1. Field of Disclosure
The present disclosure relates generally to video cameras, and more specifically to techniques for compensating for undesirable camera shakes during video capture.
2. Related Art
A video camera (video acquisition device, in general) generally refers to a device, which is designed to continuously capture images of a scene, and generate successive frames (video sequences) of the images. The frames can be captured in digital form or analog form. Examples of video cameras include, but not limited to, consumer electronics which record the captured images on a storage medium and cameras used in broadcast television, where the captured images may not be stored, but simply transmitted for broadcasting.
One common problem while using video cameras is that the camera may be shaking when capturing the video sequences. For example, the hands holding a video camera may shake, causing the camera also to shake. Due to such camera shake, there is a relative motion between the video camera and the scene sought to be captured, even though both the user and the scene are otherwise stable. The relative motion can manifest as a sequence of frames which are spatially displaced, which is undesirable.
Example embodiments will be described with reference to the following accompanying drawings, which are described briefly below.
In the drawings, like reference numbers generally indicate identical, functionally similar, and/or structurally similar elements. The drawing in which an element first appears is indicated by the leftmost digit(s) in the corresponding reference number.
An aspect of the present invention compensates for the effects of camera shakes during video capture. In an embodiment, a processor in a video capture device receives a first and a second source frames representing images of a scene, with the second source frame being captured at a later time instance compared to the first source frame. The processor generates a pair of subsampled frames from the source frames, and determines a coarse displacement of the captured image in the second frame relative to the first frame due to camera shakes by a matching process using the two subsampled frames.
The image processor then refines the determined coarse displacement by a similar matching process, but by using the two source frames and a bound determined by an extent of subsampling. Due to the use of the subsampled frames, the effect of local motion (i.e., with objects within a frame, actually moving in the scene) in determining displacement is reduced. In addition, the computational complexity of computing (coarse) displacement is also reduced. However, the accuracy of computation of displacement is maintained high by using the source frames in computing fine displacement.
Once such displacement is determined, the image in the second frame may be shifted by the opposite of (fine) displacement. One potential problem with such shifting is that there may not be sufficient pixel information at some of the boundaries of the shifted image, which may lead to blank space in the corresponding image portions. Display aberrations such as blank spaces caused due to shifting can also be avoided as described below.
According to another aspect of the present invention, a processor displays only a portion of the image in each frame lying within a display window. The display window is shifted by a vector opposite to the determined displacement, and only the portion of image lying within the (shifted display) window are displayed. Since the display window is smaller in size than the captured images, shifting may not cause display aberrations such as blank pixel areas in the scenario noted above.
According to yet another aspect of the invention, the image processor also identifies displacements due to intentional camera movement or when all the objects of the scene are moving, and does not compensate for such displacements. Such a situation is identified by checking for a uniform pattern in the displacements, and determining that compensation is not required when the uniform pattern is detected.
Several aspects of the invention are described below with reference to examples for illustration. It should be understood that numerous specific details, relationships, and methods are set forth to provide a full understanding of the invention. One skilled in the relevant art, however, will readily recognize that the invention can be practiced without one or more of the specific details, or with other methods, etc. In other instances, well known structures or operations are not shown in detail to avoid obscuring the features of the invention.
The following includes definitions of selected terms used throughout the disclosure. Both singular and plural forms of all terms fall within each meaning:
Scene: A general area sought to be captured in video format
Image: The picture represented by the light captured by an image capture device
Frame: A set of pixel values representing a captured image viewed as a two dimensional area
Pixel: A smallest picture element captured by the image capture device
Pixel value: The value representing the brightness and color of a pixel
Pixel location: The coordinates of the pixel in the frame
Lens enclosure 105 (denoted by dotted lines) is shown housing lens assembly 115 and image sensor array 120, and is generally designed to shield extraneous (i.e., other than the light being received via the lens assembly) light from being incident on image sensor array 120 (in general, capturing medium). Lens assembly 115 may contain one or more lenses, which can be configured to focus light rays (denoted by arrow 101) from a scene to impinge on image sensor array 120.
Axis 116 (dotted lines) is representative of a position/direction at which video camera is desired to be fixed for capturing frames. However, as noted above, video camera 100 may shake while in the process of capturing frames, and axis 117 is representative of a changed position/orientation of video camera 100 due to such shake. (Axes 116 and 117 are shown shifted in vertical direction merely to simplify the description to follow, and video camera 100 may be shifted to any other position/orientation in space while capturing frames).
Display 140 displays image frames (video sequences) in response to the corresponding display signals received from image processor 130 on path 134. Display 140 may also receive various control signals (not shown) from image processor 130 indicating, for example, the pixel resolution to be used, etc. Display 140 is implemented as a LCD display in an embodiment.
