The present invention relates to a format of a recordable optical recording medium, which has the appearance of a read-only optical recording medium for most players and recorders, and to a method and an apparatus for reading from and/or writing to the recordable optical recording medium.
The distribution of digital data such as movies or software on optical recording media today is established as the main distribution channel. However, this means that stores need to stock a large amount of titles in order to be able to provide most requested titles immediately to their customers without having to order them.
In order to reduce this need for a large stock several solutions for a manufacturing on demand or a distribution via networks have been proposed. The optical recording medium, typically a DVD (digital versatile disk), is recorded as soon as a title is requested by a customer. Recording is done with a special recorder provided in a store, with a kiosk type recording terminal, or by a special consumer recorder connected to a network. These special recorders allow to write data to a recordable DVD in such a way that the DVD has the appearance of a CSS-encrypted DVD-Video (ROM) disk, even though it is a specially finalized recordable DVD. For recording the optical recording medium has a groove structure to guide an optical pickup unit relative to the optical recording medium.
Apart from the above mentioned manufacturing on demand applications, there also exist a plurality of applications for pre-recorded optical recording media having at least some recording capabilities. For example, for serialization and authentication of pre-recorded optical recording media a recordable area is needed on pre-recorded optical recording media. The recordable area is used for adding a unique identifier to the pre-recorded medium after the stamping process at the manufacturing plant. Similarly, information stored on the pre-recorded medium can be used to replace a required software key, such as a serial number, which otherwise has to be input manually with a keyboard when installing the software. The information may also be used as an authentication key to unlock the content stored on the pre-recorded medium.
A further application of recordable areas on a pre-recorded medium is related to the so-called retail activation. According to this application an optical recording medium cannot be played back after manufacturing, e.g. because specific parts of the content are missing. Instead, the medium needs to be activated at the point of sale using a special recorder for making the necessary modifications to the medium, e.g. by adding the missing content.
In order to establish the above described solutions as further distribution channels, the recorded optical recording media have to be compatible with as many standard players and recorders as possible. While this is usually not a problem for players, the situation is different with recorders.
Several methods are known for detecting the position of the light spot on an optical recording medium. The two most popular are Differential-Phase-Detection (DPD, used for ROM formats) and radial Push-Pull (used for RE formats). However, those two methods require substrates having embossed features, i.e. pits for ROM formats or a land/groove structure for RE formats. A typical land/groove structure is depicted in
In this regard, EP 0 745 978 discloses a tracking method and a device for use with an optical recording medium. During recording of data tracking is performed using two auxiliary beams, which are illuminated on embossed guide tracks, as done in the conventional three-beam method. During reading of data tracking is performed by the main beam using the push-pull method.
However, as a copy protection mechanism some optical pickups used in recorders do not allow to retrieve data from an optical recording medium indicated as a read-only medium when a push-pull signal originating from the land/groove structure is found, which is an indication of a recordable optical recording medium. Such incompatibilities have to be avoided.
U.S. Pat. No. 4,507,763 discloses an optical recording medium, which has a recording surface divided into a number of concentric recording regions. A number of concentric guide tracks are formed at the boundaries between successive recording regions. Concentric or spiral information tracks are formed in the recording regions with a constant pitch in reference to respective guide tracks. During recording of a certain recording region the corresponding guide track is read out by a tracking light beam. The recording light beam is controlled by the tracking signal derived from the guide track.
In EP 1 933 313 a recordable optical recording medium with a specially designed land/groove structure is disclosed. The optical recording medium is recorded using a laser with a wavelength around 405 nm, whereas it is read using a laser with a wavelength around 650 nm. The specially designed land/groove structure allows to have a push-pull signal at 405 nm, but to have only a strongly reduced push-pull signal at 650 nm.
The solution proposed in the above document has the drawback that it is difficult to fulfill the DVD-ROM specification, because a new material needs to be used, which has a high absorption in the blue wavelength range and a high reflectivity in the red wavelength range. Also, a light source emitting a light beam in the blue wavelength range is necessary for recording. This means that the recording medium essentially needs to fulfill the tighter specifications regarding tilt, cover layer thickness, refractive index, etc., which are applicable to high data density recording media intended to be read with a light beam in the blue wavelength range. Finally, the recorded pit structure shows different properties in the blue wavelength range and in the red wavelength range.
Therefore, the recorded medium needs to be checked after recording using a light beam in the red wavelength range.
It is an object of the invention to propose a further format for a recordable optical recording medium, which has the appearance of a read-only optical recording medium for most players and recorders.
According to the invention, this object is achieved by an optical recording medium with a recording area and a guide structure for tracking, wherein the guide structure does only extend over one or a few track spirals or concentric tracks outside the recording area.
The optical recording medium according to the invention has the advantage that it enables tracking without the need for embossed features within the recording area, e.g. pits or grooves. As a consequence the optical recording medium has the appearance of a read-only optical recording medium and is compatible with most players and recorders. At the same time known layer stacks can be used, which allow high speed recording. Furthermore, the optical recording medium does not need to fulfill any tighter specifications regarding tilt, cover layer thickness, refractive index, etc.
