiments, the primary receiver unit 104 also includes an electro-luminescent lamp configured to provide backlighting to the output 310 for output visual display in dark ambient surroundings.


Referring back to FIG. 3, the primary receiver unit 104 may also include a storage section such as a programmable, non-volatile memory device as part of the processor 307, or provided separately in the primary receiver unit 104, operatively coupled to the processor 307. The processor 307 may be configured to perform Manchester decoding (or other protocol(s)) as well as error detection and correction upon the encoded data received from the data processing unit 102 via the communication link 103.


In further embodiments, the data processing unit 102 and/or the primary receiver unit 104 and/or the secondary receiver unit 106, and/or the data processing terminal/infusion section 105 of FIG. 1 may be configured to receive the blood glucose value wirelessly over a communication link from, for example, a blood glucose meter. In further embodiments, a user manipulating or using the analyte monitoring system 100 (FIG. 1) may manually input the blood glucose value using, for example, a user interface (for example, a keyboard, keypad, voice commands, and the like) incorporated in the one or more of the data processing unit 102, the primary receiver unit 104, secondary receiver unit 106, or the data processing terminal/infusion section 105.


Additional detailed descriptions are provided in U.S. Pat. Nos. 5,262,035; 5,264,104; 5,262,305; 5,320,715; 5,593,852; 6,175,752; 6,650,471; 6,746, 582, 6,284,478, 7,299,082, and 7,811,231, in application Ser. No. 11/060,365 filed Feb. 16, 2005 titled “Method and System for Providing Data Communication in Continuous Glucose Monitoring And Management System”, in application Ser. No. 12/698,124 filed Feb. 1, 2010 titled “Compact On-Body Physiological Monitoring Devices and Methods Thereof”, and in application Ser. No. 12/807,278 filed Aug. 31, 2010 titled “Medical Devices and Methods”, each of which is incorporated herein by reference.


Sensors for continuous glucose monitoring systems can be continually improved and these updated versions of the sensors will be made available to consumers. An important consideration for updated sensor products is to ensure that on market system components (e.g., receiver devices, repeater units, glucose meters, insulin pumps, etc.) will work with specific components of the sensor that has been updated. Another consideration is to exclude updated components from operation with certain components if such operation is not safe and effective. For instance, some CGM algorithms may be designed to work with a particular type of sensor but not with others.


In certain embodiments, electronic system update configuration requirements can be enforced using key codes that are incorporated in the communication messages sent between system components. Sensor configuration updates can be managed using a key code technique. Since sensors themselves may not be capable of interacting with other components using key codes, such features may be integrated along with the sensor or sensor delivery system. For instance, in some embodiments, the sensor may provide a radio ID or a resistive code to indicate its configuration to the other system components. The sensor electronics (e.g., transmitter) may use these means to detect the sensor version in order to further manage component configuration (e.g., communicating the sensor version information to other components using key codes). The sensor electronics may have a range of sensor codes that it can accept, or the sensor electronics may pass the sensor code data to the receiver device (or other device in the system) that can have a range of sensor codes that it accepts. Similarly, the transmitter can have a range of acceptable receiver codes and a receiver can have a range of acceptable transmitter codes. In certain embodiments, if the receiver device detects a sensor version that is not allowable or if the transmitter sends the receiver a message indicating that the attached sensor was not allowable, it can notify the user that the sensor version is not allowable. Moreover, the transmitter and/or receiver software can change algorithms or other software functions dependent on the detected software version.


In certain embodiments, key codes can be incorporated in communication messages sent through the devices in the analyte monitoring system. Key codes are primarily available for access by electronic devices. The codes may be used as a book keeping tool to manage which version of the device may function with specific versions of a device application using a particular serial command. For example, a serial command may include a two byte key code that can be issued by a value of code=00 when it sends the command to a device. An original version of a device can be designed with a serial command function that will accept commands with a code range of 00 to 0F, for example. In this manner, if another version of the device has an updated serial command that allows a code range, e.g., of 00 to 1F, then the original device application can still work with the original device, as well as any newer version of the device application that has codes in this range (e.g., specifically to a particular serial command). If an updated devices application is not intended to be compatible with the original device version but only a new device version, then the code for the device application could be set between 10 to 1F. If the updated device is not intended to work with the original device application, then the code for the device can be set to 10 to 1F.


In certain embodiments, the key code mechanism includes a key code communicated in a pairing message exchange between two devices in the analyte monitoring system, in the same manner as described above for device serial commands accessed by a device application. In this case, the key code only needs to be included in a pairing message in order to enforce all communication restrictions between version of the device and the analyte monitoring system, since they may not communicate (e.g., except for pairing attempts) unless they are paired. This aspect can allow for full control over which device versions will work with the analyte monitoring system.


By way of example, in some embodiments, a device could be designed to accept serial commands with names $acona, $aconb, and $aconx, and the device application can issue $aconb. Moreover, the device could be designed to accept a serial command with three parameters and with five parameters.


In other embodiments, a configuration management mechanism is arranged to mechanically key the sensor to only function with a particular transmitter. For example, the sensor electrode contacts may be located in ways to allow some transmitters to properly connect and others to not. Additionally, the sensor can be incorporated into a transmitter mount that mechanically only fits the desired transmitter.


Certain embodiments allow interoperability of various sensor versions with common transmitters and receivers but enforce compatibility requirements at the receiver or other device in the system by requiring that a sensor code be entered prior to glucose calculation and display. The sensor code can be used to define a range of acceptable sensitivity of the device, and may be used to specify the sensitivity itself or contribute to the glucose calculation. Moreover, the sensor may have additional elements that identify the sensor version. Likewise, the sensor code may be used exclusively to identify the sensor version. Then the receiver device can compare the entered sensor code to a list of acceptable codes and if successful, allow glucose calculations or display. Otherwise, the receiver can notify the user that the sensor is not compatible. Furthermore, the receiver software can change algorithms or other software function dependent upon the entered sensor code.



FIG. 4 is a flow diagram illustrating steps in an embodiment for determining the compatibility of a first device 402 in an analyte monitoring system 400. The first device 402 and the second device 404 in the analyte monitoring system 400 can each include at least one of a receiver device, an analyte meter, a glucose monitor, an insulin pump, a continuous analyte monitor, a cellular phone, a personal digital assistant, a personal computer, a laptop computer, and/or a repeater unit. In certain embodiments, a first device 402 sends data related to its configuration to the second device 404 (406). The request can be sent, for example, wirelessly from the transmitter of the first device 402 to the transceiver of the second device 404. The configuration of first device 402, which can be an analyte sensor, can embody one or more various configurations that include different versions of the analyte sensor. Each of the configurations of the first device 402 can include various specifications associated therewith, such as a specific calibration factor and a software function that is used to process analyte data that is obtained by the first device 402. The analyte data can be processed using the software function at the first device 402 or one or more different devices.


Referring still to FIG. 4, the second device 404 receives the data related to the configuration of the first device 402 (408). The second device 404 then retrieves data that is related to configurations that are compatible with the analyte monitoring system 400 (410). The data related to the compatible configurations can be retrieved by the second device 404, for example, from one or more of at least one storage component of the second device 402, an internet based server, from a central server, and/or a distributed server. Next, the second device 404 compares the received data related to the configuration of the first device 402 with the retrieved data that is related to one or more configurations that are compatible with the analyte monitoring system 400 (412). The second device 404 determines if the configuration of the first device 402 is compatible with the analyte monitoring system 400, based upon the comparison of the received data related to the configuration of the first device 402 with the retrieved data related to one or more configurations compatible with analyte monitoring system 400 (414). The second device 404 annunciates or otherwise communicates an alarm to alert a user if it is determined that the first device 402 is not compatible with the analyte monitoring system 400 (416). The alarm may be at least one of an audio alarm, a vibratory alarm, and a visual alarm operatively coupled to the second device 404. If however, the first device 402 is determined to be compatible with the analyte monitoring system 400, then the first device 402 may proceed to obtain analyte data from the user.



FIG. 5 is a flow diagram illustrating steps in an embodiment for determining the compatibility of a first device 502 in an analyte monitoring system 500. The first device 502 and the second device 504 in the analyte monitoring system 500 can each include at least one of a receiver device, an analyte meter, a glucose monitor, an insulin pump, a continuous analyte monitor, a cellular phone, a personal digital assistant, a personal computer, a laptop computer, and/or a repeater unit. In certain embodiments, a first device 502 sends data related to its configuration to the second device 504 (506). The request can be sent, for example, wirelessly from the transmitter of the first device 502 to the transceiver of the second device 504. The configuration of first device 502, which can be an analyte sensor, can embody one or more various configurations that include different versions of the analyte sensor. Each of the configurations of the first device 502 can include various specifications associated therewith, such as a specific calibration factor and a software function that is used to process analyte data that is obtained by the first device 502. The analyte data can be processed using the software function at the first device 502 or one or more different devices.


Referring still to FIG. 5, the second device 504 receives the data related to the configuration of the first device 502 (508). The second device 504 then retrieves data that is related to the configurations the first device 502 may embody that are compatible with the analyte monitoring system 500 (510). The data related to the compatible configurations can be retrieved by the second device 504, for example, from one or more of at least one storage component of the second device 502, an internet based server, from a central server, and/or a distributed server. Next, the second device 504 compares the received data related to the configuration of the first device 502 with the retrieved data that is related to one or more configurations that are compatible with the analyte monitoring system 500 (512). The second device 504 determines if the configuration of the first device 502 is compatible with the analyte monitoring system 500, based upon the comparison of the received data related to the configuration of the first device 502 with the retrieved data related to one or more configurations compatible with analyte monitoring system 500 (514). Following the compatibility determination, the second device 504 communicates, to the first device 502, data related to the compatibility determination to the first device 502 (516). The data can be communicated, for example, from a transmitter of the second device 504 to a transceiver of the first device 502.


