The present invention is described by reference to the drawings in which:
The present invention shall generally be described with reference to
As shown in the embodiment of
Various types of input mechanisms (e.g., a graphical user interface provided to the user) may be used to allow a user to select one or more user selected parameters according to the present invention for use in adjusting the reduction of flicker. For example, user selected parameters may be input using a windowing component, pull down menus, tuning mechanisms, control actuators, touch screens, on-screen slider control, text entry box, input value stored in a configuration file, etc. As described further herein, at least in one embodiment, adjustment for optimization of flicker reduction for a user in a particular viewing environment may be accomplished with the input of user selected parameters provided by a user using any interface allowing for input or selection of such parameters. The present invention is not limited to any particular interface. These user selected parameters may also be stored in the system memory 22 or the removable memory 26.
Visual output is provided on display device 12 (e.g., an LCD) operating under control of graphics processing subsystem 16 coupled to application processing system 14. Other components, such as one or more removable storage devices 26 (e.g., compact disk drive, flash drive, DVD drive, etc.) may form a part of the application processing system 14 coupled onto the system bus. The system bus coupling the various components of the system 10 may be implemented using any one of various bus protocols including, for example, peripheral component interconnect (PCI), accelerated graphics port (AGP), etc.
Generally, graphics processing subsystem 16 includes a graphics processing unit (GPU) 30 and graphics memory 32, which may be implemented, for example, using one or more integrated circuit devices such as programmable processors, application specific integrated circuits (ASICs), and memory devices. Graphics memory 32 may include any necessary buffering capabilities required to carry out one or more embodiments of the present invention (e.g., new frame buffer, output frame buffer, etc.). The graphics processing unit 30 may be configured to perform various tasks related to generating output pixel data from graphics data (e.g., a plurality of sequential display data frames) provided by the system bus (e.g., implementing various rendering algorithms), interacting with graphics memory 32 to store and update pixel data, and the like. Scan out logic may be provided for implementing a scan out of pixel data to the display device 12 (e.g., from an output frame buffer) for display by a plurality of pixels thereof.
One skilled in the art will recognize that the system 10 described herein is illustrative and that variations and modifications are possible. For example, a GPU may be implemented using any suitable technologies, e.g., one or more integrated circuit devices, one or more processors, integrated into a system chipset, as part of a personal computer system architecture, etc. The graphics processing subsystem 16 may include any amount of graphics memory 32 and may use system memory 22 and the graphics memory 32 in any combination. For example, any memory buffers required to carry out the functionality of one or more embodiments of the present invention may be implemented in any combination of graphics memory or system memory. Further, various implementations of the system software architecture are described herein. However, the present invention is not limited to any particular architecture, but is limited only as described in the pending claims and equivalents thereof.
Any type of LCD, including flat panel LCD, front projector LCD, or rear projector LCD, which include a plurality of pixels for displaying one or more images in one or more windows may benefit from the present invention due to the typically different luminance rise and fall rates of the pixels of an LCD. For example, the display device 12 of the system 10 may include or may form a part of any type of display screen being viewed by a user (e.g., a display screen controlled by one or more processing apparatus), a computer screen, a flat screen, a heads up display, backlit display screens, see-through displays, non-see-through displays, an instrument panel, or any other type of pixel element display device that provides information to a user where controlling flicker may be beneficial.
In one or more embodiments of the system 10, the system 10 may provide for the display of multiple windows 38 of images on the display device 12. For example, the windows may be displayed at the same time with different or the same type of images, the windows may be displayed sequentially (e.g., one window provided and then switched to another), or may be displayed in any other manner as would be appreciated by one skilled in the art. In one embodiment, for example, the algorithm used to reduce flicker according to the present invention only modifies the data in a display window that displays a waterfall sonar image, while a window that displays camera video data is unaffected. In other words, transition frames according to the present invention are only provided to reduce flicker with respect to the waterfall sonar image, leaving one or more other windows displaying one or more other images unaffected by the technique used to reduce flicker (e.g., the flicker compensation technique is not applied to the entire display used to display multiple windows).
