Compatibilizing agent and resin composition

Abstract
The present invention provides a compatibilizing agent which is a block copolymer of ingredient A comprising poly(D-lactic acid) or a D-lactic acid/starch copolymer resin and ingredient B comprising a biodegradable resin having a melting point or softening point not higher than the melting point or softening point of poly(lactic acid).
Description
FIELD OF THE INVENTION

The present invention relates to a compatibilizing agent and a resin composition containing the same. More particularly, the invention relates to a compatibilizing agent for use in producing resin compositions excellent in heat resistance and impact resistance and to a resin composition containing the compatibilizing agent.


BACKGROUND OF THE INVENTION

Poly(lactic acid) has been used as a material for (biodegradable) resin compositions. However, poly(lactic acid) generally has the property of being rigid and poor in impact resistance and, hence, tends to be usable in limited applications.


A technique for improving such property is disclosed, e.g., in patent document 1. This technique comprises incorporating an impact modifier comprising lactic acid units and a polyester unit into a poly(hydroxycarboxylic acid) to thereby obtain a polyester composition which is less apt to suffer bleeding, retains intact flexibility and transparency, and has impact resistance.


Patent Document 1: JP-A-2001-335623


However, in the technique described above, the impact modifier to be mixed with a poly(hydroxycarboxylic acid) has insufficient compatibility and the effect thereof is low when the proportion thereof is low. It is therefore necessary to heighten the proportion of the impact modifier in the polyester composition in order to obtain a sufficient impact resistance-improving effect. On the other hand, the impact modifier has high flexibility and, hence, the technique has the following problem. Increasing the proportion of the impact modifier improves flexibility but simultaneously lowers the softening temperature and this results in poor heat resistance.


SUMMARY OF THE INVENTION

The invention has been made in order to overcome the problems described above.


An object of the invention is to provide a compatibilizing agent capable of giving a resin composition excellent in heat resistance and impact resistance.


Another object of the invention is to provide a resin composition containing the compatibilizing agent.


Other objects and effects of the invention will become apparent from the following description.


The present inventor made extensive investigations. As a result, those objects were found to be accomplished by employing the following constitutions. The invention has been thus achieved.


The invention provides the following.


(1) A compatibilizing agent which is a block copolymer of ingredient A comprising poly(D-lactic acid) or a D-lactic acid/starch copolymer resin and ingredient B comprising a biodegradable resin having a melting point or softening point not higher than the melting point or softening point of poly(lactic acid).


(2) A resin composition comprising poly(L-lactic acid) and the compatibilizing agent described in (1) above.


The compatibilizing agent of the invention has the effect of accelerating crystallization and, when mixed with poly(L-lactic acid), can give a resin composition excellent in heat resistance and impact resistance.







DETAILED DESCRIPTION OF THE INVENTION

The compatibilizing agent and resin composition of the invention will be explained below in detail.


The compatibilizing agent of the invention is a block copolymer of ingredient A comprising poly(D-lactic acid) or a D-lactic acid/starch copolymer resin and ingredient B comprising a biodegradable resin having a melting point or softening point not higher than the melting point or softening point of poly(lactic acid). The type of this block copolymer is not particularly limited, and may be any of the A-B type, A-B-A type, and B-A-B type.


The biodegradable resin having a melting point or softening point not higher than that of poly(lactic acid), which is ingredient B in the compatibilizing agent of the invention, is not particularly limited. Examples thereof include commercial resins such as polycaprolactone, caprolactone/butylene succinate copolymers, poly(butylene adipate-terephthalate), poly(butylene succinate), adipate-modified poly(butylene succinate) resins, carbonate-modified poly(butylene succinate) resins, poly(ethylene terephthalate-succinate), poly(ethylene succinate), and poly(hydroxybutyrate)s. Any of these may be used.