Input interface 160 provides a user with the facility to provide inputs, for example, to select various features provided by video camera 100 such as indicating when to start recording video sequences (in case of consumer electronics). RAM 190 stores program (instructions) and/or data used by image processor 130. Specifically, pixel values (or entire frames) that are to be processed and/or to be used later, may be stored in RAM 190 via path 139 by image processor 130.
Non-volatile memory 150 stores image frames received from image processor 130 via path 135. The image frames may be retrieved from non-volatile memory 150 by image processor 130 and provided to display 140 for display. In an embodiment, non-volatile memory 150 is implemented as a flash memory. Alternatively, non-volatile memory 150 may be implemented as a removable plug-in card, thus allowing a user to move the captured images to another system for viewing, processing or to use other instances of plug-in cards.
Non-volatile memory 150 may contain an additional memory unit (e.g., ROM, EEPROM, etc.), which store various instructions, which when executed by image processor 130 provide various features of the invention described herein. In general, such memory units (including RAMs, non-volatile memory, removable or not) from which instructions can be retrieved and executed by processors are referred to as a computer/machine readable medium.
Image sensor array 120 may contain an array of sensors, with each sensor generating an output value representing the corresponding point (small portion or pixel) of the image, and proportionate to the amount of light that is allowed to fall on the sensor. The output of each sensor may be provided as a corresponding digital value (for example, in RGB format). Digital values representing video sequences (frames) produced by the sensors are forwarded on path 123 to image processor 130 for further processing.
In particular, merely to aid the description to follow, it is assumed that due to video camera shake, image sensor array 120 captures some frames when video camera 100 is oriented along axis 116, and some other frames when video camera 100 is oriented along axis 117. Thus, it may be appreciated that due to the relative motion (due to camera shake) between video camera 100 (as also image sensor array 120) and scene 101, stationary objects (e.g., background of scene) in the scene captured when video camera 100 is oriented along axis 116 may be located at a position(s) different from their respective corresponding position(s) when video camera 100 is oriented along axis 117.
Image processor 130 forwards pixel values received on path 123 to path 134 to enable a user to view the scene presently pointed by the camera. Further, when the user indicates intent to start recording images (via input interface 160), image processor 130 causes the pixel values (of corresponding image frames) to be stored in memory 150.
In addition, image processor 130 may operate to compensate for camera shake according to several aspects of the present invention, and the description is accordingly continued with the internal details of image processor 130 in one embodiment.
ISP pipeline 220 receives a stream of pixel values (source values) corresponding to frames (row wise) on path 123. The pixel values may be received directly from image sensor array 120 (of
Sub-window logic 230 receives control inputs from CPU 250 specifying dimensions and locations of one or more sub-windows (e.g., in the form of rectangular areas) in the captured image that are to be subsampled. For each of a group (for example, nine adjacent pixels) of pixel values in the sub-window, sub-window logic 230 computes the average of the pixel values in the group, and generates a corresponding single pixel value having the computed average value. The ‘averaged’ pixels thus generated form a subsampled version of portion of the image in the sub-window, and the subsampled version is provided by sub-window logic 230 to CPU 250. In an embodiment, sub-window logic 230 provides a 64×64 pixel wide subsampled version of (entire) images captured by image sensor array 120, and provides them to CPU 250.
CPU 250 may then operate on the subsampled image(s) as well as the source images (prior to subsampling) to stabilize the video images, as described in detail below. The manner in which CPU 250 may process the image frames to compensate for camera shake, is described below with respect to an example embodiment.
Alternative embodiments in other environments, using other components, and different sequence of steps can also be implemented without departing from the scope and spirit of several aspects of the present invention, as will be apparent to one skilled in the relevant arts by reading the disclosure provided herein. The flowchart starts in step 301, in which control passes immediately to step 310.
In step 305, ISP pipeline 220 receives two original (source) frames A and B of an image of a scene. As noted above, due to camera shake different frames may be captured at different positions/orientations of video camera 100. Thus, Frame A is assumed to be captured with video camera 100 oriented along axis 116, while Frame B is captured when video camera 100 is oriented along axis 117. Frame B is assumed to be captured at a later time instance than frame A for illustration. In one embodiment, Frames A and B are successive frames, with Frame B being captured after Frame A, even though frames received at regular intervals (example every 8th frame) can be analyzed, for example, to reduce the computational requirements. Control then passes to step 320.
In step 310, sub-window logic 230 generates two subsampled frames C and D of original frames A and B respectively. ISP pipeline may communicate to CPU 250 the receipt of original frames A and B, and CPU 250 may then issue a command to sub-window logic 230 to perform subsampling on each of the frames A and B to generate subsampled frames C and D. Sub-window logic 230 provides the subsampled frames C and D to CPU 250. In an embodiment (described below), each of subsampled images C and D has a size of 64×64 pixels and the source images have a size of 800×600 pixels. Control then passes to step 320.
