The present invention relates to a method in which, in data communication, a compensation coefficient calculating portion calculates a compensation coefficient of a compensation portion which compensates transmission characteristics of a signal.
In coherent optical communication, large-capacity transmission at tens of Gbits/s or higher is realized by compensating for distortion of a transmission signal in digital signal processing. On the transmission side, transmission characteristics of a transmission circuit can be compensated for in advance by digital signal processing. Further, on the reception side, chromatic dispersion, polarization multiplexing/separation, polarization dispersion, frequency/phase fluctuation and the like caused in an optical fiber transmission path or a reception circuit can be compensated for by digital signal processing.
In the digital signal processing, adaptive equalization for continuously adaptively performing compensation for an environment of a transmission path which changes with time is one of the most important functions. Improvement of higher compensation accuracy of the function is demanded in order to realize a larger capacity.
The compensation portion which compensates for transmission characteristics of a signal is generally configured with a digital filter, and, by setting such a tap coefficient that can offset distortion of a transmission signal, for the digital filter, it is possible to perform compensation on the transmission signal. Therefore, accuracy of the compensation depends on appropriateness of the tap coefficient. Especially, for adaptive equalization on the reception side, various algorithms are proposed.
For example, PTL 1 proposes, as a method for equalizing transmission characteristics on the reception side in an orthogonal frequency division multiplexing (OFDM) system, a method in which a butterfly type filter is used to calculate a filter coefficient of the filter from known pilot frequency data using a minimal mean square error (MMSE) method. By calculating an inverse matrix of a result of multiplication with a complex conjugate transpose of a transmission signal by Formula (7) of PTL 1, a filter coefficient for horizontally polarized wave and a filter coefficient for vertically polarized wave can be determined. Further, NPL 1 introduces a general MSE algorithm.
A coefficient calculating portion 102 uses a minimal mean square error method as an algorithm for calculating the tap coefficient. An error e(n) between an output of the adaptive filter 101 and a known signal sequence (referred to as a reference signal) is expressed by the following equation:
e(n)=d(n)−Y(n)=d(n)−W(n)TX(n)
Here, d(n) indicates the reference signal; Y(n) indicates the output of the adaptive filter; W(n) indicates a tap coefficient of the adaptive filter; T indicates a transposed matrix; and X(n) indicates a received signal which has passed a transmission path.
In order to remove uncertainty of signs, what is obtained by averaging squared errors is set as an index MSE.
MSE=E[e(n)2]=E[(d(n)−W(n)TX(n))2]
A solution of the tap coefficient of the filter when the above value is minimized is generally known as a winner solution and is determined by the following equation. Here, −1 indicates an inverse matrix.
W(n)=(X(n)TX(n))−1X(n)Td(n)
The above equation shows that a tap coefficient can be calculated from the received signal X(n) and the reference signal d(n) for the received signal X(n). However, in order to determine such a tap coefficient that an error is minimized, it is necessary to calculate an inverse matrix. When a filter configuration is complicated, there may be a case where, at the time of determining the inverse matrix, a value does not converge but diverges. Especially, the closer to a nyquist condition a received waveform is (the smaller inter-symbol interference is), the more easily the coefficient diverges. Furthermore, in this case, there may be a case where an unnecessary high-frequency component is raised in the FIR filter. Therefore, there is a problem that the filter coefficient cannot be certainly determined, and equalization accuracy decreases.
The present invention has been made to solve the problem as described above, and an object is to obtain a compensation coefficient calculation method in which a compensation coefficient for compensating for transmission characteristics of a signal can be certainly calculated, and equalization accuracy can be improved.
A compensation coefficient calculation method according to the present invention in which a compensation coefficient calculating portion calculates a compensation coefficient of a compensation portion which compensates transmission characteristics of a signal, includes: a step of extracting a known signal from the signal; a pseudo-random number adding step of adding a pseudo-random number to the extracted known signal; and a coefficient calculating step of calculating the compensation coefficient by comparing a true value of the known signal with the known signal to which the pseudo-random number is added.
The present invention makes it possible to certainly calculate a compensation coefficient for compensating for transmission characteristics of a signal, and improve equalization accuracy.
A compensation coefficient calculation method according to the embodiments of the present invention will be described with reference to the drawings. The same components will be denoted by the same symbols, and the repeated description thereof may be omitted.
A polarized wave separating portion 1 separates an optical signal into a horizontally polarized wave and a vertical polarized wave. A photoelectric conversion portion 2 converts the set of optical signals to analog electrical signals. An AD (Analog to Digital) conversion portion 3 converts the set of analog electrical signals to a set of digital electrical signals by sampling the set of analog electrical signals at a predetermined frequency. A digital signal processing portion 4 restores (demodulates) transmit data by performing digital signal processing for received signals which are the digital electrical signals outputted from the AD conversion portion 3. The digital signal processing portion 4 has an adaptive equalization apparatus described below.