Still referring to FIG. 5, the first device 502 receives the data related to its compatibility with the analyte monitoring system 500 from the second device 504 (518) and alerts a user if it was determined by the second device 504 that the first device 502 is not compatible with the analyte monitoring system 500 (520), by annunciating or otherwise communicating an alarm. The alarm may be at least one of an audio alarm, a vibratory alarm, and a visual alarm. If the first device 502 is determined to be compatible with the analyte monitoring system 500, then the first device 502 may proceed to obtain analyte data from the user.


In another embodiment, the compatibility data can be transmitted to and subsequently received by a third device (not shown), and the third device can annunciate or otherwise communicate an alarm to alert the user if the first device 502 is determined to not be compatible with the analyte monitoring system 500.



FIG. 6 is a flow diagram illustrating steps in an embodiment for determining the compatibility of a first device 602 in an analyte monitoring system 600. The first device 602 and the second device 604 in the analyte monitoring system 600 can each include at least one of a receiver device, an analyte meter, a glucose monitor, an insulin pump, a continuous analyte monitor, a cellular phone, a personal digital assistant, a personal computer, a laptop computer, and/or a repeater unit. In certain embodiments, the first device 602 sends data related to its configuration to a second device 604 (606). The data can be sent, for example wirelessly from the transmitter of the first device 602 to the transceiver of the second device 604. The configuration of first device 602, which can be an analyte sensor, can embody one or more various configurations that include different versions of the analyte sensor. Each of the configurations of the first device 602 can include various specifications associated therewith, such as a specific calibration factor and a software function that is used to process analyte data that is obtained by the first device 602. The analyte data can be processed using the software function at the first device 602 or one or more different devices.


Referring still to FIG. 6, the second device 604 receives the data related to the configuration of the first device 602 (608). The second device 604 then retrieves data that is related to one or more compatible configurations of the first device 604 (610). In certain embodiments, the data includes software functions that correlate to the one or more compatible configurations of the first device. The data can be retrieved, for example, from one or more storage components of the second device 602, an internet based server, from a central server, and/or a distributed server. Moreover, the data related to the one or more compatible configurations of the first device 602, and the software functions correlated to the one or more compatible configurations can be stored at the same or separate locations, and can be retrieved at the same time as the compatibility data or at a different time. The second device 604 compares the received data with the retrieved data (612) and determines an appropriate software function that is correlated with the configuration of the first device 602 (614). The software function can be used to process analyte data that is received from the first device 602. The second device 604 receives analyte data that is obtained from the first device 602 (616), which can be sent, for example, wirelessly from the transmitter of the first device 602 to the transceiver of the second device 604. The second device 604 then processes the received analyte data using the determined appropriate software function (618) and displays the processed analyte data to a user (620).


In another embodiment, the second device 604 can communicate data related to the software function associated with the configuration of the first device 602 to a third device (not shown). The analyte data can be communicated from the first device 602 to the third device, and the third device can process the analyte data using the data related to the software function received from the second device 604. The third device may also display the processed analyte data to the user.


In certain embodiments of the present disclosure, a computer-implemented method for determining a compatibility of one or more devices in an analyte monitoring system includes receiving identification code data related to a configuration of a first device, retrieving information including a predetermined list of one or more acceptable identification code data that is related to one or more first device configurations that are compatible with the analyte monitoring system, comparing the received identification code data with the one or more acceptable identification codes from the retrieved predetermined list, and determining if the configuration of the first device is compatible with the analyte monitoring system, based upon the received identification code data being identified in the predetermined list of acceptable identification code data.


Certain aspects include alerting a user if it is determined that the configuration of the first device is not compatible with the analyte monitoring system.


Certain aspects include communicating data related to the determination of the first device being compatible with the analyte monitoring system of a second device.


Certain aspects include the first device communicating the data related to the compatibility of the first device to the second device using at least one key code.


Certain aspects include the data related to the compatibility to the first device communicated using at least one of a radio-identification code or a resistive code or a combination thereof.


Certain aspects include the identification code data including information related to a range of acceptable sensitivity of the first device.


Certain aspects include the identification code data including information related to a version of the first device.


Certain aspects include the user being alerted with at least one of an auditory alarm, a vibratory alarm, and a visual alarm.


Certain aspects include the first device being in fluid contact with an interstitial fluid under a skin layer of a user.


Certain aspects include determining a suitable software function for processing analyte data obtained by the first device, based upon a stored software function that corresponds to the received identification code data, wherein the software function is included in the information related to a predetermined list of one or more acceptable identification code data.


Certain aspects include receiving analyte data obtained by the first device that is related to an analyte level of a user, if it is determined that the first device is compatible with the analyte monitoring system, processing the received analyte data using the determined appropriate software function, and displaying the processed analyte data to the user.


Certain aspects include the compatibility of the first device including a key code of the first device being included in the predetermined list.


Certain aspects include the first device including at least one of a continuous analyte monitor, an analyte sensor, a receiver device, a repeater device, or an insulin pump.


In certain embodiments of the present disclosure, a computer-implemented method for determining a compatibility of one or more devices in an analyte monitoring system includes receiving identification code data related to a configuration of a first device, retrieving information including a predetermined list of one or more identification codes that are related to one or more first device configurations and one or more software functions relating to the one or more first device configurations, comparing the received identification code data with the one or more identification codes, and determining an appropriate software function for processing analyte data obtained by the first device that is related to an analyte level of a user, based upon a stored software function that corresponds to the received identification code data.


Certain aspects include the software function including an algorithm.


Certain aspects include the first device including at least one of a continuous analyte monitor, an analyte sensor, a receiver device, a repeater device, or an insulin pump.


Certain aspects include the information including the predetermined list and the one or more software functions retrieved from at least one of a storage component, an online database, a central database, and a distributed database.


Certain aspects include the information including the predetermined list and the one or more software functions retrieved from different locations.


Various other modifications and alterations in the structure and method of operation of the embodiments of the present disclosure will be apparent to those skilled in the art without departing from the scope and spirit of the present disclosure. Although the present disclosure has been described in connection with certain embodiments, it should be understood that the present disclosure as claimed should not be unduly limited to such embodiments. It is intended that the following claims define the scope of the present disclosure and that structures and methods within the scope of these claims and their equivalents be covered thereby.

Claims
  • 1. A computer-implemented method for determining a compatibility of one or more devices in an analyte monitoring system, comprising: receiving identification code data related to a configuration of a first device;retrieving, using one or more processors, (a) information including a predetermined list of one or more acceptable identification codes related to one or more first device configurations compatible with the analyte monitoring system and (b) one or more software functions associated with the one or more first device configurations;comparing, using the one or more processors, the received identification code data with the one or more acceptable identification codes from the retrieved predetermined list;determining, using the one or more processors, whether the configuration of the first device is compatible with the analyte monitoring system by identifying the received identification code data in the predetermined list; anddetermining, using the one or more processors, a software function from the one or more software functions to process monitored data obtained by the first device.
  • 2. The computer-implemented method of claim 1, further comprising alerting a user if it is determined that the configuration of the first device is not compatible with the analyte monitoring system.
  • 3. The computer-implemented method of claim 1, further comprising communicating compatibility data of the first device to the first device.
  • 4. The computer-implemented method of claim 1, wherein the identification code data includes at least one key code.
  • 5. The computer-implemented method of claim 1, wherein the identification code data includes at least one of a radio-identification code and a resistive code.
  • 6. The computer-implemented method of claim 1, wherein the identification code data includes information related to a range of acceptable sensitivities of the first device and wherein the identification code data allows a glucose calculation.
  • 7. The computer-implemented method of claim 1, wherein the identification code data includes information related to a version of the first device.
  • 8. The computer-implemented method of claim 1, wherein the first device includes an analyte sensor positioned transcutaneously to monitor analyte levels such that it is in fluid contact under a skin surface of a user.
  • 9. The computer-implemented method of claim 1, wherein the monitored data includes analyte data obtained by the first device.
  • 10. The computer-implemented method of claim 9, further comprising: if it is determined that the first device is compatible with the analyte monitoring system, processing, using the one or more processors, received analyte data using the determined appropriate software function, wherein the received analyte data is obtained by the first device and relates to an analyte level of a user; anddisplaying, on a display unit, the processed analyte data to the user.
  • 11. The computer-implemented method of claim 1, wherein the predetermined list includes a key code of the first device.
  • 12. The computer-implemented method of claim 1, wherein the first device includes at least one of a continuous analyte monitor, an analyte sensor, a receiver device, a repeater device, or an insulin pump.
  • 13. The computer-implemented method of claim 1, wherein the software function corresponds to the received identification code data.
  • 14. A computer-implemented method for determining a compatibility of one or more devices in an analyte monitoring system, comprising: receiving identification code data related to a configuration of a first device;retrieving, using one or more processors, (a) information including a predetermined list of one or more identification codes that are related to one or more first device configurations and (b) one or more software functions relating to the one or more first device configurations;comparing, using the one or more processors, the received identification code data with the one or more identification codes; anddetermining, using the one or more processors, an appropriate software function for processing monitored analyte data obtained by the first device that is related to an analyte level of a user by using a stored software function that corresponds to the received identification code data.
  • 15. The computer-implemented method of claim 14, wherein the first device includes at least one of a continuous analyte monitor, an analyte sensor, a receiver device, a repeater device, or an insulin pump.
  • 16. The computer-implemented method of claim 14, wherein the identification code data is received wirelessly, and the predetermined list is retrieved from a first database and the one or more software functions are retrieved from a second database, wherein the first database and the second database are stored at separate locations.
  • 17. The computer-implemented method of claim 14, wherein the first device includes an analyte sensor positioned transcutaneously to monitor analyte levels such that it is in fluid contact under a skin surface of a user.
  • 18. The computer-implemented method of claim 14, further comprising: receiving the monitored analyte data obtained by the first device; andprocessing, using the one or more processors, the monitored analyte data using the determined appropriate software function for a glucose calculation.
RELATED APPLICATION

This application claims priority to U.S. provisional application No. 61/563,517, filed Nov. 23, 2011, entitled “Compatibility Mechanisms for Devices in a Continuous Analyte Monitoring System and Methods Thereof”, the disclosure of which is incorporated herein by reference in its entirety for all purposes.