In step 320, CPU 250 determines a displacement (“coarse displacement”) at a coarse resolution between the two original image frames A and B by examining the two subsampled frames C and D. The coarse resolution is due to the operation using the subsampled images. In an embodiment described in detail below, CPU 250 selects a center 48×48 block in frame D, and searches for a maximum correlation (most similar) 48×48 block in frame C. The displacement (vector offset) between the two 48×48 blocks is a coarse estimation of the displacement (coarse displacement) between the two original images A and B due to camera shake. In an embodiment, the matching process is performed using the “3 Step Search for fast motion vector estimation” approach, as described further in the document entitled “Motion-compensated inter-frame coding for video conferencing,” by T. Koga, et al, in Proc. NTC81, New Orleans, La., November 1981, pp. C9.6.1-9.6.5. However, various other approaches can also be used in determining the coarse displacement. Control then passes to step 340.
In step 340, CPU 250 determines a displacement (“fine displacement”) at finer resolution by examining the two original frames and using the coarse displacement estimated in step 320 and a bound defined by the extent of subsampling. In general, the bound is larger when the subsampling factor (i.e., the number of pixels in the source image used to generate a single pixel of the subsampled image) is higher. In one embodiment, the fine displacement is also determined using the “3 Step Search for fast motion vector estimation” approach noted above, but by constraining the search locations by the bound. The manner in which the fine and coarse displacements are computed is described with illustrative examples below. Control then passes to step 380.
In step 380, CPU 250 shifts image B by the reverse of the fine displacement. Assuming that the displacement is computed as a vector having X and Y coordinates, for example, as (aX+bY), the shifting is performed by (−aX+−bY), wherein a and b are any real numbers, and X and Y are unit vectors along the X-axis (horizontal direction) and Y-axis (vertical direction) respectively. The shifting can be accomplished by various techniques as will be apparent to one skilled in the relevant arts, even though specific approaches are described in sections below.
Control then passes to step 399 in which the flowchart ends. It should be appreciated that the flowchart of
Though the description above is provided as being performed within a video camera, it should be appreciated that at least some of the operations can be performed external to the video camera (e.g., in a broadcasting type scenario where the images are corrected in a path from the video camera to the broadcasting equipment).
The operation of the steps above are clarified below with the help of example illustrations. First, camera shake is illustrated in an example scenario.
In
When there is camera shake when frames are captured, the position of object 410 may be different (i.e., displaced) in successive frames, as illustrated by frames 404 through 407 (
Various aspects of the current invention operate to compensate for the undesirable effects of camera shake. As noted above with respect to the flowchart of
In an embodiment, sub-window logic 230 (under control from CPU 250) computes an average of the pixels values in a block and generates a pixel with the computed average value. However other approaches such as pixel dropping, filtering using Laplacian pyramid, Gaussian Pyramid etc., can be used to generate the subsampled image. Pixels thus generated constitute the subsampled frame 590.
Thus, pixel 550A shown in
In an embodiment each of blocks 510A-510N through 540A-540N is 8×8 pixels wide, Consequently, for original frames A and B which may be 800×600 pixels in size, subsampled frames C and D generated are 64×64 pixels in size.
As noted above, image processor 130 (or components within it) receives two original frames A and B, and generates corresponding subsampled frames C and D according to approaches described above. In an embodiment, CPU 250 determines a coarse displacement between the two original image frames A and B by examining the two subsampled frames C and D. CPU 250 then determines a “fine displacement” at a finer resolution by examining the two original frames A and B, and by using the coarse displacement and a bound defined by the extent of subsampling, as described next with examples.
With respect to
It should be appreciated that since such a scaled vector is computed based on subsampled images, and since subsampled images have a coarser resolution than the corresponding source images, the scaled vector may be associated with an error. Thus, the scaled vector may be refined, and the displacement at fine (or equivalently source) resolution can be determined based on the below description.
Accordingly, the search to determine the displacement with finer resolution may need utmost 9 searches corresponding to each pixel position within block 690. However, optimized approaches can be used to reduce the number of searches. Furthermore, assuming any errors in the computations of displacement vector 650, additional searches to surround more pixel positions (than block 690) can be performed.
Assuming such searches indicate that the top left corner point has moved to pixel position 695, the source frames 610 (A) and 612 (B) with the fine displacement are shown represented in
Though the description above is provided at a logical level depicting the relative movement of images (represented by corresponding frames), it should be appreciated that image processor 130 performs computations using the received set of pixels to determine the coarse and fine displacements. The
Once the fine displacement (relative to a compared previous frame) is determined for a present frame, the present frame is shifted by the opposite of the determined refined displacement (represented by vector 680 in
On the other hand, there may not be sufficient data for shaded area 720 (with parallel lines only) and thus may be displayed as blank pixels (or any other values, either with processing such as interpolation, or otherwise). Such display aberration is generally undesirable.