A pseudo-random number generating portion 8 generates pseudo-random numbers Z(n) according to Gaussian distribution. Specifically, uniformly distributed random numbers are generated and then Gaussian-distributed using a Box-Muller method. For example, if α and β are assumed to be uniformly distributed random numbers, random numbers Z1 and Z2 according to Gaussian distribution are obtained from the following equations.
Z1=√{square root over (−2 log α)} cos(2πβ)
Z2=√{square root over (−2 log α)} sin(2πβ) [Math. 1]
The uniformly distributed random numbers can be easily obtained by using random numbers corresponding to a predetermined number of bits from a pseudo-random bit sequence PRBS (for example, the 23rd or 31st row). Further, in the case of configuring the random numbers by software, a function of generating random data is included among tools of the software, and the function can be used.
Here, σ2 indicates variance of the Gaussian distribution. Here, when 0≤α and β≤1 are satisfied, p(Z1, Z2) is standard Gaussian distribution with a mean of 0 and a variance of 1.
A standardization portion 9 regards pseudo-random numbers as noise and standardizes magnitude of the pseudo-random numbers Z(n) so that a set SN is obtained. That is, the standardization portion 9 specifies the variance σ2 of Gaussian distribution so that a ratio between average power of the known signal of the received signal and average power of the pseudo-random numbers Z(n) becomes an S/N (a signal-to-noise ratio) given from outside to standardize the magnitude of the pseudo-random numbers Z(n) as shown by the following equation.
Here, Ave (strength of known signal2) indicates a mean square value of the strength (voltage) of the known signal. Further, the average power of the Gaussian-distributed pseudo-random numbers is indicated by a square of standard deviation σ.
In the case of the standard Gaussian distribution (the mean of 0 and the variance of σ2), standardized pseudo-random numbers NZ are expressed by the following equations in which each of Z1 and Z2 is multiplied by σ.
NZ1=σ√{square root over (−2 log α)} cos(2πβ)
NZ2=σ√{square root over (−2 log α)} sin(2πβ) [Math. 4]
At this time, power of each of the above pseudo-random numbers NZ is σ2. Here, σ for standardizing the pseudo-random numbers Z to be NZ is determined from the mean square value of the strength of the known signal and the S/N given from outside as shown by the following equation.
σ=[Ave(square of strength of known signal)/(S/N)](1/2)
A pseudo-random number adding portion 10 adds the standardized pseudo-random numbers NZ(n) to the known signal which has been extracted. Either NZ1 or NZ2 can be used. Though values which have been converted from uniform distribution to Gaussian distribution are used as pseudo-random numbers in the above description, the distribution is not limited to Gaussian distribution, but similar distribution or the uniform distribution may be used.
In a reference signal storing portion 11, a true value of an LP inserted into a data signal on the transmission side is stored as a reference signal in advance. The reference signal has a phase which the LP should originally take.
A coefficient calculating portion 12 calculates the compensation coefficient of the adaptive filter 5 by comparing the known signal to which the pseudo-random numbers are added with the reference signal. Specifically, the coefficient calculating portion 12 calculates such a tap coefficient of the adaptive filter 5 that a mean square of an error e(n) between an output of the adaptive filter 5 and the reference signal becomes the smallest, using a minimal mean square error method algorithm. Similarly to a conventional MSE algorithm, the tap coefficient can be determined by the following equation.
W(n)=((X(n)+NZ)T(X(n)+NZ))−1(X(n)+NZ)Td(n)
Here, W(n) indicates the tap coefficient of the adaptive filter 5; X(n) indicates a received signal; T indicates a transposed matrix; and d(n) indicates the reference signal.
As described above, in the present embodiment, by adding pseudo-random numbers to a known signal, a minimum error from a true value of the known signal becomes finite, and divergence in calculation can be prevented. Therefore, it is possible to certainly calculate a compensation coefficient for compensating for transmission characteristics of a signal and improve equalization accuracy.
The butterfly type filter is configured with four n-stage FIR filters. An output Yh of a horizontally polarized wave component of the adaptive filter 5 and an output Yv of a vertically polarized wave component are expressed by the following equations.
Here, HH, VH, HV and VV indicate tap coefficients of the four FIR filters, respectively; H_in indicates an input of a horizontally polarized wave to the adaptive filter 5; and V_in indicates an input of a vertically polarized wave.