US Referenced Citations (881)
Number Name Date Kind
3581062 Aston May 1971 A
3926760 Allen et al. Dec 1975 A
3949388 Fuller Apr 1976 A
4036749 Anderson Jul 1977 A
4055175 Clemens et al. Oct 1977 A
4129128 McFarlane Dec 1978 A
4245634 Albisser et al. Jan 1981 A
4327725 Cortese et al. May 1982 A
4344438 Schultz Aug 1982 A
4349728 Phillips et al. Sep 1982 A
4373527 Fischell Feb 1983 A
4392849 Petre et al. Jul 1983 A
4425920 Bourland et al. Jan 1984 A
4431004 Bessman et al. Feb 1984 A
4478976 Goertz et al. Oct 1984 A
4494950 Fischell Jan 1985 A
4509531 Ward Apr 1985 A
4527240 Kvitash Jul 1985 A
4538616 Rogoff Sep 1985 A
4619793 Lee Oct 1986 A
4671288 Gough Jun 1987 A
4703756 Gough et al. Nov 1987 A
4731726 Allen, III Mar 1988 A
4749985 Corsberg Jun 1988 A
4757022 Shults et al. Jul 1988 A
4777953 Ash et al. Oct 1988 A
4779618 Mund et al. Oct 1988 A
4854322 Ash et al. Aug 1989 A
4871351 Feingold Oct 1989 A
4890620 Gough Jan 1990 A
4925268 Iyer et al. May 1990 A
4953552 DeMarzo Sep 1990 A
4986271 Wilkins Jan 1991 A
4995402 Smith et al. Feb 1991 A
5000180 Kuypers et al. Mar 1991 A
5002054 Ash et al. Mar 1991 A
5019974 Beckers May 1991 A
5050612 Matsumura Sep 1991 A
5055171 Peck Oct 1991 A
5068536 Rosenthal Nov 1991 A
5082550 Rishpon et al. Jan 1992 A
5106365 Hernandez Apr 1992 A
5122925 Inpyn Jun 1992 A
5165407 Wilson et al. Nov 1992 A
5202261 Musho et al. Apr 1993 A
5210778 Massart May 1993 A
5228449 Christ et al. Jul 1993 A
5246867 Lakowicz et al. Sep 1993 A
5262035 Gregg et al. Nov 1993 A
5262305 Heller et al. Nov 1993 A
5264104 Gregg et al. Nov 1993 A
5264105 Gregg et al. Nov 1993 A
5279294 Anderson et al. Jan 1994 A
5285792 Sjoquist et al. Feb 1994 A
5293877 O'Hara et al. Mar 1994 A
5299571 Mastrototaro Apr 1994 A
5320725 Gregg et al. Jun 1994 A
5322063 Allen et al. Jun 1994 A
5330634 Wong et al. Jul 1994 A
5340722 Wolfbeis et al. Aug 1994 A
5342789 Chick et al. Aug 1994 A
5356786 Heller et al. Oct 1994 A
5360404 Novacek et al. Nov 1994 A
5372427 Padovani et al. Dec 1994 A
5379238 Stark Jan 1995 A
5390671 Lord et al. Feb 1995 A
5391250 Cheney, II et al. Feb 1995 A
5408999 Singh et al. Apr 1995 A
5411647 Johnson et al. May 1995 A
5425868 Pedersen Jun 1995 A
5429602 Hauser Jul 1995 A
5431160 Wilkins Jul 1995 A
5431921 Thombre Jul 1995 A
5462645 Albery et al. Oct 1995 A
5497772 Schulman et al. Mar 1996 A
5505828 Wong et al. Apr 1996 A
5507288 Bocker et al. Apr 1996 A
5509410 Hill et al. Apr 1996 A
5514718 Lewis et al. May 1996 A
5531878 Vadgama et al. Jul 1996 A
5532686 Urbas et al. Jul 1996 A
5552997 Massart Sep 1996 A
5568400 Stark et al. Oct 1996 A
5568806 Cheney, II et al. Oct 1996 A
5569186 Lord et al. Oct 1996 A
5582184 Erickson et al. Dec 1996 A
5586553 Halili et al. Dec 1996 A
5593852 Heller et al. Jan 1997 A
5609575 Larson et al. Mar 1997 A
5628310 Rao et al. May 1997 A
5628324 Sarbach May 1997 A
5634468 Platt et al. Jun 1997 A
5640954 Pfeiffer et al. Jun 1997 A
5653239 Pompei et al. Aug 1997 A
5660163 Schulman et al. Aug 1997 A
5665222 Heller et al. Sep 1997 A
5707502 McCaffrey et al. Jan 1998 A
5711001 Bussan et al. Jan 1998 A
5711861 Ward et al. Jan 1998 A
5724030 Urbas et al. Mar 1998 A
5733259 Valcke et al. Mar 1998 A
5749907 Mann May 1998 A
5772586 Heinonen et al. Jun 1998 A
5791344 Schulman et al. Aug 1998 A
5804047 Karube et al. Sep 1998 A
5833603 Kovacs et al. Nov 1998 A
5842189 Keeler et al. Nov 1998 A
5891049 Cyrus et al. Apr 1999 A
5899855 Brown May 1999 A
5925021 Castellano et al. Jul 1999 A
5935224 Svancarek et al. Aug 1999 A
5942979 Luppino Aug 1999 A
5951485 Cyrus et al. Sep 1999 A
5957854 Besson et al. Sep 1999 A
5964993 Blubaugh, Jr. et al. Oct 1999 A
5965380 Heller et al. Oct 1999 A
5971922 Arita et al. Oct 1999 A
5980708 Champagne et al. Nov 1999 A
5995860 Sun et al. Nov 1999 A
6001067 Shults et al. Dec 1999 A
6024699 Surwit et al. Feb 2000 A
6028413 Brockmann Feb 2000 A
6049727 Crothall Apr 2000 A
6083710 Heller et al. Jul 2000 A
6088608 Schulman et al. Jul 2000 A
6091976 Pfeiffer et al. Jul 2000 A
6091987 Thompson Jul 2000 A
6093172 Funderburk et al. Jul 2000 A
6103033 Say et al. Aug 2000 A
6117290 Say et al. Sep 2000 A
6119028 Schulman et al. Sep 2000 A
6120676 Heller et al. Sep 2000 A
6121009 Heller et al. Sep 2000 A
6121611 Lindsay et al. Sep 2000 A
6122351 Schlueter, Jr. et al. Sep 2000 A
6130623 MacLellan et al. Oct 2000 A
6134461 Say et al. Oct 2000 A
6144871 Saito et al. Nov 2000 A
6162611 Heller et al. Dec 2000 A
6175752 Say et al. Jan 2001 B1
6200265 Walsh et al. Mar 2001 B1
6212416 Ward et al. Apr 2001 B1
6219574 Cormier et al. Apr 2001 B1
6223283 Chaiken et al. Apr 2001 B1
6233471 Berner et al. May 2001 B1
6248067 Causey, III et al. Jun 2001 B1
6275717 Gross et al. Aug 2001 B1
6284478 Heller et al. Sep 2001 B1
6291200 LeJeune et al. Sep 2001 B1
6293925 Safabash et al. Sep 2001 B1
6294997 Paratore et al. Sep 2001 B1
6295506 Heinonen et al. Sep 2001 B1
6299347 Pompei Oct 2001 B1
6306104 Cunningham et al. Oct 2001 B1
6309884 Cooper et al. Oct 2001 B1
6329161 Heller et al. Dec 2001 B1
6359270 Bridson Mar 2002 B1
6360888 McIvor et al. Mar 2002 B1
6366794 Moussy et al. Apr 2002 B1
6377828 Chaiken et al. Apr 2002 B1
6379301 Worthington et al. Apr 2002 B1
6387048 Schulman et al. May 2002 B1
6400974 Lesho Jun 2002 B1
6405066 Essenpreis et al. Jun 2002 B1
6413393 Van Antwerp et al. Jul 2002 B1
6416471 Kumar et al. Jul 2002 B1
6418346 Nelson et al. Jul 2002 B1
6424847 Mastrototaro et al. Jul 2002 B1
6427088 Bowman, IV et al. Jul 2002 B1
6440068 Brown et al. Aug 2002 B1
6478736 Mault Nov 2002 B1
6484046 Say et al. Nov 2002 B1
6493069 Nagashimada et al. Dec 2002 B1
6496729 Thompson Dec 2002 B2
6497655 Linberg et al. Dec 2002 B1
6498043 Schulman et al. Dec 2002 B1
6514718 Heller et al. Feb 2003 B2
6520326 McIvor et al. Feb 2003 B2
6544212 Galley et al. Apr 2003 B2
6549796 Sohrab Apr 2003 B2
6551494 Heller et al. Apr 2003 B1
6554798 Mann et al. Apr 2003 B1
6558320 Causey, III et al. May 2003 B1
6558321 Burd et al. May 2003 B1
6558351 Steil et al. May 2003 B1
6560471 Heller et al. May 2003 B1
6561975 Pool et al. May 2003 B1
6561978 Conn et al. May 2003 B1
6562001 Lebel et al. May 2003 B2
6564105 Starkweather et al. May 2003 B2
6565509 Say et al. May 2003 B1
6571128 Lebel et al. May 2003 B2
6572545 Knobbe et al. Jun 2003 B2
6574510 Von Arx et al. Jun 2003 B2
6576101 Heller et al. Jun 2003 B1
6577899 Lebel et al. Jun 2003 B2
6579231 Phipps Jun 2003 B1
6579690 Bonnecaze et al. Jun 2003 B1
6585644 Lebel et al. Jul 2003 B2
6591125 Buse et al. Jul 2003 B1
6595919 Berner et al. Jul 2003 B2
6605200 Mao et al. Aug 2003 B1
6605201 Mao et al. Aug 2003 B1
6607509 Bobroff et al. Aug 2003 B2
6610012 Mault Aug 2003 B2
6633772 Ford et al. Oct 2003 B2
6635014 Starkweather et al. Oct 2003 B2
6635167 Batman et al. Oct 2003 B1
6641533 Causey, III et al. Nov 2003 B2
6648821 Lebel et al. Nov 2003 B2