The present invention uses transition frames generated for display by one or more pixels of the display device 12 to correct for flicker that would normally be present when displaying an image thereon due to the differing pixel element rise and fall rates (e.g., luminance jumps during complementary pixel transitions). The Gadeyne et al. patents (i.e., U.S. Pat. Nos. 6,359,663 and 6,909,472) provide a description of the cause of a luminance jump resulting from differing pixel element rise and fall rates, and as such, the cause of such luminance jumps shall not be repeated in detail herein.
In the exemplary graph of
As shown in both
In practice, the luminance flash is only discernible if large numbers of pixels perform complementary pixel transitions simultaneously. When large numbers of pixels perform these complementary transitions simultaneously, the actual luminance flash is the sum of individual pixel luminance flashes. Since the actual luminance rise and fall rates vary depending upon the initial and final state of the pixel transitions, the actual luminance variation depends upon the image content and can change slightly as the image content changes.
The graphs of
As shown in
The software algorithm 56 contains a separate old display frame memory buffer 60 (e.g., portion of graphics memory 32) containing a copy of a previously displayed data frame which has already been processed and for which display has been initiated via output frame buffer 64 (e.g., portion of graphics memory 32). At least in one embodiment, the software algorithm 56 utilizes the new frame memory buffer 58, old frame memory buffer 60, and one or more user parameters 62 to generate transition frames for use in producing the substantial flicker reduction according to the present invention (e.g., causing creation of multiple luminance variations from average luminance that include both positive and negative luminance jumps that effectively cancel each other out as perceived by a user and further described herein).
One or more embodiments of the generation of transition frames and display of images based thereon according to the present invention to provide for the perception of flicker reduction are further described herein, along with various architectures for implementing such flicker reduction.
For example, one embodiment of the algorithm 56 generally shown in
As shown in
The transition data frame for use in updating the display 12 between the first and second update times is generated (block 216 as shown in
Allowing the user to select one or more parameters for use in generating the at least one transition data frame, permits the user to adjust the display of images for optimum viewing by the user with effective flicker reduction (e.g., the user may adjust the reduction of flicker as the images are being displayed, or in other words, on the fly or in real time as the display is being viewed). For example, each user in different circumstances may have different visual requirements (e.g., different environment, different eye characteristics, different display device characteristics, different data sources, etc.). Allowing the user to adjust the user selected parameters as they are using the display device to provide effective display of images with flicker reduction is particularly beneficial over a hardware implementation of flicker correction that does not allow for such user desired adjustment. For example, as the present invention is data set sensitive, the operator may make adjustments as the image source data changes. The variations of settings for different source data is due to the varying luminance rise and fall times for differing complementary transitions more prevalent with different types of data sources (e.g., a waterfall sonar image data set versus a radar image data set).
One will recognize that one transition data frame, or more than one transition data frame, may be generated for display between the first and second update times. However, at least in one embodiment, generating a single transition data frame for display between the first and second times is sufficient to provide the perception of constant average luminance by a user and as such, substantial flicker reduction.
For example, in one embodiment as shown by the graph of
The user parameters are selected to adjust the faster of the display pixel rise or fall rate, and insert a transition frame to slow the faster of the two rates. The adjusted transition frame (e.g., adjusted for optimal viewing), substantially reduces the flicker. This embodiment is beneficial for programs that generate data frames at a rate no more than half the refresh rate of the display. It also is particularly beneficial with LCDs that have pixel rise and fall times that complete most of their transition in no more than about two frames.