Here, HH, VH, HV and VV are indicated by HH1 to HH, VH1 to VHn, HV1 to HVn, and VV1 to VVn, respectively; H_in is indicated by a sampling data string H_in1, H_in2, . . . , and V_in is indicated by a sampling data string V_in1, V_in2, . . . . Outputs Yh and Yv at the time when the sampling data strings are inputted to the butterfly type filter, respectively, are expressed by the following equations.
In the case of performing sampling twice per symbol to acquire sampling data, data is set for the FIR filters for each sampling, but, as for timing of input to the filters, it is efficient to perform input per symbol. Therefore, at the next timing, data is inputted every two samplings.
The known signal extracting portion 7 extracts an LP from each of the horizontally polarized wave input H_in and the vertically polarized wave input V_in. The pseudo-random number adding portion 10 adds standardized pseudo-random numbers NZ1(n) and NZ2(n) to the extracted LPs of the horizontally polarized wave input and the vertically polarized wave input, respectively. A reference signal LPh for an LP of a horizontally polarized wave and a reference signal LPv for an LP of a vertically polarized wave are stored in the reference signal storing portion 11 in advance.
The coefficient calculating portion 12 determines such filter coefficients of the butterfly type filter that errors between received signals of the LPs to which the pseudo-random numbers are added, and the reference signals LPh and LPv, respectively, become the smallest. The filter coefficients are calculated by substituting Yh=LPh and Yv=LPv into the above equations. Therefore, [X][H]=[LPh] is calculated as shown below.
Here, [X][V]=[LPv] is also similarly calculated.
Here, the standardized pseudo-random numbers NZ1 are added to odd-numbered data of the sample data string, and the standardized pseudo-random numbers NZ2 are added to even-numbered data of the sample data string. This is for the purpose of increasing randomness more and improving certainty of convergence and prevention of increase in a high-frequency range in the MSE algorithm. The above equations merely show an example of addition of the pseudo-random numbers NZ. If randomness is secured, a method is not limited to the above method, and it is not necessary to separately use NZ1 and NZ2. Further, variables may be arbitrary. Further, the pseudo-random numbers to be added may be either the same or different between a received signal of a horizontally polarized wave and a received signal of a vertically polarized wave.
In the MSE algorithm of the present embodiment, mean square errors (MSE) are expressed by the following equations.
e
h
=∥X·H−LP
h∥2, ev=∥X·V−LPv∥2 [Math. 8]
Furthermore, the tap coefficients at the time when the mean square errors are the smallest are determined by the following equations.
H=(XHX)−1XHLPh, V=(XHX)−1XHLPv
Here, pseudo-random numbers are added to sample data of a received signal X.
As described above, in the present embodiment, the adaptive filter 5 has a butterfly type filter, and compensation coefficients are tap coefficients of the butterfly type filter. Thus, in the case of applying the present invention to calculation of filter coefficients of an adaptive equalization filter for receiving double polarized waves also, it is possible to certainly calculate compensation coefficients for compensating for transmission characteristics and improve equalization accuracy similarly to the case of an adaptive equalization filter for receiving single polarized wave.
An output of the amplifier 14 is fed back and inputted to the known signal extracting portion 7. Other components and operations are similar to those of the first and second embodiments in which the present invention is applied to a reception circuit. Thus, in the case of applying the present invention to a transmission circuit also, it is possible to certainly calculate a compensation coefficient for compensating for transmission characteristics and improve equalization accuracy without divergence in an MSE algorithm.
A program for implementing the compensation coefficient calculation method according to the first to third embodiment may be recorded in a computer-readable recording medium so that the program recorded in the recording medium is read in and executed by a computer system or a programmable logic device to perform the compensation coefficient calculation. The “computer system” described here may contain hardware such as OS, peripheral equipment, etc. The “computer system” may contain a WWW system having a homepage providing environment (or displaying environment). The “computer-readable recording medium” may be a portable medium such as a flexible disc, a magneto-optic disc, ROM and CD-ROM, or a storage device such as a hard disc incorporated in a computer system. Furthermore, the “computer-readable recording medium” may contain an element for holding a program for a constant time like a volatile memory (RAM) in a computer system serving as a server or a client when a program is transmitted through a network such as the Internet or a communication line such as a telephone line. The program may be transmitted from a computer system having a storage device or the like in which the program is stored, to another computer system via a transmission medium or by transmission waves in a transmission medium. Here, the “transmission medium” for transmitting the program is a medium having a function of transmitting information like a network (communication network) such as the Internet or a communication circuit (communication line) such as a telephone line or the like. The program may be provided to perform a part of the foregoing function. Furthermore, the program may be provided to perform the foregoing function in combination with a program which has been already stored in the computer system, so-called a differential file (differentia program).
Number | Date | Country | Kind |
---|---|---|---|
2016-112201 | Jun 2016 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2017/016467 | 4/26/2017 | WO | 00 |