6654625 Say et al. Nov 2003 B1
6656114 Poulsen et al. Dec 2003 B1
6658396 Tang et al. Dec 2003 B1
6659948 Lebel et al. Dec 2003 B2
6668196 Villegas et al. Dec 2003 B1
6675030 Ciurczak et al. Jan 2004 B2
6676816 Mao et al. Jan 2004 B2
6687546 Lebel et al. Feb 2004 B2
6689056 Kilcoyne et al. Feb 2004 B1
6694191 Starkweather et al. Feb 2004 B2
6695860 Ward et al. Feb 2004 B1
6698269 Baber et al. Mar 2004 B2
6702857 Brauker et al. Mar 2004 B2
6731976 Penn et al. May 2004 B2
6733446 Lebel et al. May 2004 B2
6735183 O'Toole et al. May 2004 B2
6740075 Lebel et al. May 2004 B2
6740518 Duong et al. May 2004 B1
6741877 Shults et al. May 2004 B1
6746582 Heller et al. Jun 2004 B2
6758810 Lebel et al. Jul 2004 B2
6770030 Schaupp et al. Aug 2004 B1
6789195 Prihoda et al. Sep 2004 B1
6790178 Mault et al. Sep 2004 B1
6804558 Haller et al. Oct 2004 B2
6809653 Mann et al. Oct 2004 B1
6810290 Lebel et al. Oct 2004 B2
6811533 Lebel et al. Nov 2004 B2
6811534 Bowman, IV et al. Nov 2004 B2
6813519 Lebel et al. Nov 2004 B2
6850790 Berner et al. Feb 2005 B2
6862465 Shults et al. Mar 2005 B2
6865407 Kimball et al. Mar 2005 B2
6873268 Lebel et al. Mar 2005 B2
6878112 Linberg et al. Apr 2005 B2
6881551 Heller et al. Apr 2005 B2
6882940 Potts et al. Apr 2005 B2
6892085 McIvor et al. May 2005 B2
6895263 Shin et al. May 2005 B2
6895265 Silver May 2005 B2
6923764 Aceti et al. Aug 2005 B2
6931327 Goode, Jr. et al. Aug 2005 B2
6932894 Mao et al. Aug 2005 B2
6936006 Sabra Aug 2005 B2
6940403 Kail, IV Sep 2005 B2
6941163 Ford et al. Sep 2005 B2
6950708 Bowman, IV et al. Sep 2005 B2
6958705 Lebel et al. Oct 2005 B2
6968294 Gutta et al. Nov 2005 B2
6971274 Olin Dec 2005 B2
6974437 Lebel et al. Dec 2005 B2
6983176 Gardner et al. Jan 2006 B2
6990366 Say et al. Jan 2006 B2
6997907 Safabash et al. Feb 2006 B2
6998247 Monfre et al. Feb 2006 B2
7003336 Holker et al. Feb 2006 B2
7003340 Say et al. Feb 2006 B2
7003341 Say et al. Feb 2006 B2
7009511 Mazar et al. Mar 2006 B2
7020508 Stivoric et al. Mar 2006 B2
7022072 Fox et al. Apr 2006 B2
7024236 Ford et al. Apr 2006 B2
7024245 Lebel et al. Apr 2006 B2
7025425 Kovatchev et al. Apr 2006 B2
7027848 Robinson et al. Apr 2006 B2
7027931 Jones et al. Apr 2006 B1
7029444 Shin et al. Apr 2006 B2
7041068 Freeman et al. May 2006 B2
7043305 KenKnight et al. May 2006 B2
7052483 Wojcik May 2006 B2
7056302 Douglas Jun 2006 B2
7058453 Nelson et al. Jun 2006 B2
7060031 Webb et al. Jun 2006 B2
7074307 Simpson et al. Jul 2006 B2
7081195 Simpson et al. Jul 2006 B2
7082334 Boute et al. Jul 2006 B2
7092891 Maus et al. Aug 2006 B2
7098803 Mann et al. Aug 2006 B2
7108778 Simpson et al. Sep 2006 B2
7110803 Shults et al. Sep 2006 B2
7113821 Sun et al. Sep 2006 B1
7118667 Lee Oct 2006 B2
7125382 Zhou et al. Oct 2006 B2
7134999 Brauker et al. Nov 2006 B2
7136689 Shults et al. Nov 2006 B2
7153265 Vachon Dec 2006 B2
7171274 Starkweather et al. Jan 2007 B2
7174199 Berner et al. Feb 2007 B2
7190988 Say et al. Mar 2007 B2
7192450 Brauker et al. Mar 2007 B2
7198606 Boecker et al. Apr 2007 B2
7203549 Schommer et al. Apr 2007 B2
7207974 Safabash et al. Apr 2007 B2
7225535 Feldman et al. Jun 2007 B2
7226978 Tapsak et al. Jun 2007 B2
7228182 Healy et al. Jun 2007 B2
7237712 DeRocco et al. Jul 2007 B2
7258673 Racchini et al. Aug 2007 B2
7267665 Steil et al. Sep 2007 B2
7276029 Goode, Jr. et al. Oct 2007 B2
7278983 Ireland et al. Oct 2007 B2
7295867 Berner et al. Nov 2007 B2
7299082 Feldman et al. Nov 2007 B2
7310544 Brister et al. Dec 2007 B2
7317938 Lorenz et al. Jan 2008 B2
7318816 Bobroff et al. Jan 2008 B2
7324850 Persen et al. Jan 2008 B2
7335294 Heller et al. Feb 2008 B2
7347819 Lebel et al. Mar 2008 B2
7354420 Steil et al. Apr 2008 B2
7364592 Carr-Brendel et al. Apr 2008 B2
7366556 Brister et al. Apr 2008 B2
7379765 Petisce et al. May 2008 B2
7384397 Zhang et al. Jun 2008 B2
7387010 Sunshine et al. Jun 2008 B2
7399277 Saidara et al. Jul 2008 B2
7402153 Steil et al. Jul 2008 B2
7404796 Ginsberg Jul 2008 B2
7419573 Gundel Sep 2008 B2
7424318 Brister et al. Sep 2008 B2
7460898 Brister et al. Dec 2008 B2
7467003 Brister et al. Dec 2008 B2
7471972 Rhodes et al. Dec 2008 B2
7474992 Ariyur Jan 2009 B2
7492254 Bandy et al. Feb 2009 B2
7494465 Brister et al. Feb 2009 B2
7497827 Brister et al. Mar 2009 B2
7519408 Rasdal et al. Apr 2009 B2
7547281 Hayes et al. Jun 2009 B2
7565197 Haubrich et al. Jul 2009 B2
7569030 Lebel et al. Aug 2009 B2
7574266 Dudding et al. Aug 2009 B2
7583990 Goode, Jr. et al. Sep 2009 B2
7591801 Brauker et al. Sep 2009 B2
7599726 Goode, Jr. et al. Oct 2009 B2
7602310 Mann et al. Oct 2009 B2
7604178 Stewart Oct 2009 B2
7613491 Boock et al. Nov 2009 B2
7615007 Shults et al. Nov 2009 B2
7618369 Hayter et al. Nov 2009 B2
7630748 Budiman Dec 2009 B2
7632228 Brauker et al. Dec 2009 B2
7637868 Saint et al. Dec 2009 B2
7640048 Dobbles et al. Dec 2009 B2
7651596 Petisce et al. Jan 2010 B2
7651845 Doyle, III et al. Jan 2010 B2
7653425 Hayter et al. Jan 2010 B2
7654956 Brister et al. Feb 2010 B2
7657297 Simpson et al. Feb 2010 B2
7659823 Killian et al. Feb 2010 B1
7668596 Von Arx et al. Feb 2010 B2
7699775 Desai et al. Apr 2010 B2
7699964 Feldman et al. Apr 2010 B2
7711402 Shults et al. May 2010 B2
7713574 Brister et al. May 2010 B2
7715893 Kamath et al. May 2010 B2
7741734 Joannopoulos et al. Jun 2010 B2
7768386 Hayter et al. Aug 2010 B2
7771352 Shults et al. Aug 2010 B2
7774145 Brauker et al. Aug 2010 B2
7775444 DeRocco et al. Aug 2010 B2
7778680 Goode et al. Aug 2010 B2
7779332 Karr et al. Aug 2010 B2
7782192 Jeckelmann et al. Aug 2010 B2
7783333 Brister et al. Aug 2010 B2
7791467 Mazar et al. Sep 2010 B2
7792562 Shults et al. Sep 2010 B2
7826382 Sicurello et al. Nov 2010 B2
7826981 Goode, Jr. et al. Nov 2010 B2
7831310 Lebel et al. Nov 2010 B2
7860574 Von Arx et al. Dec 2010 B2
7882611 Shah et al. Feb 2011 B2
7899511 Shults et al. Mar 2011 B2
7905833 Brister et al. Mar 2011 B2
7912674 Killoren Clark et al. Mar 2011 B2
7914450 Goode, Jr. et al. Mar 2011 B2
7916013 Stevenson Mar 2011 B2
7920906 Goode et al. Apr 2011 B2
7928850 Hayter et al. Apr 2011 B2
7955258 Goscha et al. Jun 2011 B2
7970448 Shults et al. Jun 2011 B2
7974672 Shults et al. Jul 2011 B2
7976466 Ward et al. Jul 2011 B2
7999674 Kamen Aug 2011 B2
8010174 Goode et al. Aug 2011 B2
8072310 Everhart Dec 2011 B1
8090445 Ginggen Jan 2012 B2
8093991 Stevenson et al. Jan 2012 B2
8094009 Allen et al. Jan 2012 B2
8098159 Batra et al. Jan 2012 B2
8098160 Howarth et al. Jan 2012 B2
8098161 Lavedas Jan 2012 B2
8098201 Choi et al. Jan 2012 B2
8098208 Ficker et al. Jan 2012 B2
8102021 Degani Jan 2012 B2
8102154 Bishop et al. Jan 2012 B2
8102263 Yeo et al. Jan 2012 B2
8102789 Rosar et al. Jan 2012 B2
8103241 Young et al. Jan 2012 B2
8103325 Swedlow et al. Jan 2012 B2
8111042 Bennett Feb 2012 B2
8115488 McDowell Feb 2012 B2
8116681 Baarman Feb 2012 B2