Proper selection of the transition value 134 (e.g., via an input mechanism available to the user) results in a perceived constant average luminance over the period between the two display frames at T0 and T2. The perceived constant average luminance (e.g., perceived by a user) results from the transition value 134 (e.g., set by a user) being set such that the display of the transition data frame displayed at T1 creates multiple luminance variations (e.g., luminance jumps or variations 136 and 138) from average luminance 135 in both the positive and negative direction relative to average luminance 135 which cancel each other out over time as perceived by the user (e.g., the sum of the area between the actual luminance 136 and the average luminance 135 is close to zero, and may even be zero). For example, the sum of the positive luminance variation area 137 above the average luminance 135, and negative luminance variation area 138 below the average luminance 135, is at least close to zero (or zero). As used herein, the terms about zero or close to zero made with reference to the sum of positive and negative luminance variations refers to the sum being zero in one embodiment, and sufficiently close to zero in other embodiments such that at least a perceivable level of flicker reduction is accomplished using the present invention relative to a non-flicker reduced display.
As illustrated in
As such, although the display device 12 exhibits both dark and bright flashes (e.g., luminance jumps relative to average luminance), the fact that multiple luminance variations (e.g., luminance jumps or variations 136 and 138) from average luminance 135 are created in both the positive and negative direction relative to average luminance 135 allows the slow response time of the human eye to integrate the flashes creating the perception constant average luminance to a user and substantial flicker reduction. As previously indicated herein, each user in different circumstances may have different visual requirements (e.g., different environment, different eye characteristics, different display device characteristics, different data sources, etc.), and as such, different perception characteristics as well. Allowing the user to adjust, for example, the transition value 134, allows the user to optimize the display according to that particular user's perception (e.g., sufficient to create substantial flicker reduction for that particular user).
The algorithm 200 may be implemented in the software program architecture that is shown generally in
For example, in implementation of the algorithm 200 as implemented in the architecture shown in
The software algorithm contains a separate old display frame memory buffer 60 (e.g., a memory buffer for recording old display data frame 220), also resident within the GPU, containing a copy of the previous display frame which has already been processed and displayed via the GPU output frame buffer 64. The software algorithm utilizes the new frame memory buffer 58 (e.g., a memory buffer for recording new frame 212), old frame memory buffer 60 (e.g., a memory buffer for recording old display data frame 220), and user parameters 62 (e.g., user parameters 214) to produce two sequential output frame buffers; the first including the transition data frame to be initiated at time T1 generated using the user parameters 62 (e.g., user parameters 214) and the second including the new display data frame to be initiated at time T2. The GPU output frame buffer 64 is converted to standard display signals at the display refresh rate, such as RGB format or Digital Video Interface (DVI) format, which then connect to the display device 12 (e.g., an LCD) providing display of the data.
Table I shows one embodiment of a portion of such a flicker reduction software algorithm 200 used to reduce flicker. The flicker reduction software algorithm is a pseudo-coded algorithm similar to the C programming language using the OpenGL library based on the pixel shader capability available in OpenGL 2.0. Specifically, the flicker reduction software function shown in Table I uses a fragment shader program that is downloaded to the GPU through the GPU device driver program. The fragment shader is a function within the GPU that runs identically across each display pixel, with potentially many pixels processed concurrently. The fragment shader, shown separately as function Blend, determines rise and fall transitions for each color (Red, Green and Blue), which is typically easier than determining composite luminance of the three colors and handles color shades.
The flicker reduction software algorithm may be implemented as a background process or separate process thread designed to synchronize to the display refresh rate, capture the application program memory buffer, provide user access to controls to select the user parameters, and call the flicker reduction function Blend for each vertical refresh cycle. In addition, double buffering of the output frame buffer may be used to support synchronized switching of the frame buffer output with the vertical refresh timing to eliminate asynchronous display artifacts such as display tearing.
There are numerous alternate embodiments of the software algorithm that can be used to deal with variations of the key characteristics of the system. For example, an alternate embodiment of the software algorithm can be used if the input frame rate allows more than two transition frames to be inserted between display data frames generated by the application processing system. Use of this software algorithm may reduce the amplitude of the luminance flashes by spreading them over a longer period of time by using additional transition frames and potentially slowing both the rise and fall times.
