The present invention relates generally to optical amplifiers used in fiber optics for telecommunications. More particularly, the invention relates to Raman Scattering and dynamic self-adjusting gain tilt optimization for equalizing amplified optical output.
In optical fiber communication systems, communication channels can be provided by transmitting signals impressed on laser beams having different wavelengths (WDM). Although optical fiber communication systems utilizing wavelength-distinct modulated channels may carry information over long distances, signals transmitted through optical fibers are attenuated mainly by the cumulative and combined effects of absorption and Rayleigh Scattering. While the signal attenuation per kilometer in optical fibers used for communications is typically low, signals transmitted over increasing transmission distances require periodic amplification.
Stimulated Raman Scattering induces a power tilt over the signals within the C-band and L-band range of transmission frequencies. The power tilt is linear in first order on a logarithmic scale and depends on the overall signal and noise power injected into the fiber and on the fiber Raman coefficient. The tilt does not depend on the distribution of the channels within the band. For instance, the tilt per span amounts to about 0.7 dB per 100 mW signal power in single mode optical fiber (SMF) and about 1 dB per 100 mW signal power in LEAF. In this example, tilt can be defined as the difference in span loss between channel #80 (around 1603 nm) and channel #1 (around 1570 nm). The tilt accumulates linearly (in dB) with the number of spans of optical fiber.
In the prior art, the Raman power tilt is compensated for by introducing a gain tilt in an ILA.
When channels are accidentally dropped, for example, due to a fiber cut or equipment failure, ILAs 200 maintain the overall gain constant by adjusting the amplifiers to take into account the lower ILA input power. However, as a lower channel count on the fiber leads to a reduced power tilt, the ILAs typically overcompensate for the power tilt and introduce a negative power tilt as shown in
Certain prior art systems have attempted to address this problem with varying success.
U.S. Pat. No. 6,088,152 to Berger et al, entitled “Optical Amplifier Arranged To Offset Raman Gain”, discloses an invention wherein an optical amplifier adjusts the gain that the amplifier applies to optical signals so the gain favors the signal components at the low end of the bandwidth. A program uses a value representing power into the fiber to index a table of pre-tilt values. The program then determines the difference between a pre-tilt value read out of the table and a pre-tilt value obtained from an optical monitor and adjusts a variable attenuator unit as a function of the difference to obtain the desired pre-tilt of the output signal. The Berger system is comparatively slow. It also requires a static look up table that must be reprogrammed upon certain fiber or amplifier changes.
U.S. Pat. No. 6,356,384 to Islam, entitled “Broadband Amplifier And Communication System”, discloses a tilt control device to control gain tilt coupled to splitters, Raman amplifiers, EDFAs and combiners. Islam does not, disclose or suggest a method or controller system for fast automatic tilt correction of gain control.
United States Patent Application Publication No. 2002/0044317 to Gentner, et al., entitled “Control Method And Optical Data Transmission Path For Compensating Changes In Srs-Induced Power Exchange”, discloses a device for determining the tilt of all optical spectrums, and then using a quick control and slow control for compensating the tilt. Gentner requires laser equipment for quick response to power fluctuations which raises system cost and complexity.
Therefore, a need exists for a method and a device which permits compensation of the titling of the spectrum fast enough to prevent system shutdown upon loss of channels, and cheaply enough to reduce the cost of deployment in an optical transport system.
The present invention is an improvement over the prior art by providing a control scheme that can perform fast automatic tilt correction.
The present invention recognizes that the gain tilt is proportional to the fiber input power. As a result, the measured fiber output power (or ILA input power) if scaled by the span loss, can be used to adjust the ILA gain tilt. ILA gain tilt adjustment is then used to offset the tilt induced by Raman Scattering in a rapid automatic fashion to avoid system shutdown due to accidental loss of channels. A controller continuously reads the output power of the ILA and compares it to an earlier value. A change in output power is calculated by subtracting the current ILA output power from the past ILA output power. After the change in output power is calculated, a change in the ILA gain tilt is calculated by multiplying the change in output power by a negative constant. A negative constant produces a positive change in tilt when channels are dropped. The controller transmits a control signal to the ILA to make the necessary corrections. The tilt control hardware and algorithm are incorporated into the ILA hardware. Because of the simplicity of the algorithm and the proximity of the hardware to the ILA, adjustments can be made to the gain tilt within approximately 100 μs. System failures caused by negative tilt accumulation are avoided.
The invention will be better understood from the following more detailed description taken in conjunction with the accompanying drawings.