The weight-average molecular weight of the compatibilizing agent of the invention is preferably in the range of 1,000-2,000,000. When the weight-average molecular weight of the compatibilizing agent is lower than 1,000, it forms a eutectic and attains an increased crystallization rate. In this case, however, the resin may be syrupy and difficult to handle. When the weight-average molecular weight thereof exceeds 2,000,000, the compatibilizing agent has a high melt viscosity and there may be cases where it is difficult to take out after polymerization.


In the case where the compatibilizing agent of the invention is used in a resin composition, the amount of the agent to be added is not particularly limited. However, the amount thereof is preferably 1-100 parts by weight, more preferably 2-30 parts by weight, per 100 parts by weight of a base resin. In the case where the amount thereof is smaller than 1 part by weight, there may be cases where a remarkable crystallization-accelerating effect is not obtained and the resin composition does not have improved heat resistance. When the compatibilizing agent is added in an amount larger than 100 parts by weight, this may result in an increased resin cost under present circumstances although the heat resistance is improved.


The resin composition according to the invention is characterized by comprising poly(L-lactic acid) and the compatibilizing agent of the invention.


The poly(L-lactic acid) contained in the invention is not particularly limited. Examples thereof include one obtained by adding a polymerization catalyst to a mixture of 90% fermentation lactic acid and a starch and subjecting the mixture to dehydrating polymerization, commercial poly(lactic acid) products (e.g., Lacea H-100J, manufactured by Mitsui Chemicals, Inc.), and poly(lactic acid) containing a heat-resistant nanocomposite filler. Any of these may be used.


The resin composition of the invention preferably further contains a crosslinking agent. The crosslinking agent is not particularly limited. Any of epoxy, silane, isocyanate, and other crosslinking agents may be used as long as it does not vaporize at the melting point of the poly(lactic acid)


The amount of the crosslinking agent to be added is not particularly limited. However, the amount thereof is preferably 0.01-10 parts by weight, more preferably 0.01-2 parts by weight, per 100 parts by weight of the poly(L-lactic acid) . When the amount thereof is smaller than 0.01 part by weight, there may be cases where the addition of the crosslinking agent is not remarkably effective in improving the impact resistance of the poly(lactic acid). Even when the crosslinking agent is added in an amount larger than 30 parts by weight, there may be cases where heat resistance and impact resistance decrease.


The resin composition of the invention may further contain a crystallization accelerator, flexibility-imparting agent, and compatibilizing agent, each of which is not the compatibilizing agent of the invention described above.


Examples of the crystallization accelerator which is not the compatibilizing agent of the invention include those enumerated above as ingredient A in the compatibilizing agent of the invention.


Examples of the flexibility-imparting agent which is not the compatibilizing agent of the invention include those enumerated above as examples of ingredient B in the invention.


In this case, the amount of the flexibility-imparting agent to be added in the invention is preferably 1-100 parts by weight, more preferably 2-15 parts by weight, per 100 parts by weight of the poly(L-lactic acid). When the amount thereof is smaller than 1 part by weight, there may be cases where the addition of the flexibility-imparting agent is not remarkably effective in improving the impact resistance of the poly(lactic acid). When the flexbility-imparting agent is added in an amount larger than 100 parts by weight, there may be cases where the sea-island structure in the resin composition is reversed, resulting in reduced heat resistance, although the impact resistance is improved.


The compatibilizing agent other than the compatibilizing agent of the invention is not particularly limited. However, it preferably is a polymer obtained by the block copolymerization of poly(D- or L-lactic acid) or a D- or L-lactic acid/starch copolymer resin with a biodegradable resin having a melting point or softening point not higher than that of poly(lactic acid). The biodegradable resin is, for example, polycaprolactone, a poly(butylene adipate-terephthalate), an adipate-modified poly(butylene succinate) resin, or the like. For the copolymerization may be used a dehydrating condensation reaction in which the resins are heated and melted together under reduced pressure or a crosslinking reaction in which a compound having two or more isocyanate or epoxy groups is used.