This approach may be useful particularly for displays with a very high frame rate relative to the pixel rise and fall rates (i.e., when the pixel transition times exceed two frames). For example, as shown in
The perception of constant average luminance over the period between the two display frames at T0 and T3 is provided by the selection of optimal transition values 144 and 145 such that the sum of the area between the actual luminance 147 and the average luminance 146 is close to zero (or zero). For example, as shown in
The algorithm 56 implementing this alternate embodiment is represented by the flow diagram of software algorithm 230, shown in
Two transition data frames for use in updating the display 12 at first and second transition frame times between the first and second update times are generated (block 246 and block 256), for example, as weighted sums of the old display data frame 250 and new display data frame 242 using one or more user selected parameters 244 and 254 as the weighting factor for the first and second transition frames, respectively. As described with reference to
The algorithm 230 outputs the transition frames at T3N+1, 252 and T3N+2, 258 first, and then, secondly, outputs the new frame 242 at T3N+3, 262 as output frames for display (e.g., provided sequentially to output frame buffer 64 as shown in
By comparison, it is readily apparent that algorithms 200 and 230 utilizing one transition frame and two transition frames, respectively, could be extended as alternate embodiments of the present invention to utilize additional transition frames by replicating the blending steps 216, or 246 and 256, and using sequential output of such transition frames.
While the embodiment exemplified in
The flow diagram of
Table II shows at least a portion of one embodiment of this alternate software algorithm which does not insert one or more transition frames before outputting the actual new image frame such as described in the exemplary algorithm of Table I. Rather, the algorithm shown in Table II recursively calculates and outputs a new transition frame that is some percentage of a new image frame (e.g., copied to the new frame memory) blended with a previously calculated output transition frame (e.g., copied to the old frame memory), such as with use of one or more user selected parameters.
An alternate system architecture embodiment of the present invention may include a thin client architecture as described with reference to
Another alternate embodiment of the system architecture uses a composite manager architecture. A composite manager is a program that redirects window rendering to off-screen memory within the GPU, and then provides algorithms for further processing the window or multiple windows before sending output to the output frame buffer. This alternate embodiment is useful because the application program renders its image to GPU memory using the GPU hardware instead of rendering to CPU memory with a software implementation of a GPU so it may result in higher system performance because of lower CPU load.
In summary, one or more embodiments of the present invention may provide one or more advantages. For example, one or more embodiments may allow user adjustment of parameters that compensate for a variety of variables such as data set or image variation, temperature, human eye sensitivity, display viewing angle and a variety of different LCD manufacturers. In one or more embodiments, the requirement for only one, or a very small number, of user parameters provides the advantage of simple implementation and easy operator calibration.
Further, for example, the software algorithm only modifies data in a display window that exhibits a need for flicker reduction and leaves other windows unaffected. Yet further, for example, the software algorithm runs on many types of computers with several standard GPU devices and GPU libraries and it supports numerous system architectures including thick client and thin client approaches. As such, the present invention may be implemented in one of various manners and is not to be taken as limited to any particular embodiment (e.g., architecture) described herein.
All patents and references cited herein are incorporated in their entirety as if each were incorporated separately. This invention has been described with reference to illustrative embodiments and is not meant to be construed in a limiting sense. As described previously, one skilled in the art will recognize that various modifications of the illustrative embodiments, as well as additional embodiments to the invention and combinations of various elements and/or steps herein, will be apparent to persons skilled in the art upon reference to this description. It is therefore contemplated that the patent and claims will cover any such modifications or embodiments that may fall within the scope of the present invention, as defined by the accompanying claims.
This application claims the benefit of U.S. Provisional Application Serial No. 60/789,728 filed 6 Apr. 2006, entitled “Compensation for Display Device Flicker,” which is incorporated herein by reference in its entirety.
Number | Date | Country | |
---|---|---|---|
60789728 | Apr 2006 | US |