8116683 Baarman Feb 2012 B2
8117481 Anselmi et al. Feb 2012 B2
8120493 Burr Feb 2012 B2
8124452 Sheats Feb 2012 B2
8130093 Mazar et al. Mar 2012 B2
8131351 Kalgren et al. Mar 2012 B2
8131365 Zhang et al. Mar 2012 B2
8131565 Dicks et al. Mar 2012 B2
8132037 Fehr et al. Mar 2012 B2
8135352 Langsweirdt et al. Mar 2012 B2
8136735 Arai et al. Mar 2012 B2
8138925 Downie et al. Mar 2012 B2
8140160 Pless et al. Mar 2012 B2
8140168 Olson et al. Mar 2012 B2
8140299 Siess Mar 2012 B2
8150321 Winter et al. Apr 2012 B2
8150516 Levine et al. Apr 2012 B2
8179266 Hermle May 2012 B2
8216138 McGarraugh et al. Jul 2012 B1
8255026 Al-Ali Aug 2012 B1
20020019022 Dunn et al. Feb 2002 A1
20020042090 Heller et al. Apr 2002 A1
20020054320 Ogino May 2002 A1
20020068860 Clark Jun 2002 A1
20020072784 Sheppard et al. Jun 2002 A1
20020103499 Perez et al. Aug 2002 A1
20020106709 Potts et al. Aug 2002 A1
20020128594 Das et al. Sep 2002 A1
20020161288 Shin et al. Oct 2002 A1
20020169635 Shillingburg Nov 2002 A1
20030004403 Drinan et al. Jan 2003 A1
20030023317 Brauker et al. Jan 2003 A1
20030032874 Rhodes et al. Feb 2003 A1
20030042137 Mao et al. Mar 2003 A1
20030060692 Ruchti et al. Mar 2003 A1
20030065308 Lebel et al. Apr 2003 A1
20030100821 Heller et al. May 2003 A1
20030125612 Fox et al. Jul 2003 A1
20030130616 Steil et al. Jul 2003 A1
20030134347 Heller et al. Jul 2003 A1
20030147515 Kai et al. Aug 2003 A1
20030168338 Gao et al. Sep 2003 A1
20030176933 Lebel et al. Sep 2003 A1
20030187338 Say et al. Oct 2003 A1
20030191377 Robinson et al. Oct 2003 A1
20030199790 Boecker et al. Oct 2003 A1
20030208113 Mault et al. Nov 2003 A1
20030212317 Kovatchev et al. Nov 2003 A1
20030212379 Bylund et al. Nov 2003 A1
20030216630 Jersey-Willuhn et al. Nov 2003 A1
20030217966 Tapsak et al. Nov 2003 A1
20040010186 Kimball et al. Jan 2004 A1
20040010207 Flaherty et al. Jan 2004 A1
20040011671 Shults et al. Jan 2004 A1
20040024553 Monfre et al. Feb 2004 A1
20040034289 Teller et al. Feb 2004 A1
20040039298 Abreu Feb 2004 A1
20040040840 Mao et al. Mar 2004 A1
20040041749 Dixon Mar 2004 A1
20040045879 Shults et al. Mar 2004 A1
20040063435 Sakamoto et al. Apr 2004 A1
20040064068 DeNuzzio et al. Apr 2004 A1
20040099529 Mao et al. May 2004 A1
20040106858 Say et al. Jun 2004 A1
20040122353 Shahmirian et al. Jun 2004 A1
20040133164 Funderburk et al. Jul 2004 A1
20040138588 Saikley et al. Jul 2004 A1
20040146909 Duong et al. Jul 2004 A1
20040152622 Keith et al. Aug 2004 A1
20040167464 Ireland et al. Aug 2004 A1
20040167801 Say et al. Aug 2004 A1
20040171921 Say et al. Sep 2004 A1
20040176672 Silver et al. Sep 2004 A1
20040186362 Brauker et al. Sep 2004 A1
20040186365 Jin et al. Sep 2004 A1
20040193025 Steil et al. Sep 2004 A1
20040193090 Lebel et al. Sep 2004 A1
20040197846 Hockersmith et al. Oct 2004 A1
20040199059 Brauker et al. Oct 2004 A1
20040204687 Mogensen et al. Oct 2004 A1
20040204868 Maynard et al. Oct 2004 A1
20040219664 Heller et al. Nov 2004 A1
20040225338 Lebel et al. Nov 2004 A1
20040236200 Say et al. Nov 2004 A1
20040254433 Bandis et al. Dec 2004 A1
20040260478 Schwamm Dec 2004 A1
20040267300 Mace Dec 2004 A1
20050004439 Shin et al. Jan 2005 A1
20050004494 Perez et al. Jan 2005 A1
20050010269 Lebel et al. Jan 2005 A1
20050027177 Shin et al. Feb 2005 A1
20050027180 Goode et al. Feb 2005 A1
20050027181 Goode et al. Feb 2005 A1
20050027462 Goode et al. Feb 2005 A1
20050027463 Goode et al. Feb 2005 A1
20050031689 Shults et al. Feb 2005 A1
20050038332 Saidara et al. Feb 2005 A1
20050043598 Goode, Jr. et al. Feb 2005 A1
20050070777 Cho et al. Mar 2005 A1
20050090607 Tapsak et al. Apr 2005 A1
20050096511 Fox et al. May 2005 A1
20050096512 Fox et al. May 2005 A1
20050112169 Brauker et al. May 2005 A1
20050113653 Fox et al. May 2005 A1
20050114068 Chey et al. May 2005 A1
20050116683 Cheng et al. Jun 2005 A1
20050121322 Say et al. Jun 2005 A1
20050131346 Douglas Jun 2005 A1
20050137530 Campbell et al. Jun 2005 A1
20050143635 Kamath et al. Jun 2005 A1
20050176136 Burd et al. Aug 2005 A1
20050177398 Watanabe et al. Aug 2005 A1
20050182306 Sloan Aug 2005 A1
20050187720 Goode, Jr. et al. Aug 2005 A1
20050192494 Ginsberg Sep 2005 A1
20050192557 Brauker et al. Sep 2005 A1
20050195930 Spital et al. Sep 2005 A1
20050199494 Say et al. Sep 2005 A1
20050203360 Brauker et al. Sep 2005 A1
20050236361 Ufer et al. Oct 2005 A1
20050239154 Feldman et al. Oct 2005 A1
20050241957 Mao et al. Nov 2005 A1
20050245795 Goode, Jr. et al. Nov 2005 A1
20050245799 Brauker et al. Nov 2005 A1
20050245839 Stivoric et al. Nov 2005 A1
20050245904 Estes et al. Nov 2005 A1
20050272985 Kotulla et al. Dec 2005 A1
20050287620 Heller et al. Dec 2005 A1
20060001538 Kraft et al. Jan 2006 A1
20060001551 Kraft et al. Jan 2006 A1
20060004270 Bedard et al. Jan 2006 A1
20060015020 Neale et al. Jan 2006 A1
20060015024 Brister et al. Jan 2006 A1
20060016700 Brister et al. Jan 2006 A1
20060017923 Ruchti et al. Jan 2006 A1
20060019327 Brister et al. Jan 2006 A1
20060020186 Brister et al. Jan 2006 A1
20060020187 Brister et al. Jan 2006 A1
20060020188 Kamath et al. Jan 2006 A1
20060020189 Brister et al. Jan 2006 A1
20060020190 Kamath et al. Jan 2006 A1
20060020191 Brister et al. Jan 2006 A1
20060020192 Brister et al. Jan 2006 A1
20060025663 Talbot et al. Feb 2006 A1
20060029177 Cranford, Jr. et al. Feb 2006 A1
20060031094 Cohen et al. Feb 2006 A1
20060036139 Brister et al. Feb 2006 A1
20060036140 Brister et al. Feb 2006 A1
20060036141 Kamath et al. Feb 2006 A1
20060036142 Brister et al. Feb 2006 A1
20060036143 Brister et al. Feb 2006 A1
20060036144 Brister et al. Feb 2006 A1
20060036145 Brister et al. Feb 2006 A1
20060154642 Scannell Jul 2006 A1
20060155180 Brister et al. Jul 2006 A1
20060156796 Burke et al. Jul 2006 A1
20060166629 Reggiardo Jul 2006 A1
20060173260 Gaoni et al. Aug 2006 A1
20060173406 Hayes et al. Aug 2006 A1
20060173444 Choy et al. Aug 2006 A1
20060183985 Brister et al. Aug 2006 A1
20060189863 Peyser et al. Aug 2006 A1
20060202805 Schulman et al. Sep 2006 A1
20060211072 Ryan et al. Sep 2006 A1
20060222566 Brauker et al. Oct 2006 A1
20060224109 Steil et al. Oct 2006 A1
20060229512 Petisce et al. Oct 2006 A1
20060247508 Fennell Nov 2006 A1
20060247710 Goetz et al. Nov 2006 A1
20060253296 Liisberg et al. Nov 2006 A1
20060272652 Stocker et al. Dec 2006 A1
20060281985 Ward et al. Dec 2006 A1
20060287691 Drew Dec 2006 A1
20070007133 Mang et al. Jan 2007 A1
20070010950 Abensour et al. Jan 2007 A1
20070016381 Kamath et al. Jan 2007 A1
20070027381 Stafford Feb 2007 A1
20070032706 Kamath et al. Feb 2007 A1
20070033074 Nitzan et al. Feb 2007 A1
20070055799 Koehler et al. Mar 2007 A1
20070060803 Liljeryd et al. Mar 2007 A1
20070060814 Stafford Mar 2007 A1
20070060979 Strother et al. Mar 2007 A1
20070066873 Kamath et al. Mar 2007 A1
20070066956 Finkel Mar 2007 A1