An aspect of the present invention facilitates such display aberrations to be avoided as described below.
Alternative embodiments in other environments, using other components, and different sequence of steps can also be implemented without departing from the scope and spirit of several aspects of the present invention, as will be apparent to one skilled in the relevant arts by reading the disclosure provided herein. The flowchart starts in step 801, in which control passes immediately to step 810.
In step 810, image processor 130 receives a first frame having a first height and a first width. As may be appreciated, each frame contains pixels organized as rows and columns, with each pixel being represented in formats such as RGB or YUV, well known in the relevant arts. Control then passes to step 820.
In step 820, image processor sets a display window with a second height and a second width, with at least one of the second height and the second width being respectively less than the first height and the first width. In general, both width and height would be less, assuming that compensation is to be performed in both horizontal and vertical directions respectively. Also, the degree by which each dimension would be less is determined by the maximum handshake (in that dimension) for which compensation is to be designed. Control then passes to step 830.
In step 830, image processor 130 displays only a portion of the first frame lying within the display window. Control then passes to step 840. In step 840, image processor 130 receives a second frame of the image of the scene. Control then passes to step 840.
In step 850, image processor 130 estimates a displacement vector specifying a spatial offset between the first frame and the second frame. The displacement may be determined in a manner described above. Control then passes to step 860.
In step 860, image processor 130 shifts the display window in the reverse direction of the estimated displacement vector. Control then passes to step 870. In step 870, image processor 130 displays a portion of the second frame lying within the shifted display window. Control then passes to step 899, in which the flowchart ends.
Due to the shifting of the display window, the same portion of the scene may be displayed irrespective of the camera shake. The operation of the steps described above are illustrated with respect to
In
It may clearly be seen that, since the captured (received) image frames are larger than the displayed portions, display aberrations such as blank pixel areas would not occur. Thus, the undesirable effects due to camera shakes during video capture may be compensated for.
There may, however, be scenarios where a movement of the camera during video capture is intentional (e.g., either because the camera is being panned gradually to cover adjacent portions or because all the objects of the scene itself are moving). This is illustrated next with an example.
The manner in which image processor 130 recognizes such intentional camera movement, and keeps from compensating for image displacements in such a scenario is described below with respect to the flowchart of
In step 1110, image processor 130 receives a set of frames representing images of a scene. The set may contain successive frames, or every nth (n being an integer) frame captured. In an embodiment, the displacements corresponding to the last 5 frames (preceding the current frame) are recorded (stored). Control then passes to step 1120.
In step 1120, image processor 130 determines displacements between images from each frame in the set to the previous frame in the set. Thus, for example, if there are 10 successive frames in the set, image processor 130 may determine the displacement between each frame and a previous frame, i.e., nine displacements in all. In each instance, the displacement may be determined as described in sections above. Control then passes to step 1130.
In step 1130, image processor 130 determines whether the displacements follow a substantially uniform pattern. In general, if the displacements are due to actual relative movement of the camera and scenes, then the displacements in images in successive frame pairs would tend to be similar. For example, the displacements may following a pattern, in terms of magnitude and/or direction. The pattern may represent, for example, constant changes, changes with increasing/decreasing constant differences, clockwise/anti-clockwise rotational changes with constant direction changes etc. This may be appreciated from the example illustration in
In step 1140, image processor 130 determines that compensation for displacements is not required. Hence frames are displayed as they are received, without the shifting described above with respect to
In step 1150, image processor 130 compensates for the displacements by shifting each frame by a displacement vector determined as described in sections above. Control then passes to step 1199, in which the flowchart ends.
Thus, using combinations of various techniques described above, video images free of the effects of camera shake can be generated.
While various embodiments of the present invention have been described above, it should be understood that they have been presented by way of example only, and not limitation. Thus, the breadth and scope of the present invention should not be limited by any of the above described exemplary embodiments, but should be defined only in accordance with the following claims and their equivalents.
