The present invention concerns the field of elevators, more particularly compensation weights for elevator systems, as well as an elevator system with such compensation weights.
An elevator system, generally, encompasses a car, a counterweight for said car, and also at least a carrying cable. This carrying cable is led from the top of the car over a drive and a turn-around pulley. The cable is also affixed to the top of counterweights. The elevator system moreover possesses compensation weights to balance the weight of the above carrying cable and which compensation weights are fastened to the underside of the car and hang down therefrom in loops. Under certain circumstances, the compensation weights are led to a guide roll in the shaft bottom and their other ends are secured on the underside of said counterweights. In these ways, the pulling force exerted by the said drive is compensated for in any position of the car. The only variable remaining is the weight of the load to be transported, which must be overcome by the said drive.
In the case of elevator speeds of more than 3.5 m/s, the compensation weight, for the great part, is of steel cable. Upon lifting at lesser speeds, a compensation weight can be in the form of a round or flat weighted cable, i.e., a plastic cable, which encapsulates one or more carrying organs and, if required, one or more additional weighted elements.
The compensation weights predominately used at the present time are round weighted cables, which is to say, which possess a chain-like lift organ of steel in a sheath of plastic.
EP-B-0 100 583 proposes a compensation weight in cable form, which exhibits at least one lift organ in the form of a chain or wire rope. Again, the said organ will be enclosed within a sheath, the volume of which, in at least one embodiment, shows a mix of metal particles and plastic material.
In another embodiment, in the form of a flat shaped cable, the lifting organs are installed within hollow spaces, which includes, besides the stated lifting organs, also a mixture of plastic material and metal particles. Hollow spaces, which only contain plastic material and metal particulate are not described.
The lifting cable described in EP-B 0 100 583 shows, in comparison to conventional weighted cables, a higher weight per unit of length, or, for the given weight per unit of length, lesser outer dimensioning.
However, the manufacture of that kind of weighted cable is not without problems. In order to introduce the metal particulate into the plastic, which is to encapsulate them, recourse must be made to special, complex and expensive additional mechanisms and/or additional fabrication means, which, normally, are not employed in the cable industry.
Thus, in view of the above, the purpose of the invention is to create a compensation weight, which can be fabricated simply and with the conventional processing equipment of the cable industry.
The invention provides a compensation weight for an elevator system, in the form of extended cable. The compensation weight comprises at least one carrying organ, at least one weighted element, wherein the weighted element contains a mixture of plastic material and at least one of a pulverized metal salt and a metal chalcogenide with a density of about or greater than 2.3 g/cm3, and a lengthily extended, flexible sheath.
According to another aspect, the invention provides a compensation weight for an elevator system, in the form of extended flat cable. It comprises one or more weighted elements, one or more lengthily extended carrying organ, a lengthily extended, flexible sheath, and a plurality of hollow spaces encased by said sheath for the reception of the one or more weighted elements and the one or more lengthily extended carrying organ. The at least one carrying organ and at least one weighted element are designed to be separately and respectively in different hollow spaces.
According to still further aspects, the invention is also directed the elevator systems with corresponding compensating weights.
Other features are inherent in the disclosed system or will become apparent to those skilled in the art from the following detailed description of embodiments and its accompanying drawings.
In the accompanying drawings:
The carrying organ is that particular part of the compensation weight, which carries the latter between the car and the counterweight. The weighted organ thereof has no carrying function, but serves principally for adding mass to the compensation weight.
The preferred embodiments relating to the first aspect of the invention provide a compensation weight, which possesses a carrying organ. The carrying organ is normally a chain, or preferentially, a wire rope with a flexible sheath, that sheath being normally of plastic, and at least one weighted element. The weighted element contains a mixture of plastic material and one or more pulverized salts of metals and/or metal chalcogenides (particularly oxides and sulfides) which should exhibit a mass density of about or greater than 2.3 g/cm3. The weighted element can directly envelope the carrying organ, or be employed entirely separately.
The metal salt and/or metal chalcogenide, which is used for the weighted element of the preferred embodiments of the first aspect exhibits specific densities of about or greater than 2.3 g/cm3 with preferred specific densities being about or greater than 3.0 g/cm3, 4.0 g/cm3 and 4.2 g/cm3. These immediately foregoing materials may, before the eventual extrusion of a composite mass, be mixed simply in a fluid mixer or double screw kneader with the plastic (optionally together with mixing in plastic additives). Thus, for example, in the case of the use of a soft-PVC as the plastic for the weighted element, the mixing operation would be carried out in one step with the treatment of PVC with a softener, a dry filler—such as chalk—a stabilizer and including the above defined metal salt and/or metal chalcogenide and mixtures thereof. This method is hardly possible in the conventional state of the technology, with metal particulate, since the mixing apparatus would be damaged thereby. Metal particulate, as well as metal powders, universally exhibit, in comparison to metal salts and metal chalcogenides, definite disadvantages, among these being abrasion, higher purchase costs, and a more expensive work-up in process. The metal particulate of the prior state of the technology must be dosed to the plastic in a separate step, which increases the complexity of the process. Further, the relatively large metal particles, of the said state of the technology, lead to a grabbing or pinching of the extruder screw during the extrusion about the carrying organ.