20070071681 Gadkar et al. Mar 2007 A1
20070073129 Shah et al. Mar 2007 A1
20070078320 Stafford Apr 2007 A1
20070078321 Mazza et al. Apr 2007 A1
20070078322 Stafford Apr 2007 A1
20070078323 Reggiardo et al. Apr 2007 A1
20070078818 Zivitz et al. Apr 2007 A1
20070093786 Goldsmith et al. Apr 2007 A1
20070094216 Mathias et al. Apr 2007 A1
20070100222 Mastrototaro et al. May 2007 A1
20070106135 Sloan et al. May 2007 A1
20070118405 Campbell et al. May 2007 A1
20070124002 Estes et al. May 2007 A1
20070149875 Ouyang et al. Jun 2007 A1
20070151869 Heller et al. Jul 2007 A1
20070153705 Rosar et al. Jul 2007 A1
20070156033 Causey, III et al. Jul 2007 A1
20070156094 Safabash et al. Jul 2007 A1
20070163880 Woo et al. Jul 2007 A1
20070168224 Letzt et al. Jul 2007 A1
20070173706 Neinast et al. Jul 2007 A1
20070173761 Kanderian et al. Jul 2007 A1
20070179349 Hoyme et al. Aug 2007 A1
20070179352 Randlov et al. Aug 2007 A1
20070191701 Feldman et al. Aug 2007 A1
20070203407 Hoss et al. Aug 2007 A1
20070203966 Brauker et al. Aug 2007 A1
20070208246 Brauker et al. Sep 2007 A1
20070213657 Jennewine et al. Sep 2007 A1
20070228071 Kamen et al. Oct 2007 A1
20070232880 Siddiqui et al. Oct 2007 A1
20070235331 Simpson et al. Oct 2007 A1
20070244383 Talbot et al. Oct 2007 A1
20070249922 Peyser et al. Oct 2007 A1
20070253021 Mehta et al. Nov 2007 A1
20070255531 Drew Nov 2007 A1
20070258395 Jollota et al. Nov 2007 A1
20070270672 Hayter Nov 2007 A1
20070271285 Eichorn et al. Nov 2007 A1
20070282299 Hellwig Dec 2007 A1
20070285238 Batra Dec 2007 A1
20070299617 Willis Dec 2007 A1
20080009692 Stafford Jan 2008 A1
20080017522 Heller et al. Jan 2008 A1
20080018433 Pitt-Pladdy Jan 2008 A1
20080021436 Wolpert et al. Jan 2008 A1
20080021666 Goode, Jr. et al. Jan 2008 A1
20080029391 Mao et al. Feb 2008 A1
20080030369 Mann et al. Feb 2008 A1
20080033254 Kamath et al. Feb 2008 A1
20080039702 Hayter et al. Feb 2008 A1
20080045824 Tapsak et al. Feb 2008 A1
20080057484 Miyata et al. Mar 2008 A1
20080058625 McGarraugh et al. Mar 2008 A1
20080058626 Miyata et al. Mar 2008 A1
20080058678 Miyata et al. Mar 2008 A1
20080064937 McGarraugh et al. Mar 2008 A1
20080064943 Talbot et al. Mar 2008 A1
20080071156 Brister et al. Mar 2008 A1
20080071157 McGarraugh et al. Mar 2008 A1
20080071158 McGarraugh et al. Mar 2008 A1
20080071328 Haubrich et al. Mar 2008 A1
20080081977 Hayter et al. Apr 2008 A1
20080083617 Simpson et al. Apr 2008 A1
20080086042 Brister et al. Apr 2008 A1
20080086044 Brister et al. Apr 2008 A1
20080086273 Shults et al. Apr 2008 A1
20080097289 Steil et al. Apr 2008 A1
20080108942 Brister et al. May 2008 A1
20080119705 Patel et al. May 2008 A1
20080139910 Mastrototaro et al. Jun 2008 A1
20080154513 Kovatchev et al. Jun 2008 A1
20080161666 Feldman et al. Jul 2008 A1
20080167543 Say et al. Jul 2008 A1
20080167572 Stivoric et al. Jul 2008 A1
20080172205 Breton et al. Jul 2008 A1
20080182537 Manku et al. Jul 2008 A1
20080183060 Steil et al. Jul 2008 A1
20080183061 Goode et al. Jul 2008 A1
20080183399 Goode et al. Jul 2008 A1
20080188731 Brister et al. Aug 2008 A1
20080188796 Steil et al. Aug 2008 A1
20080189051 Goode et al. Aug 2008 A1
20080194934 Ray et al. Aug 2008 A1
20080194935 Brister et al. Aug 2008 A1
20080194936 Goode et al. Aug 2008 A1
20080194937 Goode et al. Aug 2008 A1
20080194938 Brister et al. Aug 2008 A1
20080195232 Carr-Brendel et al. Aug 2008 A1
20080195967 Goode et al. Aug 2008 A1
20080197024 Simpson et al. Aug 2008 A1
20080200788 Brister et al. Aug 2008 A1
20080200789 Brister et al. Aug 2008 A1
20080200791 Simpson et al. Aug 2008 A1
20080208025 Shults et al. Aug 2008 A1
20080208026 Noujaim et al. Aug 2008 A1
20080208113 Damiano et al. Aug 2008 A1
20080214915 Brister et al. Sep 2008 A1
20080214918 Brister et al. Sep 2008 A1
20080228051 Shults et al. Sep 2008 A1
20080228054 Shults et al. Sep 2008 A1
20080228055 Sher Sep 2008 A1
20080234663 Yodfat et al. Sep 2008 A1
20080235469 Drew Sep 2008 A1
20080242961 Brister et al. Oct 2008 A1
20080255434 Hayter et al. Oct 2008 A1
20080255437 Hayter Oct 2008 A1
20080255438 Saidara et al. Oct 2008 A1
20080255808 Hayter Oct 2008 A1
20080256048 Hayter Oct 2008 A1
20080262469 Brister et al. Oct 2008 A1
20080269723 Mastrototaro et al. Oct 2008 A1
20080275313 Brister et al. Nov 2008 A1
20080287761 Hayter Nov 2008 A1
20080287762 Hayter Nov 2008 A1
20080287763 Hayter Nov 2008 A1
20080287764 Rasdal et al. Nov 2008 A1
20080287765 Rasdal et al. Nov 2008 A1
20080287766 Rasdal et al. Nov 2008 A1
20080288180 Hayter Nov 2008 A1
20080288204 Hayter et al. Nov 2008 A1
20080296155 Shults et al. Dec 2008 A1
20080306368 Goode et al. Dec 2008 A1
20080306434 Dobbles et al. Dec 2008 A1
20080306435 Kamath et al. Dec 2008 A1
20080306444 Brister et al. Dec 2008 A1
20080312518 Jina et al. Dec 2008 A1
20080312841 Hayter Dec 2008 A1
20080312842 Hayter Dec 2008 A1
20080312844 Hayter et al. Dec 2008 A1
20080312845 Hayter et al. Dec 2008 A1
20080314395 Kovatchev et al. Dec 2008 A1
20080319279 Ramsay et al. Dec 2008 A1
20090005665 Hayter et al. Jan 2009 A1
20090005666 Shin et al. Jan 2009 A1
20090006034 Hayter et al. Jan 2009 A1
20090006133 Weinert et al. Jan 2009 A1
20090012379 Goode et al. Jan 2009 A1
20090018424 Kamath et al. Jan 2009 A1
20090018425 Ouyang et al. Jan 2009 A1
20090030294 Petisce et al. Jan 2009 A1
20090033482 Hayter et al. Feb 2009 A1
20090036747 Hayter et al. Feb 2009 A1
20090036758 Brauker et al. Feb 2009 A1
20090036760 Hayter Feb 2009 A1
20090036763 Brauker et al. Feb 2009 A1
20090043181 Brauker et al. Feb 2009 A1
20090043182 Brauker et al. Feb 2009 A1
20090043525 Brauker et al. Feb 2009 A1
20090043541 Brauker et al. Feb 2009 A1
20090043542 Brauker et al. Feb 2009 A1
20090045055 Rhodes et al. Feb 2009 A1
20090048503 Dalal et al. Feb 2009 A1
20090055149 Hayter et al. Feb 2009 A1
20090062633 Brauker et al. Mar 2009 A1
20090062635 Brauker et al. Mar 2009 A1
20090062767 VanAntwerp et al. Mar 2009 A1
20090063402 Hayter Mar 2009 A1
20090076356 Simpson et al. Mar 2009 A1
20090076360 Brister et al. Mar 2009 A1
20090076361 Kamath et al. Mar 2009 A1
20090082693 Stafford Mar 2009 A1
20090085768 Patel et al. Apr 2009 A1
20090085873 Betts et al. Apr 2009 A1
20090088614 Taub et al. Apr 2009 A1
20090099436 Brister et al. Apr 2009 A1
20090105554 Stahmann et al. Apr 2009 A1
20090105560 Solomon Apr 2009 A1
20090105636 Hayter et al. Apr 2009 A1
20090112478 Mueller, Jr. et al. Apr 2009 A1
20090124877 Goode et al. May 2009 A1
20090124878 Goode et al. May 2009 A1
20090124879 Brister et al. May 2009 A1
20090124964 Leach et al. May 2009 A1
20090131768 Simpson et al. May 2009 A1
20090131769 Leach et al. May 2009 A1
20090131776 Simpson et al. May 2009 A1
20090131777 Simpson et al. May 2009 A1
20090137886 Shariati et al. May 2009 A1
20090137887 Shariati et al. May 2009 A1
20090143659 Li et al. Jun 2009 A1