A better understanding of the invention can be obtained from the following detailed description of one exemplary embodiment as considered in conjunction with the following drawings in which:
If the change in power is less than the threshold value, then the controller takes no action and allows the power to remain constant and loops back to step 505. If the change in power is determined to be greater than the threshold value at 515, then the change in ILA gain tilt is calculated by multiplying the change in power by a negative constant, step 520. The constant is set by controller 620 to reflect fiber type, fiber characteristics, or a default average of about 8 dB/W. Controller 620 then transmits a signal to adjust the tilt control by the calculated change in tilt, step 525. After adjusting the tilt control, controller 620 loops back to step 500.
The invention provides for three different types of tilt control. First, tilt control may be provided by a single stage, double stage or multi-stage amplifier combined with a VOA. To change the tilt, the VOA is activated to attenuate all wavelengths equally. To compensate for the attenuation, the gain of one or more stages of the amplifier is increased. The tilt is changed due to the larger gain of the amplifier stages even though the overall gain of the amplifier-VOA combination remains constant.
In a second embodiment, a dynamic gain equalizer (DGE) attenuates the loss from the amplifiers on a channel-by-channel or band-by-band basis. The dynamic gain equalizer can be adjusted without adjusting the amplifiers.
In a third embodiment, an optical filter can be designed to introduce a broadband tilt. This tilt can be tuned by changing the voltage or similar adjustment of the optical filter.
Because of the simplicity of the algorithm and because the algorithm runs on the hardware within the ILA to be adjusted, adjustments can be made to the gain tilt within approximately 100 μs and system failures from upstream channel failure caused by negative tilt accumulation are avoided. Manual tilt changes, tilt changes via the management channel, triggered by a tuning algorithm, or any other methods for making tilt changes are still possible.
Although the invention has been described with reference to one or more preferred embodiments, this description is not to be construed in a limiting sense. There is modification of the disclosed embodiments, as well as alternative embodiments of this invention, which will be apparent to persons of ordinary skill in the art, and the invention shall be viewed as limited only by reference to the following claims.
This application is a division of U.S. application Ser. No. 10/427,898, filed Apr. 30, 2003 and entitled “Compensation for Spectral Power Tilt from Scattering,” which claims benefit under 35 U.S.C. § 119(e) of U.S. Provisional Application Ser. No. 60/377,084, filed Apr. 30, 2002 and entitled “Compensation for Spectral Power Tilt from Stimulated Raman Scattering,” the contents of which are incorporated by reference herein in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
4229831 | Lacher | Oct 1980 | A |
4535459 | Hogge, Jr. | Aug 1985 | A |
4636859 | Vernhet et al. | Jan 1987 | A |
4710022 | Soeda et al. | Dec 1987 | A |
5224183 | Dugan | Jun 1993 | A |
5225922 | Chraplyvy et al. | Jul 1993 | A |
5267071 | Little et al. | Nov 1993 | A |
5299048 | Suyama | Mar 1994 | A |
5321541 | Cohen | Jun 1994 | A |
5455703 | Duncan et al. | Oct 1995 | A |
5559625 | Smith et al. | Sep 1996 | A |
5613210 | Van Driel et al. | Mar 1997 | A |
5726784 | Alexander et al. | Mar 1998 | A |
5737118 | Sugaya et al. | Apr 1998 | A |
5778116 | Tomich | Jul 1998 | A |
5790285 | Mock | Aug 1998 | A |
5812290 | Maeno et al. | Sep 1998 | A |
5877881 | Miyauchi et al. | Mar 1999 | A |