Number | Name | Date | Kind |
---|---|---|---|
3904818 | Kovac | Sep 1975 | A |
4253120 | Levine | Feb 1981 | A |
4646251 | Hayes et al. | Feb 1987 | A |
4685071 | Lee | Aug 1987 | A |
4739495 | Levine | Apr 1988 | A |
4771470 | Geiser et al. | Sep 1988 | A |
4920428 | Lin et al. | Apr 1990 | A |
4987496 | Greivenkamp, Jr. | Jan 1991 | A |
5175430 | Enke et al. | Dec 1992 | A |
5261029 | Abi-Ezzi et al. | Nov 1993 | A |
5305994 | Matsui et al. | Apr 1994 | A |
5387983 | Sugiura et al. | Feb 1995 | A |
5475430 | Hamada et al. | Dec 1995 | A |
5513016 | Inoue | Apr 1996 | A |
5608824 | Shimizu et al. | Mar 1997 | A |
5652621 | Adams, Jr. et al. | Jul 1997 | A |
5793433 | Kim et al. | Aug 1998 | A |
5878174 | Stewart et al. | Mar 1999 | A |
5903273 | Mochizuki et al. | May 1999 | A |
5905530 | Yokota et al. | May 1999 | A |
5995109 | Goel et al. | Nov 1999 | A |
6016474 | Kim et al. | Jan 2000 | A |
6078331 | Pulli et al. | Jun 2000 | A |
6111988 | Horowitz et al. | Aug 2000 | A |
6118547 | Tanioka | Sep 2000 | A |
6141740 | Mahalingaiah et al. | Oct 2000 | A |
6151457 | Kawamoto | Nov 2000 | A |
6175430 | Ito | Jan 2001 | B1 |
6252611 | Kondo | Jun 2001 | B1 |
6256038 | Krishnamurthy | Jul 2001 | B1 |
6281931 | Tsao et al. | Aug 2001 | B1 |
6289103 | Sako et al. | Sep 2001 | B1 |
6314493 | Luick | Nov 2001 | B1 |
6319682 | Hochman | Nov 2001 | B1 |
6323934 | Enomoto | Nov 2001 | B1 |
6392216 | Peng-Tan | May 2002 | B1 |
6396397 | Bos et al. | May 2002 | B1 |
6438664 | McGrath et al. | Aug 2002 | B1 |
6486971 | Kawamoto | Nov 2002 | B1 |
6504952 | Takemura et al. | Jan 2003 | B1 |
6584202 | Montag et al. | Jun 2003 | B1 |
6594388 | Gindele et al. | Jul 2003 | B1 |
6683643 | Takayama et al. | Jan 2004 | B1 |
6707452 | Veach | Mar 2004 | B1 |
6724932 | Ito | Apr 2004 | B1 |
6737625 | Baharav et al. | May 2004 | B2 |
6760080 | Moddel et al. | Jul 2004 | B1 |
6785814 | Usami et al. | Aug 2004 | B1 |
6806452 | Bos et al. | Oct 2004 | B2 |
6839062 | Aronson et al. | Jan 2005 | B2 |
6856441 | Zhang et al. | Feb 2005 | B2 |
6891543 | Wyatt | May 2005 | B2 |
6900836 | Hamilton, Jr. | May 2005 | B2 |
6950099 | Stollnitz et al. | Sep 2005 | B2 |
7009639 | Une et al. | Mar 2006 | B1 |
7015909 | Morgan, III et al. | Mar 2006 | B1 |
7023479 | Hiramatsu et al. | Apr 2006 | B2 |
7088388 | MacLean et al. | Aug 2006 | B2 |
7092018 | Watanabe | Aug 2006 | B1 |
7106368 | Daiku et al. | Sep 2006 | B2 |
7133041 | Kaufman et al. | Nov 2006 | B2 |
7133072 | Harada | Nov 2006 | B2 |
7146041 | Takahashi | Dec 2006 | B2 |
7221779 | Kawakami et al. | May 2007 | B2 |
7227586 | Finlayson et al. | Jun 2007 | B2 |
7245319 | Enomoto | Jul 2007 | B1 |
7305148 | Spampinato et al. | Dec 2007 | B2 |
7343040 | Chanas et al. | Mar 2008 | B2 |
7486844 | Chang et al. | Feb 2009 | B2 |
7502505 | Malvar et al. | Mar 2009 | B2 |
7580070 | Yanof et al. | Aug 2009 | B2 |
7627193 | Alon et al. | Dec 2009 | B2 |
7671910 | Lee | Mar 2010 | B2 |
7728880 | Hung et al. | Jun 2010 | B2 |
7750956 | Wloka | Jul 2010 | B2 |
7912279 | Hsu et al. | Mar 2011 | B2 |
8049789 | Innocent | Nov 2011 | B2 |
20010001234 | Addy et al. | May 2001 | A1 |
20010012113 | Yoshizawa et al. | Aug 2001 | A1 |
20010012127 | Fukuda et al. | Aug 2001 | A1 |
20010015821 | Namizuka et al. | Aug 2001 | A1 |
20010019429 | Oteki et al. | Sep 2001 | A1 |
20010021278 | Fukuda et al. | Sep 2001 | A1 |
20010033410 | Helsel et al. | Oct 2001 | A1 |
20010050778 | Fukuda et al. | Dec 2001 | A1 |