20090143660 Brister et al. Jun 2009 A1
20090150186 Cohen et al. Jun 2009 A1
20090156919 Brister et al. Jun 2009 A1
20090156924 Shariati et al. Jun 2009 A1
20090163790 Brister et al. Jun 2009 A1
20090163791 Brister et al. Jun 2009 A1
20090164190 Hayter Jun 2009 A1
20090164239 Hayter et al. Jun 2009 A1
20090164251 Hayter Jun 2009 A1
20090178459 Li et al. Jul 2009 A1
20090182217 Li et al. Jul 2009 A1
20090189738 Hermle Jul 2009 A1
20090192366 Mensinger et al. Jul 2009 A1
20090192380 Shariati et al. Jul 2009 A1
20090192722 Shariati et al. Jul 2009 A1
20090192724 Brauker et al. Jul 2009 A1
20090192745 Kamath et al. Jul 2009 A1
20090192751 Kamath et al. Jul 2009 A1
20090198118 Hayter et al. Aug 2009 A1
20090203981 Brauker et al. Aug 2009 A1
20090204341 Brauker et al. Aug 2009 A1
20090216103 Brister et al. Aug 2009 A1
20090227855 Hill et al. Sep 2009 A1
20090234200 Husheer Sep 2009 A1
20090240120 Mensinger et al. Sep 2009 A1
20090240128 Mensinger et al. Sep 2009 A1
20090240193 Mensinger et al. Sep 2009 A1
20090240440 Shurabura et al. Sep 2009 A1
20090242399 Kamath et al. Oct 2009 A1
20090242425 Kamath et al. Oct 2009 A1
20090247855 Boock et al. Oct 2009 A1
20090247856 Boock et al. Oct 2009 A1
20090247857 Harper et al. Oct 2009 A1
20090247931 Damgaard-Sorensen Oct 2009 A1
20090253973 Bashan et al. Oct 2009 A1
20090259118 Feldman et al. Oct 2009 A1
20090267765 Greene et al. Oct 2009 A1
20090287073 Boock et al. Nov 2009 A1
20090287074 Shults et al. Nov 2009 A1
20090289796 Blumberg Nov 2009 A1
20090292188 Hoss et al. Nov 2009 A1
20090296742 Sicurello et al. Dec 2009 A1
20090299155 Yang et al. Dec 2009 A1
20090299156 Simpson et al. Dec 2009 A1
20090299162 Brauker et al. Dec 2009 A1
20090299276 Brauker et al. Dec 2009 A1
20100010324 Brauker et al. Jan 2010 A1
20100010331 Brauker et al. Jan 2010 A1
20100010332 Brauker et al. Jan 2010 A1
20100016687 Brauker et al. Jan 2010 A1
20100016698 Rasdal et al. Jan 2010 A1
20100022855 Brauker et al. Jan 2010 A1
20100030038 Brauker et al. Feb 2010 A1
20100030053 Goode, Jr. et al. Feb 2010 A1
20100030484 Brauker et al. Feb 2010 A1
20100030485 Brauker et al. Feb 2010 A1
20100036215 Goode, Jr. et al. Feb 2010 A1
20100036216 Goode, Jr. et al. Feb 2010 A1
20100036222 Goode, Jr. et al. Feb 2010 A1
20100036223 Goode, Jr. et al. Feb 2010 A1
20100036225 Goode, Jr. et al. Feb 2010 A1
20100041971 Goode, Jr. et al. Feb 2010 A1
20100045465 Brauker et al. Feb 2010 A1
20100049024 Saint et al. Feb 2010 A1
20100056992 Hayter Mar 2010 A1
20100057040 Hayter Mar 2010 A1
20100057041 Hayter Mar 2010 A1
20100057042 Hayter Mar 2010 A1
20100057044 Hayter Mar 2010 A1
20100057057 Hayter et al. Mar 2010 A1
20100063373 Kamath et al. Mar 2010 A1
20100076283 Simpson et al. Mar 2010 A1
20100081906 Hayter et al. Apr 2010 A1
20100081908 Dobbles et al. Apr 2010 A1
20100081909 Budiman et al. Apr 2010 A1
20100081910 Brister et al. Apr 2010 A1
20100087724 Brauker et al. Apr 2010 A1
20100096259 Zhang et al. Apr 2010 A1
20100099970 Shults et al. Apr 2010 A1
20100099971 Shults et al. Apr 2010 A1
20100105999 Dixon et al. Apr 2010 A1
20100119693 Tapsak et al. May 2010 A1
20100121169 Petisce et al. May 2010 A1
20100152554 Steine et al. Jun 2010 A1
20100160759 Celentano et al. Jun 2010 A1
20100168538 Keenan et al. Jul 2010 A1
20100168546 Kamath et al. Jul 2010 A1
20100190435 Cook et al. Jul 2010 A1
20100191082 Brister et al. Jul 2010 A1
20100191085 Budiman Jul 2010 A1
20100191472 Doniger et al. Jul 2010 A1
20100198142 Sloan et al. Aug 2010 A1
20100234710 Budiman et al. Sep 2010 A1
20100240975 Goode et al. Sep 2010 A1
20100312176 Lauer et al. Dec 2010 A1
20110004276 Blair et al. Jan 2011 A1
20110112696 Yodfat et al. May 2011 A1
20110148905 Simmons et al. Jun 2011 A1
20110152637 Kateraas et al. Jun 2011 A1
20110257895 Brauker et al. Oct 2011 A1
20110320167 Budiman Dec 2011 A1
20120190989 Kaiser et al. Jul 2012 A1
Foreign Referenced Citations (61)
Number Date Country
2143172 Jul 2005 CA
2396613 Mar 2008 CA
2413148 Aug 2010 CA
0098592 Jan 1984 EP
0127958 Dec 1984 EP
0320109 Jun 1989 EP
0353328 Feb 1990 EP
0390390 Oct 1990 EP
0396788 Nov 1990 EP
0286118 Jan 1995 EP
0724859 Aug 1996 EP
0678308 May 2000 EP
1048264 Nov 2000 EP
1292218 Mar 2003 EP
1077634 Jul 2003 EP
1568309 Aug 2005 EP
1666091 Jun 2006 EP
1703697 Sep 2006 EP
1704893 Sep 2006 EP
1897487 Nov 2009 EP
1897492 Nov 2009 EP
2113864 Nov 2009 EP
1897488 Dec 2009 EP
1681992 Apr 2010 EP
1448489 Aug 2010 EP
1971396 Aug 2010 EP
2201969 Mar 2011 EP
2153382 Feb 2012 EP
2284773 Feb 2012 EP
WO-9306237 Apr 1993 WO
WO-9625089 Aug 1996 WO
WO-9635370 Nov 1996 WO
WO-9733513 Sep 1997 WO
WO-9835053 Aug 1998 WO
WO-9956613 Nov 1999 WO
WO-0049940 Aug 2000 WO
WO-0059370 Oct 2000 WO
WO-0074753 Dec 2000 WO
WO-0078992 Dec 2000 WO
WO-0152935 Jul 2001 WO
WO-0154753 Aug 2001 WO
WO-0216905 Feb 2002 WO
WO-02058537 Aug 2002 WO
WO-03076893 Sep 2003 WO
WO-03082091 Oct 2003 WO
WO-03085372 Oct 2003 WO
WO-2004061420 Jul 2004 WO
WO-2005040404 May 2005 WO
WO-2005041766 May 2005 WO
WO-2005045744 May 2005 WO
WO-2005089103 Sep 2005 WO
WO-2006024671 Mar 2006 WO
WO-2006032653 Mar 2006 WO
WO-2006051466 May 2006 WO
WO-2006079114 Jul 2006 WO
WO-2006118947 Nov 2006 WO
WO-2006124099 Nov 2006 WO
WO-2007007459 Jan 2007 WO
WO-2008086541 Jul 2008 WO
WO-2011022418 Feb 2011 WO
WO-2010077329 Jul 2012 WO
Non-Patent Literature Citations (48)
Entry
Armour, J. C., et al., “Application of Chronic Intravascular Blood Glucose Sensor in Dogs”, Diabetes, vol. 39, 1990, pp. 1519-1526.
Aussedat, B., et al., “A User-Friendly Method for Calibrating a Subcutaneous Glucose Sensor-Based Hypoglycemic Alarm”, Biosensors & Bioelectronics, vol. 12, No. 11, 1997, pp. 1061-1070.
Bennion, N., et al., “Alternate Site Glucose Testing: A Crossover Design”, Diabetes Technology & Therapeutics, vol. 4 No. 1, 2002, pp. 25-33.
Blank, T. B., et al., “Clinical Results From a Non-Invasive Blood Glucose Monitor”, Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring II, Proceedings of SPIE, vol. 4624, 2002, pp. 1-10.
Brooks, S. L., et al., “Development of an On-Line Glucose Sensor for Fermentation Monitoring”, Biosensors, vol. 3, 1987/88, pp. 45-56.
Cass, A.E., et al., “Ferrocene-Medicated Enzyme Electrode for Amperometric Determination of Glucose”, Analytical Chemistry, vol. 56 No. 4, 1984, 667-671.
Csoregi, E., et al., “Design and Optimization of a Selective Subcutaneously Implantable Glucose Electrode Based on ‘Wired’ Glucose Oxidase”, Analytical Chemistry, vol. 67, No. 7, 1995, pp. 1240-1244.
El-Khatib, F. H, et al., “Adaptive Closed-Loop Control Provides Blood-Glucose Regulation Using Subcutaneous Insulin and Glucagon Infusion in Diabetic Swine”, Journal of Diabetes Science and Technology, vol. 1, No. 2, 2007, pp. 181-192.
Feldman, B., et al., “A Continuous Glucose Sensor Based on Wired Enzyme™ Technology—Results from a 3-Day Trial in Patients with Type 1 Diabetes”, Diabetes Technology & Therapeutics, vol. 5, No. 5, 2003, pp. 769-779.