Advantageously, the optical recording medium is a DVD-like medium. The DVD today is a well established medium for transporting and providing audio-visual data such as movies. Many households are already equipped with the DVD players or recorders. Therefore, it is desirable to make use of the huge customer base also for manufacturing on demand and a distribution via networks. Also, the invention is applicable to any existing materials that are already used for the manufacturing of DVDs. The known DVD specifications concerning the recording speed and the mechanical media parameters are applicable. Of course, the invention is usable for any type of optical recording medium.
Preferably, the guide structure is located before or at the beginning of a lead in area. This ensures that the optical recording medium is compatible with most players and recorders, as a push-pull signal originating from the guide structure, which is an indication of a recordable optical recording medium, is only present outside the recording area.
Favorably, the guide structure is a land/groove structure or includes pre-recorded pits. In this way the guide structure is detectable using known tracking methods, such as push-pull tracking.
A method for writing to an optical recording medium according to the invention has the steps of:
According to the invention, a tracking error signal generated by a further light beam coupled to the main light beam is used for controlling the position of the main light beam. This is necessary as no guide structure is present at the location of the main light beam. In other words, based on at least one track of an initial guide structure the main light beam writes its own guide structure for later tracks. The further light beam advantageously is one of the side beams generated by a diffraction grating, a partial beam generated by a beam splitter, or a light beam generated by an additional light source.
Advantageously, the distance between the main light beam and the further light beam on the optical recording medium is an integer multiple of one track pitch. This ensures that after recording the distance between any two adjacent tracks is exactly one track pitch.
In order to implement the above writing method, an apparatus for writing to an optical recording medium according to the invention has:
The means for generating at least the main light beam and the further light beam preferably is a diffraction grating, a beam splitter or an additional light source. The apparatus has the advantage that it corresponds essentially to a standard pickup. Only the servo electronics and the detector for the further light beam need to be adapted, such that a tracking error signal for the main light beam is generated using the further light beam.
A method for manufacturing an optical recording medium according to the invention has the steps of:
In order to implement the above manufacturing method, an apparatus for manufacturing an optical recording medium has:
The recording layer is favorably applied by sputtering, spin coating or other known processes. Likewise, the cover layer is advantageously applied by spin coating or flooding or the like. The manufacturing method can easily be implemented by slightly modifying existing manufacturing solutions. It is sufficient to ensure that the guide structure for tracking only extends over one or a few track spirals or concentric tracks.
Advantageously, the guide structure is formed by molding before applying the cover layer or by recording a pit train before or after applying the cover layer.
Molding has the advantage that it does not need an additional manufacturing step, as it is a normal manufacturing step during the production of recordable media. It is sufficient to modify the mold in such way that the guide structure for tracking only extends over one or a few track spirals or concentric tracks outside the recording area. On the other hand, recording a pit train before or after applying the cover layer offers a greater freedom of modifying the manufacturing process for different types of recording media, as the properties of the recorded pit train can be adjusted by adapting the write strategy.
Favorably, the pit train is recorded using a tracking actuator by applying a voltage ramp to a tracking coil of the tracking actuator, which continuously increases during a revolution of the optical recording medium and which is chosen such that after a complete revolution of the optical recording medium the tracking actuator has shifted a recording light beam on the optical recording medium by the amount of the track pitch.
In this way it is ensured that after recording the distance between two tracks in the recording area is exactly one track pitch, so that the recorded medium fulfills the applicable specifications.
For a better understanding the invention shall now be explained in more detail in the following description with reference to the figures. It is understood that the invention is not limited to this exemplary embodiment and that specified features can also expediently be combined and/or modified without departing from the scope of the present invention as defined by the appended claims. In the figures:
In
In contrast, the three-beam tracking method makes use of three light spots 30, 31, 31′ falling onto three adjacent tracks. This is illustrated schematically in
In case of recordable optical recording media, no pre-recorded pits are present. In order to enable tracking, a land/groove structure is usually provided in the recording layer.
In the following the invention is explained with reference to a DVD-like optical recording medium, which is read with a wavelength around 650 nm. Of course, the general idea of the invention is also applicable to other types of optical recording media.
In
Apart from molding the guide structure 15 during the manufacturing process, it is likewise possible to use a recording process for producing the guide structure 15. In this case a precise recorder is used for recording a pit train. During recording, a continuously increasing ramping voltage is applied to the tracking actuator. The ramping voltage is chosen such that after a complete revolution of the optical recording medium 10 the tracking actuator has shifted the recording light beam on the optical recording medium 10 by exactly the amount of the track pitch. Alternatively, a precise movement of a recording pickup is performed during recording of the pit train. In this case instead of moving only the tracking actuator the whole pickup is moved.
In the upper part of
In other words, during the recording of data the invention makes use of the already recorded data for tracking as no land/groove structure is present.
A photograph of the surface of a known pre-recorded DVD-like optical recording medium having an additional recordable area 18 is shown in
A photograph of the surface of an optical recording medium according to the invention having a pre-recorded area 17 as well as a recordable area 16 is shown in
Number | Date | Country | Kind |
---|---|---|---|
08305530.1 | Sep 2008 | EP | regional |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/EP2009/060858 | 8/24/2009 | WO | 00 | 2/25/2011 |