20010054126 | Fukuda et al. | Dec 2001 | A1 |
20020012131 | Oteki et al. | Jan 2002 | A1 |
20020015111 | Harada | Feb 2002 | A1 |
20020018244 | Namizuka et al. | Feb 2002 | A1 |
20020027670 | Takahashi et al. | Mar 2002 | A1 |
20020033887 | Hieda et al. | Mar 2002 | A1 |
20020041383 | Lewis | Apr 2002 | A1 |
20020044778 | Suzuki | Apr 2002 | A1 |
20020054374 | Inoue et al. | May 2002 | A1 |
20020063802 | Gullichsen et al. | May 2002 | A1 |
20020105579 | Levine et al. | Aug 2002 | A1 |
20020126210 | Shinohara et al. | Sep 2002 | A1 |
20020146136 | Carter, Jr. | Oct 2002 | A1 |
20020149683 | Post | Oct 2002 | A1 |
20020158971 | Daiku et al. | Oct 2002 | A1 |
20020167202 | Pfalzgraf | Nov 2002 | A1 |
20020167602 | Nguyen | Nov 2002 | A1 |
20020191694 | Ohyama et al. | Dec 2002 | A1 |
20020196470 | Kawamoto et al. | Dec 2002 | A1 |
20030035100 | Dimsdale et al. | Feb 2003 | A1 |
20030067461 | Fletcher et al. | Apr 2003 | A1 |
20030122825 | Kawamoto | Jul 2003 | A1 |
20030142222 | Hordley | Jul 2003 | A1 |
20030146975 | Joung et al. | Aug 2003 | A1 |
20030169353 | Keshet et al. | Sep 2003 | A1 |
20030169918 | Sogawa | Sep 2003 | A1 |
20030197701 | Teodosiadis et al. | Oct 2003 | A1 |
20030222995 | Kaplinsky et al. | Dec 2003 | A1 |
20030223007 | Takane | Dec 2003 | A1 |
20040001061 | Stollnitz et al. | Jan 2004 | A1 |
20040001234 | Curry et al. | Jan 2004 | A1 |
20040032516 | Kakarala | Feb 2004 | A1 |
20040066970 | Matsugu | Apr 2004 | A1 |
20040100588 | Hartson et al. | May 2004 | A1 |
20040101313 | Akiyama | May 2004 | A1 |
20040109069 | Kaplinsky et al. | Jun 2004 | A1 |
20040189875 | Zhai et al. | Sep 2004 | A1 |
20040218071 | Chauville et al. | Nov 2004 | A1 |
20040247196 | Chanas et al. | Dec 2004 | A1 |
20050007378 | Grove | Jan 2005 | A1 |
20050007477 | Ahiska | Jan 2005 | A1 |
20050030395 | Hattori | Feb 2005 | A1 |
20050046704 | Kinoshita | Mar 2005 | A1 |
20050099418 | Cabral et al. | May 2005 | A1 |
20050185058 | Sablak | Aug 2005 | A1 |
20050238225 | Jo et al. | Oct 2005 | A1 |
20050243181 | Castello et al. | Nov 2005 | A1 |
20050248671 | Schweng | Nov 2005 | A1 |
20050261849 | Kochi et al. | Nov 2005 | A1 |
20050286097 | Hung et al. | Dec 2005 | A1 |
20060050158 | Irie | Mar 2006 | A1 |
20060061658 | Faulkner et al. | Mar 2006 | A1 |
20060087509 | Ebert et al. | Apr 2006 | A1 |
20060133697 | Uvarov et al. | Jun 2006 | A1 |
20060176375 | Hwang et al. | Aug 2006 | A1 |
20060197664 | Zhang et al. | Sep 2006 | A1 |
20060274171 | Wang | Dec 2006 | A1 |
20060290794 | Bergman et al. | Dec 2006 | A1 |
20060293089 | Herberger et al. | Dec 2006 | A1 |
20070091188 | Chen et al. | Apr 2007 | A1 |
20070147706 | Sasaki et al. | Jun 2007 | A1 |
20070171288 | Inoue et al. | Jul 2007 | A1 |
20070236770 | Doherty et al. | Oct 2007 | A1 |
20070247532 | Sasaki | Oct 2007 | A1 |
20070285530 | Kim et al. | Dec 2007 | A1 |
20080030587 | Helbing | Feb 2008 | A1 |
20080062164 | Bassi et al. | Mar 2008 | A1 |
20080101690 | Hsu et al. | May 2008 | A1 |
20080143844 | Innocent | Jun 2008 | A1 |
20090010539 | Guarnera et al. | Jan 2009 | A1 |
20090116750 | Lee et al. | May 2009 | A1 |
20090160957 | Deng et al. | Jun 2009 | A1 |
20090257677 | Cabral et al. | Oct 2009 | A1 |
20100266201 | Cabral et al. | Oct 2010 | A1 |
Number | Date | Country |
---|---|---|
1275870 | Dec 2000 | CN |
0392565 | Oct 1990 | EP |
1449169 | May 2003 | EP |
1378790 | Jan 2004 | EP |
1447977 | Aug 2004 | EP |
1550980 | Sep 2005 | EP |
2045026 | Oct 1980 | GB |