The preferred embodiments relating to the second aspect of the invention provide a compensation weight in which at least one carrying organ (preferentially, all), and at least one weighted element (preferentially all) are placed separately in different hollow spaces of the compensation weight in the form of a flat cable, which is resistant to transverse twisting. This or those weight element(s) may be the same as those mentioned above or different ones.
The separated state of the carrying organs and the weighted element enables a more flexible weight adjustment for the compensation weight. Thus, by standard dimensioning and numbering of existing carrying organs, such as a steel rope, a weight adjustment can be advantageously varied by the number and size of the weighted elements.
In consideration of the apparatuses which are employed in the cable industry, the processing is simpler, to manufacture the weighted elements separate from the carrying organs by means of extrusion, than it is to extrude each single weighted element required for the current application, and subsequently, then extrude a sheath about this intermediate product, as is the case in the state of the technology. Standardized, half-fabricated units of weighted elements can be manufactured and stored in a rational manner. The manufacture of different end-products of different weight classes is thus possible on a short time basis. This can be done in small lot sizes which is also economically advantageous.
Otherwise, by means of tandem or co-extrusion, the manufacture of the weighted elements can be combined with sheath extrusion. Several weighted elements can then be fabricated as a single block (sandwich fabrication). This is advantageous, when especially large quantities of a special compensation weight must be manufactured.
A separate inventory of carrying organs and weighted elements is also of value in the hanging of the compensation weights. For the installation of the carrying organs at the car and also on the compensation weight, the encasing plastic has to be removed only from the carrying organs (mostly two thereof, which, respectively, are placed on each side of the flat cable). Those parts, which hold only the weight organs simply can be cut off. Further, the use of conventional cable hanging techniques on the car and the counterweight remain possible, and the manipulation of the flat cable, which is similar to flat electrical cable, is a well known procedure for the installation crews.
Since each of the two aspects of the invention is independently advantageous, there are preferred embodiments in which only the first aspect or only the second aspect is realized. However, from the point of view of economics, most preferred are embodiments which realize both aspects, since, for example, only two expensive carrying organs are needed and the remainder of required weight can be made available by a more economical plastics/metal salt and/or a chalcogenide mixture.
In the preferred embodiments, the carrying organs can include wire ropes or chains, wherein, the preference is given to wire rope. The thickness of the wire rope or the chains is to meet the individual requirements of the compensation weight. Where steel wire rope is concerned, the thickness can range from about 3 mm to about 10 mm. The material of the carrying organ is preferentially selected from steel, iron, polyamides, aramides, or carbon fiber. Of particular advantage is to make the carrying organ a steel rope, since this is heavy and at the same time, in regard to the hanging operation, is easily separated from the encompassing plastic sheath (by cutting and pulling).
In a preferred embodiment in the form of a flat cable, preferably, two carrying organs lie respectively neighboring the cross-section ends, which are curved, that is, the said two carrying organs are respectively proximal to the two extreme ends of the of the flat cable cross-section. The weighted element(s) lie in this configuration preferably in a plane between the carrying organs. In case of need, however, there can be more than two carrying organs, e.g., still another carrier present in the middle of the cable.
The flexible sheath of the compensation weight of the present invention comprises any plastic sheath as is common in the cable industry, which, preferably, can be heavily laden with filling materials. Non-limiting examples thereof are, for instance, soft PVC, thermoplastic elastomers, polyolefin rubber, including ethylene-octane-copolymers and polyisobutylene, butyl rubber, ethylene-propylene-diene terpolymers, chloro-sulfonated polyethylene, vulcanized chloroprene, fluid polymers in combination with thermoplastics, polyamides, polyurethanes, silicon rubber and mixtures thereof. The choice directs itself to the requirements of the current application. Soft PVC is preferred because of its price and its good workability with a high content of filler (such as metal salts or metal chalcogenides—see below). One can still desire, to choose a non-chlorinated plastic. All of these plastics can be provided with customary additives.
In some of the preferred embodiments, the sheath can be caused to contain, for additional weight increase, likewise one or more metal salts and or metal chalcogenides with a mass density of about or greater than 2.3 g/cm3. These are not applied in too great quantities, however, so as not to undermine the mechanical characteristics of the sheath. An advantageous range for metal salts and/or metal chalcogenides would be from about 20 wt % to 40 wt %, preferably from about 20 wt % to about 30 wt %, relative to the total weight of the sheath. In this way, therefore, a sheath compounding could comprise:
The cross-sectional dimensioning of the weighted elements, as is the case with the carrying organ, is adapted to the individual requirements of the compensation weight. For instance, circular weighted elements utilizing barium sulfate as the material salt, with a mass density of about or greater than 2.3 g/cm3 with a diameter ranging from about 5 mm to about 15 mm.