5903613 | Ishida | May 1999 | A |
5914794 | Fee | Jun 1999 | A |
5914799 | Tan | Jun 1999 | A |
5936753 | Ishikaawa | Aug 1999 | A |
5940209 | Nguyen | Aug 1999 | A |
5963350 | Hill | Oct 1999 | A |
5963361 | Taylor et al. | Oct 1999 | A |
5995694 | Akasaka et al. | Nov 1999 | A |
6005702 | Suzuki et al. | Dec 1999 | A |
6021245 | Berger et al. | Feb 2000 | A |
6038061 | Sugaya | Mar 2000 | A |
6038062 | Kosaka | Mar 2000 | A |
6055092 | Sugaya et al. | Apr 2000 | A |
6057959 | Taylor et al. | May 2000 | A |
6061171 | Taylor et al. | May 2000 | A |
6075634 | Casper et al. | Jun 2000 | A |
6078414 | Iwano | Jun 2000 | A |
6081360 | Ishikawa et al. | Jun 2000 | A |
6084694 | Milton et al. | Jul 2000 | A |
6088152 | Berger et al. | Jul 2000 | A |
6108074 | Bloom | Aug 2000 | A |
6122095 | Fatehi | Sep 2000 | A |
6151334 | Kim et al. | Nov 2000 | A |
6157477 | Robinson | Dec 2000 | A |
6160614 | Unno | Dec 2000 | A |
6163392 | Condict et al. | Dec 2000 | A |
6163636 | Stentz et al. | Dec 2000 | A |
6173094 | Bowerman et al. | Jan 2001 | B1 |
6177985 | Bloom | Jan 2001 | B1 |
6198559 | Gehlot | Mar 2001 | B1 |
6212001 | Bode et al. | Apr 2001 | B1 |
6229599 | Galtarossa | May 2001 | B1 |
6236481 | Laor | May 2001 | B1 |
6236499 | Berg et al. | May 2001 | B1 |
6246510 | BuAbbud et al. | Jun 2001 | B1 |
6259553 | Kinoshita | Jul 2001 | B1 |
6259554 | Shigematsu et al. | Jul 2001 | B1 |
6259693 | Ganmukhi et al. | Jul 2001 | B1 |
6259845 | Sardesai | Jul 2001 | B1 |
6272185 | Brown | Aug 2001 | B1 |
6275315 | Park et al. | Aug 2001 | B1 |
6288811 | Jiang et al. | Sep 2001 | B1 |
6288813 | Kirkpatrick et al. | Sep 2001 | B1 |
6307656 | Terahara | Oct 2001 | B2 |
6317231 | Al-Salameh et al. | Nov 2001 | B1 |
6317255 | Fatehi et al. | Nov 2001 | B1 |
6323950 | Kim et al. | Nov 2001 | B1 |
6327060 | Otani et al. | Dec 2001 | B1 |
6356384 | Islam | Mar 2002 | B1 |
6359726 | Onaka et al. | Mar 2002 | B1 |
6359729 | Amoruso | Mar 2002 | B1 |
6369938 | Sugaya et al. | Apr 2002 | B1 |
6377394 | Drake et al. | Apr 2002 | B1 |
6388801 | Sugaya et al. | May 2002 | B1 |
6396853 | Humphrey et al. | May 2002 | B1 |
6400499 | Sugaya et al. | Jun 2002 | B2 |
6411417 | Roberts et al. | Jun 2002 | B1 |
6421169 | Bonnedal et al. | Jul 2002 | B1 |
6456427 | Chen et al. | Sep 2002 | B1 |
6480326 | Papernyl et al. | Nov 2002 | B2 |
6483631 | Cheng et al. | Nov 2002 | B1 |
6515779 | Fee | Feb 2003 | B2 |
6519082 | Ghera et al. | Feb 2003 | B2 |
6522460 | Bonnedal et al. | Feb 2003 | B2 |
6574037 | Islam et al. | Jun 2003 | B2 |
6603596 | Inagaki et al. | Aug 2003 | B2 |
6687045 | Lelic | Feb 2004 | B2 |
6728026 | Lee et al. | Apr 2004 | B2 |
6744958 | Inagaki et al. | Jun 2004 | B2 |
6744988 | Leclerc et al. | Jun 2004 | B2 |
6807232 | Nicholson et al. | Oct 2004 | B2 |
6826201 | Hind | Nov 2004 | B2 |
6943937 | Lelic et al. | Sep 2005 | B2 |
6944163 | Bottorff et al. | Sep 2005 | B2 |
6950448 | Tornetta et al. | Sep 2005 | B2 |
7016105 | Balland et al. | Mar 2006 | B2 |
7046695 | Silvers | May 2006 | B2 |
7061668 | Maurer et al. | Jun 2006 | B2 |
7139277 | Ofek et al. | Nov 2006 | B2 |
7170906 | Ofek et al. | Jan 2007 | B2 |
20020012152 | Agazzi et al. | Jan 2002 | A1 |
20020044317 | Gentner et al. | Apr 2002 | A1 |
20020044324 | Hoshida et al. | Apr 2002 | A1 |
20020044343 | Manzur | Apr 2002 | A1 |
20020181045 | Uda et al. | Dec 2002 | A1 |
20030035203 | Shlifer et al. | Feb 2003 | A1 |
20030048525 | Irie | Mar 2003 | A1 |
Number | Date | Country |
---|---|---|
01115230 | May 1989 | JP |
02238736 | Sep 1990 | JP |
2002368692 | Dec 2002 | JP |
Number | Date | Country | |
---|---|---|---|
20070008612 A1 | Jan 2007 | US |
Number | Date | Country | |
---|---|---|---|
60377084 | Apr 2002 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10427898 | Apr 2003 | US |
Child | 11515196 | US |