The amount of this compatibilizing agent to be added is not particularly limited. However, the amount thereof is preferably 1-30 parts by weight, more preferably 5-30 parts by weight, per 100 parts by weight of the poly(lactic acid) . When the amount thereof is smaller than 1 part by weight, there may be cases where the addition of this compatibilizing agent is not remarkably effective in improving the impact resistance of the poly(lactic acid). Even when it is added in an amount larger than 30 parts by weight, there may be cases where the effect of improving impact resistance is not enhanced any more. Also, there may be cases where tensile strength and heat resistance decrease.


EXAMPLES

The invention will be illustrated in greater detail by reference to the following Examples, but the invention should not be construed as being limited thereto.


Example 1

(a) Mixing of poly(lactic acid), compatibilizing agent of the invention, compatibilizing agent other than compatibilizing agent of the invention, and flexbility-imparting agent:


A hundred parts by weight of poly(L-lactic acid) (Lacea H-100J, manufactured by Mitsui Chemicals, Inc.), 6.7 parts by weight of a D-lactic acid/starch copolymer resin:poly(butylene succinate)=3:1 (compatibilizing agent 1 of the invention; A-B-A type), 18.3 parts by weight of a poly(L-lactic acid)/poly(butylene succinate) block copolymer resin (compatibilizing agent), and 10 parts by weight of polycaprolactone (flexbility-imparting agent) (Placcel H-7, manufactured by Dicel Chemical Industries, Ltd.) were weighed out each in a pellet form. These ingredients were premixed together in a bag made of PE. The resultant mixture was kneaded with kneader SIKR, manufactured by Kurimoto, Ltd., extruded into strands, cooled on a conveyor, and then palletized.


(b) Injection molding of resin mixture:


The mixture pellets produced in (a) above were molded into #1 tensile test pieces in accordance with JIS K7113 and rod-shaped test pieces for measuring deformation under load (100 mm×10 mm×4 mm), each using SAV-30, manufactured by Sanjo Seiki Co., Ltd. The molding temperatures in a screw upstream part, a screw downstream part, and the nozzle were set at 170° C., 175° C., and 180° C., respectively. Furthermore, the experiment was conducted at a mold temperature of 110° C. (value measured on the moving platen side, with the set mold temperature being 120° C.) and a cooling time of 120 seconds.


The test pieces obtained were heated in a 110° C. oven for 2 hours. (The test pieces obtained were examined for heat deformation temperature in accordance with JIS K7191-2 and for maximum tensile strength and elongation at break in accordance with JIS K7113. The test pieces were further examined for Izod impact strength in accordance with JIS K7110.) The results obtained are shown in Table 1.


Example 2

Test pieces were produced in the same manner as in Example 1, except that 0.5 parts by weight of Duranate (P301-75E, manufactured by Asahi Kasei Corp.) (crosslinking agent) was added. Thereafter, the test pieces were examined for heat deformation temperature, maximum tensile strength, elongation at break, and impact strength each in the same manner as in Example 1.


The results obtained are shown in Table 1.


Example 3

Test pieces were produced in the same manner as in Example 2, except that the D-lactic acid/starch copolymer resin:poly(butylene succinate)=3:1 was replaced by 10 parts by weight of a D-lactic acid/starch copolymer resin:poly(butylene succinate)=1:1 (compatibilizing agent 2 of the invention; A-B type) and the amount of the poly(L-lactic acid)/poly(butylene succinate) block copolymer resin was changed to 15 parts by weight. Thereafter, the test pieces were examined for heat deformation temperature, maximum tensile strength, elongation at break, and impact strength each in the same manner as in Example 1.


The results obtained are shown in Table 1.


Comparative Example 1

Test pieces were produced in the same manner as in Examples 1 to 3, except that 100 parts by weight of poly(L-lactic acid) only was used and the mold temperature was changed to 30° C. The test pieces were examined for heat deformation temperature, maximum tensile strength, elongation at break, and impact strength each in the same manner as in Examples 1 to 3.