The pulverized metal salt and/or metal chalcogenide of the weighted element is preferably chosen from:
In addition to the above, slags from blast furnaces may be chosen. Because of its low toxicity and good workability, barium sulfate is particularly advantageous. The powder form of the metal salts and/or metal chalcogenides (average particle diameter preferably from about 5 μm to about 50 μm, particularly about 10 μm) assures that these can be mixed well and uniformly into a plastic medium and that the mixture of plastic and powder also extrudes well. The content of powder material in the mixture of plastic material, metal salt and/or metal chalcogenide, for the provision of an advantageous weight, is high, preferentially ranging from about 50 wt % to about 90 wt %, more preferably 70 wt % to about 90 wt % and especially ranging from about 80 wt % to about 90 wt %, referring to the entire weight of the weighted element.
The plastic material of the weighted element(s) can, similar to the plastic in the sheath, be any conventional one in the cable industry, which has the ability to be very highly laden with filler. In this matter we refer to all the plastics named for the sheath and additional thermoplastics with medium or low Mooney viscosities. These plastics may contain all usual additives.
The mixture of plastic/metal salt and/or metal chalcogenide, following an extrusion forming the weighted element, because of the high filler load, is frequently friable and can tend toward allowing fissure formation, especially where frequent, dynamic bending demands are exacted. This, however, presents no problem, since the weighted element is not involved in the tension of carrying the compensation weight and said fissuring takes place in the enclosed interior of the compensation weight.
A typical weighted element can comprise:
The weighted elements can be of any shape, such as cornered, oval, or round. The preferred shape is round.
Further, in some embodiments, the weighted elements exhibit in their middle zone, an auxiliary carrier of wire or a thin, high tensile strength, plastic thread, for instance, of aramide. This auxiliary carrier serves principally to enable an easier extrusion on the available equipment found in the cable industry.
In an additional embodiment, at least one weighted element possesses in its center an electrical line, which can serve for the monitoring of the compensation weight. Beyond this, in a compensation weight, an entire bundle of wires may be enclosed, which can serve for the input and control of various components.
In a special embodiment, there are used in a weighted element, metal cuttings, preferably steel cuttings, with a length ranging from about 0.5 cm to about 6 cm. These cuttings are made stable in shape either by being encased by extrusion or by wrapping in with films or bands. The metal raw material is available as so-called semi-finished rod or wire form. The individual weighted elements are manufactured in a continuous work-process, in which the semi-finished items are cut by high frequency or sawed and encased in plastic by extrusion or wrapping. The so produced weighted elements can be wrapped on rollers and later reworked by renewed extrusion to form the flat cable type of compensation weight. When this occurs one or more of the weighted elements run parallel and together with the carrying organ(s) in the extrusion line for the final sheath process.
Returning now to
The diameter of the outer hollow spaces 26a is smaller than the diameter of the inner hollow spaces 26b. This leads to a cross sectional shape of the flat cable of a kind of rectangle with extremities which diminish in width outwardly at the two narrowing ends. A compensation weight 10 of this kind can exhibit e.g. a weight of 1.5 kg/m to 6.0 kg/m, especially when its outer sheath 16 contains likewise metal salt and/or metal chalcogenide 19 (as shown in FIG. 4).
Thus, a general purpose of the disclosed embodiments is to provide an improved compensation weight, which can be fabricated simply and with the conventional processing equipment of the cable industry.
All publications and existing systems mentioned in this specification are herein incorporated by reference.
Although certain systems, methods and products constructed in accordance with the teachings of the invention have been described herein, the scope of coverage of this patent is not limited thereto. On the contrary, this patent covers all embodiments of the teachings of the invention fairly falling within the scope of the appended claims either literally or under the doctrine of equivalents.
Number | Date | Country | Kind |
---|---|---|---|
00122907 | Oct 2000 | EP | regional |
This application claims the benefit of Provisional Application Ser. No. 60/245,498, filed on Nov. 3, 2000.
Number | Name | Date | Kind |
---|---|---|---|
4445593 | Coleman et al. | May 1984 | A |
4664229 | Obst | May 1987 | A |
4716989 | Coleman et al. | Jan 1988 | A |
4724929 | Coleman et al. | Feb 1988 | A |
4725123 | Anelli et al. | Feb 1988 | A |
5683773 | Kemper | Nov 1997 | A |
6216554 | Kimura et al. | Apr 2001 | B1 |
6364063 | Aulanko et al. | Apr 2002 | B1 |
Number | Date | Country |
---|---|---|
1544948 | Dec 1969 | DE |
0 100 583 | Feb 1984 | EP |
179648 | Apr 1986 | EP |
2299145 | Sep 1996 | GB |
59-157312 | Sep 1984 | JP |
3-1409 | Jan 1991 | JP |
3-176912 | Jul 1991 | JP |
4-201966 | Jul 1992 | JP |
6-44829 | Feb 1994 | JP |
Number | Date | Country | |
---|---|---|---|
20020046908 A1 | Apr 2002 | US |
Number | Date | Country | |
---|---|---|---|
60245498 | Nov 2000 | US |