2363018 | Dec 2001 | GB |
61187467 | Aug 1986 | JP |
62151978 | Jul 1987 | JP |
07015631 | Jan 1995 | JP |
8036640 | Feb 1996 | JP |
08079622 | Mar 1996 | JP |
2001052194 | Feb 2001 | JP |
2002207242 | Jul 2002 | JP |
2003085542 | Mar 2003 | JP |
2004221838 | Aug 2004 | JP |
2005094048 | Apr 2005 | JP |
2005182785 | Jul 2005 | JP |
2005520442 | Jul 2005 | JP |
2006025005 | Jan 2006 | JP |
2006086822 | Mar 2006 | JP |
2006094494 | Apr 2006 | JP |
2006121612 | May 2006 | JP |
2006134157 | May 2006 | JP |
2007019959 | Jan 2007 | JP |
2007148500 | Jun 2007 | JP |
2009021962 | Jul 2007 | JP |
2007233833 | Sep 2007 | JP |
2007282158 | Oct 2007 | JP |
2008085388 | Apr 2008 | JP |
2008277926 | Nov 2008 | JP |
1020040043156 | May 2004 | KR |
1020060068497 | Jun 2006 | KR |
1020070004202 | Jan 2007 | KR |
03043308 | May 2003 | WO |
2004063989 | Jul 2004 | WO |
WO2007056459 | May 2007 | WO |
2007093864 | Aug 2007 | WO |
Entry |
---|
Joon Ki Paik, Yong Chul Park and Dong Wook Kim, “An Adaptive Motion Decision System for Digital Image Stabilizer Based on Edge Pattern Matching”, IEEE Transactions on Consumer Electronics, vol. 38, No. 3, pp. 607-616, Aug. 1992. |
S. Ertürk, Member and IEEE, “Digital Image Stabilization with Sub-Image Phase Correlation Based Global Motion Estimation”, IEEE Transactions on Consumer Electronics, vol. 49, No. 4, pp. 1320-1325, Nov. 2003. |
Sung-Jea Ko, Senior Member IEEE, Sung-Hee Lee and Kyung-Hoon Lee, “Digital Image Stabilizing Algorithms Based on Bit-Plane Matching”, IEEE Transactions on Consumer Electronics, vol. 44, No. 3, pp. 617-622, Aug. 1998. |
Sung-Jea Ko, Senior Member, IEEE, Sung-Hee Lee, Seung-Won Jeon and Eui-Sung Kang, “Fast Digital Image Stabilizer Based on Gray-Coded Bit-Plane Matching”, IEEE Transactions on Consumer Electronics, vol. 45, No. 3, pp. 598-603, Aug. 1999. |
Carlos Morimoto and Rama Chellappa, “Fast Electronic Digital Image Stabilization for Off-Road Navigation”, Computer Vision Laboratory, Center for Automation Research University of Maryland, Real-Time Imaging, vol. 2, pp. 285-296, 1996. |
Sarp Erturk, “Real-Time Digital Image Stabilization Using Kalman Filters”, http://www.idealibrary.com, Real-Time Imaging 8, pp. 317-328, (2002). |
Kenya Uomori, Atsushi Morimura and Hirofumi Ishii, “Electronic Image Stabilization System for Video Cameras and VCRS”, J.Soc. Motion Pict. Telev. Eng., vol. 101, pp. 66-75, 1992. |
Kenya Uomori, Atsushi Morimura, Hirofumi Ishii, Takashi Sakaguchi and Yoshinori Kitamura, “Automatic Image Stabilizing System by Full-Digital Signal Processing”, vol. 36, No. 3, pp. 510-519, Aug. 1990. |
D Doo, M. Sabin, “Behaviour of Recursive Division Surfaces Near Extraordinary Points”, Sep. 1978; Computer Aided Design; vol. 10; pp. 356-360. |
D. W. H. Doo, “A Subdivision Algorithm for Smoothing Down Irregular Shaped Polyhedrons”, 1978; Interactive Techniques in Computer Aided Design; pp. 157-165. |
Davis, J., Marschner, S., Garr, M., Levoy, M., Filling Holes In Complex Surfaces Using Volumetric Diffusion', Dec. 2001, Stanford University, pp. 1-9. |
E. Catmull, J. Clark, “Recursively Generated B-Spline Surfaces On Arbitrary Topological Meshes”, Nov. 1978I Compurter Aided Design; vol. 10; pp. 350-355. |
J. Bolz, P. Schroder, Rapid Evaluation of Catmull-Clark Subdivision Surfaces:, Web 3D '02. |
J. Stam, “Exact Evaluation of Catmull-Clark Subdivision Surfaces At Arbitrary Parameter Values”, Jul. 1998; Computer Graphics; vol. 32; pp. 395-404. |