The results obtained are shown in Table 1.


Comparative Example 2

Test pieces were produced in the same manner as in Examples 1 to 3, except that the composition was changed as shown below. The test pieces were examined for heat deformation temperature, maximum tensile strength, elongation at break, and impact strength each in the same manner as in Examples 1 to 3.

Poly(L-lactic acid)100 parts by weightD-Lactic acid/0.1 wt % starch copolymer resin 5 parts by weight


The results obtained are shown in Table 1.


Comparative Example 3

Test pieces were produced in the same manner as in Examples 1 to 3, except that the composition was changed as shown below. The test pieces were examined for heat deformation temperature, maximum tensile strength, elongation at break, and impact strength each in the same manner as in Examples 1 to 3.

Poly(L-lactic acid)100 parts by weightD-Lactic acid/0.1 wt % starch copolymer resin 5 parts by weightPoly(L-lactic acid)/poly(butylene succinate) block 20 parts by weightcopolymer resin


The results obtained are shown in Table 1.


Comparative Example 4

Test pieces were produced in the same manner as in Examples 1 to 3, except that the composition was changed as shown below. The test pieces were examined for heat deformation temperature, maximum tensile strength, elongation at break, and impact strength each in the same manner as in Examples 1 to 3.

Poly(L-lactic acid)100 parts by weightD-Lactic acid/0.1 wt % starch copolymer resin 5 parts by weightPoly(L-lactic acid)/poly(butylene succinate) block 20 parts by weightcopolymer resinPolycaprolactone 5 parts by weight


The results obtained are shown in Table 1.


Comparative Example 5

Test pieces were produced in the same manner as in Examples 1 to 3, except that the composition was changed as shown below. The test pieces were examined for heat deformation temperature, maximum tensile strength, elongation at break, and impact strength each in the same manner as in Example 1 to 3.

Poly(L-lactic acid)100 parts by weight D-Lactic acid/0.1 wt % starch copolymer resin 5 parts by weightPoly(L-lactic acid)/poly(butylene succinate) block20 parts by weightcopolymer resinPolycaprolactone10 parts by weight


The results obtained are shown in Table 1.

TABLE 1No.ComparativeComparativeComparativeComparativeComparativeExample 1Example 2Example 3Example 1Example 2Example 3Example 4Example 5Poly(L-lactic acid)100100100100100100100100Crystallization accelerator5555Compatibilizing agent18.318.315202020Compatibilizing agent 16.76.7of InventionCompatibilizing agent 210of InventionFlexbility-imparting agent101010510Crosslinking agent0.50.5Mold temperature (° C.)11011011030110110110110Cooling time (min)2220.52222Tensile strength (MPa)4140386036474141Elongation (%)4.84.64.42.21.52.42.72.4Izod impact strength (kJ/m2)36.042.125.13.01.54.97.17.9Heat deformation80.0110.792.95213111611280temperature (° C.)


As apparent from Table 1, the resin compositions of Examples 1 to 3 according to the invention are excellent in heat resistance and impact resistance.


Molded articles obtained from the resin composition of the invention are usable as automotive parts, parts for domestic electrical appliances, and general industrial materials.


While the present invention has been described in detail and with reference to specific embodiments thereof, it will be apparent to one skilled in the art that various changes and modifications can be made therein without departing from the spirit and scope thereof.


This application is based on Japanese Patent Application No. 2005-209020 filed Jul. 19, 2005, and the contents thereof are herein incorporated by reference.

Claims
  • 1. A compatibilizing agent which is a block copolymer of ingredient A comprising poly(D-lactic acid) or a D-lactic acid/starch copolymer resin and ingredient B comprising a biodegradable resin having a melting point or softening point not higher than the melting point or softening point of poly(lactic acid).
  • 2. A resin composition comprising poly(L-lactic acid) and the compatibilizing agent of claim 1.
Priority Claims (1)
Number Date Country Kind
P. 2005-209020 Jul 2005 JP national