Feldman, B., et al., “Correlation of Glucose Concentrations in Interstitial Fluid and Venous Blood During Periods of Rapid Glucose Change”, Abbott Diabetes Care, Inc. Freestyle Navigator Continuous Glucose Monitor Pamphlet, 2004.
Garg, S., et al., “Improvement in Glycemic Excursions with a Transcutaneous, Real-Time Continuous Glucose Sensor”, Diabetes Care, vol. 29, No. 1, 2006, pp. 44-50.
Isermann, R., “Supervision, Fault-Detection and Fault-Diagnosis Methods—An Introduction”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 639-652.
Isermann, R., et al., “Trends in the Application of Model-Based Fault Detection and Diagnosis of Technical Processes”, Control Engineering Practice, vol. 5, No. 5, 1997, pp. 709-719.
Johnson, P. C., “Peripheral Circulation”, John Wiley & Sons, 1978, pp. 198.
Jungheim, K., et al., “How Rapid Does Glucose Concentration Change in Daily Life of Patients with Type 1 Diabetes?”, 2002, pp. 250.
Jungheim, K., et al., “Risky Delay of Hypoglycemia Detection by Glucose Monitoring at the Arm”, Diabetes Care, vol. 24, No. 7, 2001, pp. 1303-1304.
Kaplan, S. M., “Wiley Electrical and Electronics Engineering Dictionary”, IEEE Press, 2004, pp. 141, 142, 548, 549.
Lortz, J., et al., “What is Bluetooth? We Explain the Newest Short-Range Connectivity Technology”, Smart Computing Learning Series, Wireless Computing, vol. 8, Issue 5, 2002, pp. 72-75.
Malin, S. F., et al., “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy”, Clinical Chemistry, vol. 45, No. 9, 1999, pp. 1651-1658.
McGarraugh, G., et al., “Glucose Measurements Using Blood Extracted from the Forearm and the Finger”, TheraSense, Inc., 2001, 16 Pages.
McGarraugh, G., et al., “Physiological Influences on Off-Finger Glucose Testing”, Diabetes Technology & Therapeutics, vol. 3, No. 3, 2001, pp. 367-376.
McKean, B. D., et al., “A Telemetry-Instrumentation System for Chronically Implanted Glucose and Oxygen Sensors”, IEEE Transactions on Biomedical Engineering, vol. 35, No. 7, 1988, pp. 526-532.
Morbiducci, U, et al., “Improved Usability of the Minimal Model of Insulin Sensitivity Based on an Automated Approach and Genetic Algorithms for Parameter Estimation”, Clinical Science, vol. 112, 2007, pp. 257-263. .
Mougiakakou, et al., “A Real Time Simulation Model of Glucose-Insulin Metabolism for Type 1 Diabetes Patients”, Proceedings of the 2005 IEEE, 2005, pp. 298-301.
Parker, R., et al., “Robust H∞ Glucose Control in Diabetes Using a Physiological Model”, AIChE Journal, vol. 46, No. 12, 2000, pp. 2537-2549.
Pickup, J., et al., “Implantable Glucose Sensors: Choosing the Appropriate Sensing Strategy”,Biosensors, vol. 3, 1987/88, pp. 335-346.
Pickup, J., et al., “In Vivo Molecular Sensing in Diabetes Mellitus: An Implantable Glucose Sensor with Direct Electron Transfer”, Diabetologia, vol. 32, 1989, pp. 213-217.
Pishko, M. V., et al., “Amperometric Glucose Microelectrodes Prepared Through Immobilization of Glucose Oxidase in Redox Hydrogels”, Analytical Chemistry, vol. 63, No. 20, 1991, pp. 2268-2272.
Quinn, C. P., et al., “Kinetics of Glucose Delivery to Subcutaneous Tissue in Rats Measured with 0.3-mm Amperometric Microsensors”, The American Physiological Society, 1995, E155-E161.
Roe, J. N., et al., “Bloodless Glucose Measurements”, Critical Review in Therapeutic Drug Carrier Systems, vol. 15, Issue 3, 1998, pp. 199-241.
Sakakida, M., et al., “Development of Ferrocene-Mediated Needle-Type Glucose Sensor as a Measure of True Subcutaneous Tissue Glucose Concentrations”, Artificial Organs Today, vol. 2, No. 2, 1992, pp. 145-158.
Sakakida, M., et al., “Ferrocene-Mediated Needle-Type Glucose Sensor Covered with Newly Designed Biocompatible Membrane”, Sensors and Actuators B, vol. 13-14, 1993, pp. 319-322.
Salehi, C., et al., “A Telemetry-Instrumentation System for Long-Term Implantable Glucose and Oxygen Sensors”, Analytical Letters, vol. 29, No. 13, 1996, pp. 2289-2308.
Schmidtke, D. W., et al., “Measurement and Modeling of the Transient Difference Between Blood and Subcutaneous Glucose Concentrations in the Rat After Injection of Insulin”, Proceedings of the National Academy of Sciences, vol. 95, 1998, pp. 294-299.
Shaw, G. W., et al., “In Vitro Testing of a Simply Constructed, Highly Stable Glucose Sensor Suitable for Implantation in Diabetic Patients”, Biosensors & Bioelectronics, vol. 6, 1991, pp. 401-406.
Shichiri, M., et al., “Glycaemic Control in Pancreatectomized Dogs with a Wearable Artificial Endocrine Pancreas”, Diabetologia, vol. 24, 1983, pp. 179-184.
Shichiri, M., et al., “In Vivo Characteristics of Needle-Type Glucose Sensor-Measurements of Subcutaneous Glucose Concentrations in Human Volunteers”, Hormone and Metabolic Research Supplement Series, vol. 20, 1988, pp. 17-20.
Shichiri, M., et al., “Membrane Design for Extending the Long-Life of an Implantable Glucose Sensor”, Diabetes Nutrition and Metabolism, vol. 2, 1989, pp. 309-313.
Shichiri, M., et al., “Needle-type Glucose Sensor for Wearable Artificial Endocrine Pancreas”, Implantable Sensors for Closed-Loop Prosthetic Systems, Chapter 15, 1985, pp. 197-210.
Shichiri, M., et al., “Telemetry Glucose Monitoring Device With Needle-Type Glucose Sensor: A Useful Tool for Blood Glucose Monitoring in Diabetic Individuals”, Diabetes Care, vol. 9, No. 3, 1986, pp. 298-301.
Shichiri, M., et al., “Wearable Artificial Endocrine Pancreas With Needle-Type Glucose Sensor”, The Lancet, 1982, pp. 1129-1131.
Shults, M. C., et al., “A Telemetry-Instrumentation System for Monitoring Multiple Subcutaneously Implanted Glucose Sensors”, IEEE Transactions on Biomedical Engineering, vol. 41, No. 10, 1994, pp. 937-942.
Sternberg, R., et al., “Study and Development of Multilayer Needle-Type Enzyme-Based Glucose Microsensors”, Biosensors, vol. 4, 1988, pp. 27-40.
Thompson, M., et al., “In Vivo Probes: Problems and Perspectives”, Clinical Biochemistry, vol. 19, 1986, pp. 255-261.
Turner, A., et al., “Diabetes Mellitus: Biosensors for Research and Management”, Biosensors, vol. 1, 1985, pp. 85-115.
Updike, S. J., et al., “Principles of Long-Term Fully Implanted Sensors with Emphasis on Radiotelemetric Monitoring of Blood Glucose from Inside a Subcutaneous Foreign Body Capsule (FBC)”, Biosensors in the Body: Continuous in vivo Monitoring, Chapter 4, 1997, pp. 117-137.
Velho, G., et al., “Strategies for Calibrating a Subcutaneous Glucose Sensor”, Biomedica Biochimica Acta, vol. 48, 1989, pp. 957-964.
Wilson, G. S., et al., “Progress Toward the Development of an Implantable Sensor for Glucose”, Clinical Chemistry, vol. 38, No. 9, 1992, pp. 1613-1617.
Related Publications (1)
Number Date Country
20130132416 A1 May 2013 US
Provisional Applications (1)
Number Date Country
61563517 Nov 2011 US