Krus, M., Bourdot, P., Osorio, A, Guisnel, F., Thibault, G.; “Adaptive Tessellation of Connected Primitives for Interactive Walkthroughs in Complex Industrial Virtual Environments”, Jun. 1999, Proceedings of the Eurographics Workshop, pp. 1-10. |
Loop, C., DeRose, T., “Generalized B-Spline Surfaces of Arbitrary Topology”, Aug. 1990, Sigraph 90; pp. 347-356. |
M. Halstead, M. Kass, T. DeRose, “Efficient, Fair Interpoloation Using Catmull-Clark Surfaces”, Sep. 1993; Computer Graphics and Interactive Techniques, Proc; pp. 35-44. |
T. DeRose, M. Kass, T. Truong; “Subdivision Surfaces in Character Animation”, Jul. 1998; Computer Graphics and Interactive Techniques Proc, pp. 85-94. |
Takeuchi, S., Kanai, T., Suzuki, H., Shimada, K., Kimura, F., “Subdivision Surface Fitting With QEM-Based Mesh. Simplification and Reconstruction of Approximated B-Spline Surfaces”, 2000, Eighth Pacific Conference on Computer Graphics and Applicaitons, pp. 202-212. |
Kumar, S., Manocha, D., “Interactive Display of Large Scale Trimmed NURBS Models”, 1994, University of North Carolina at Chapel Hill, Technical Report, pp. 1-36. |
“A Pipelined Architecture for Real-Time orrection of Barrel Distortion in Wide-Angle Camera Images”, Hau, T. Ngo, Student Member, IEEE and Vijayan K. Asari, Senior Member IEEE, IEEE Transaction on Circuits and Sytstems for Video Technology: vol. 15 No. 3 Mar. 2005 pp. 436-444. |
“Calibration and removal of lateral chromatic abberation in images” Mallon, et al. Science Direct Copyright 2006; 11 pages. |
“Method of Color Interpolation in a Singe Sensor Color Camera Using Green Channel Seperation” Weerasighe, et al Visual Information Processing Lab, Motorola Austrailian Research Center pgs. IV-3233-IV3236, 2002. |
Donald D. Spencer, “Illustrated Computer Graphics Dictionary”, 1993, Camelot Publishing Company, p. 272. |
Duca et al., “A Relational Debugging Engine for Graphics Pipeline, International Conference on Computer Graphics and Interactive Techniques”, ACM SIGGRAPH Jul. 2005, pp. 453-463. |
gDEBugger, graphicRemedy, http://www.gremedy.com, Aug. 8, 2006, pp. 1-18. |
http://en.wikipedia.org/wiki/Bayer—filter; “Bayer Filter”; Wikipedia, the free encyclopedia; pp. 1-4. |
http://en.wikipedia.org/wiki/Color—filter—array; “Color Filter Array”; Wikipedia, the free encyclopedia; pp. 1-5. |
http://en.wikipedia.org/wiki/Color—space; “Color Space”; Wikipedia, the free encyclopedia; pp. 1-4. |
http://en.wikipedia.org/wiki/Color—translation; “Color Management”; Wikipedia, the free encyclopedia; pp. 1-4. |
http://en.wikipedia.org/wiki/Demosaicing; “Demosaicing”; Wikipedia, the free encyclopedia; pp. 1-5. |
http://en.wikipedia.org/wiki/Half—tone; “Halftone”; Wikipedia, the free encyclopedia; pp. 1-5. |
http://en.wikipedia.org/wiki/L*a*b*; “Lab Color Space”; Wikipedia, the free encyclopedia; pp. 1-4. |
http://Slashdot.org/articles/07/09/06/1431217.html. |
http:englishrussia.com/?p=1377. |
Keith R. Slavin; Application as Filed entitled “Efficient Method for Reducing Noise and Blur in a Composite Still Image From a Rolling Shutter Camera”; U.S. Appl. No. 12/069,669, filed Feb. 11, 2008. |
Kuno et al. “New Interpolation Method Using Discriminated Color Correlation For Digital Still Cameras” IEEE Transac. On Consumer Electronics, vol. 45, No. 1, Feb. 1999, pp. 259-267. |
Parhami, Computer Arithmetic, Oxford University Press, Jun. 2000, pp. 413-418. |
Number | Date | Country | |
---|---|---|---|
20080231718 A1 | Sep 2008 | US |