Complete genome sequence of a simian immunodeficiency virus from a red-capped mangabey

Information

  • Patent Grant
  • 6521739
  • Patent Number
    6,521,739
  • Date Filed
    Monday, December 7, 1998
    26 years ago
  • Date Issued
    Tuesday, February 18, 2003
    21 years ago
Abstract
The nucleotide sequence and deduced amino acid sequences of the complete genome of a simian immunodeficiency virus isolate from a red-capped mangabey are disclosed. The invention relates to the nucleic acids and peptides encoded by and/or derived from these sequences and their use in diagnostic methods and as immunogens.
Description




FIELD OF THE INVENTION




The present invention is in the field of virology. The invention relates to the nucleic acid sequence of the complete genome of the new simian immunodeficiency virus isolate from a red-capped mangabey, SIVrcm, and nucleic acids derived therefrom. The invention also relates to peptides encoded by and/or derived from SIVrcm nucleic acid sequences, and host cells containing these nucleic acid sequences and peptides. The invention also relates to diagnostic methods, kits and immunogens which employ the nucleic acids, peptides and/or host cells of the invention.




BACKGROUND OF THE INVENTION




Phylogenetic analyses of simian immunodeficiency virus (SIV) isolates reveal that they belong to five distinct lineages of the lentivirus family of retroviruses (47). These five SIV lentiviral lineages form a distinct sub-group because primate viruses are more closely related to each other than to lentiviruses from non-primate hosts (47). Importantly, only simian species indigenous to the African continent are naturally infected (4, 13, 28, 35). Thus far, natural SIV infections in Africa have been documented in the sooty mangabey (SM) (


Cercocebus torquatus atys


) (SIVsm strains), in Liberia (30), in Sierra Leone (4, 5), and the Ivory Coast (43); in all four sub-species of African green monkeys (agm) (


Cercopithecus aethiops


) (1, 21, 22, 25, 33, 34, 39) (SIVagm strains), in eastern, central and western Africa; in the Sykes monkey (syk) (


Cercopithecus mitis


) (SIVsyk strains) in Kenya (9); in the mandrill (mnd) (


Mandrillus sphinx


) (SIVmmd strains) (38, 50) in Gabon; and in chimpanzees (cpz) (


Pan troglodytes


) (SIVcpz strains) (19, 20, 41, 42) also from Gabon. Because these SIVs and their simian hosts are highly divergent from each other and widely distributed across Africa, it is believed that the SIV family evolved and established itself in African simians long before acquired immunodeficiency syndrome (AIDS) appeared in humans (4, 15, 18, 19, 21, 30, 37, 47).




One common characteristic among all SIVs is that none are associated with immunodeficiency or any other disease in their natural hosts (9, 13, 22, 28, 30, 35, 38). This finding is in marked contrast to AIDS, which occurs in humans and macaques infected with primate lentiviruses (2, 7, 8, 27, 35). This lack of disease in the natural SIV hosts may be an example of long-term evolution toward avirulence (16), which supports the hypothesis that SIV has infected African simians for a relatively long time.




Human AIDS is caused by two distinct primate lentiviruses, human immunodeficiency virus (HIV), types 1 and 2 (2, 7). Interestingly, the phylogeny of HIV is markedly different from SIV, because genetic analyses have shown that the human viruses do not represent separate sixth and seventh lineages of primate lentiviruses, but instead, are members of two of the five existing SIV lineages (37, 46). HIV-1 is in the HIV-1/SIVcpz group (19, 51) and HIV-2 belongs to the HIV-2/SIVsm family (18, 23). These phylogenetic data on the HIV-1 and HIV-2 lineages have long suggested separate simian origins for HIV-1 and HIV-2 (37, 46).




Molecular studies of naturally occurring SIVsm and HIV-2 strains from rural West Africa have provided convincing evidence for a simian origin of HIV-2. A close genetic relationship has been established between the HIV-2 D and E sub-types and SIVsm strains found in household pet sooty mangabeys in West Africa (4, 14, 15). Moreover, all six known subtypes of HIV-2, including a new subtype F (3), are found only within the natural range of SIV-infected sooty mangabeys in West Africa. No other area of Africa or of the world has all six known HIV-2 subtypes. Together, these data provide strong support for independent transmissions of SIVsm from naturally infected sooty mangabeys to humans.




In contrast, there is much less information to support a simian origin for HIV-1. Although SIVcpz is the closest relative to HIV-1, there are only a few isolates, thus raising questions as to the likely primate reservoir. Only three SIVcpz strains have thus far been identified (20, 41, 42, 51). The first one was isolated from a single, household pet chimpanzee in Gabon and was not part of a primate research colony (42). An additional SIVcpz strain was found in a captive chimpanzee which was wild caught in Zaire and thus likely infected in Africa (41, 51). Finally, PCR data suggested the existence of a third SIVcpz strain, again from a wild caught chimpanzee from Gabon (20). Thus, although based on limited data, the hypothesis that HIV-1 is derived from members of a larger SIVcpz lineage remains plausible. However, additional SIVs within the HIV-1/SIVcpz lineage must be found to better understand the origin of the HIV-1 family.




The present invention is based on the genetic characterization of a new SIV isolate from a red-capped mangabey (RCM),


Cercocebus torquatus torquatus


. This RCM was a household pet in Lambarene, Gabon, and was not part of a primate colony, a zoo, or a research facility. Analysis of the full-length sequence of the SIVrcm indicates that this virus is related to SIV from sooty mangabeys, albeit very distantly. Its genome organization contains a vpx gene which is unique to members of the SIVsm/HIV-2 lineage. There is also phylogenetic evidence that SIVrcm is a recombinant.




The SIVrcm sequence(s) described herein will permit the development of new serological screening assays for testing of SIVrcm infection of humans. Although such infections have not yet been documented, it should be noted that viruses from a second mangabey species (SIVs from sooty mangabeys) have crossed the species barrier and have yielded a new human AIDS virus (HIV-2). It is thus conceivable that SIVrcm is similarly infecting humans in Gabon and Cameroon. To test this possibility, strain specific reagents (antigens, polypeptides, etc.) are required to test for SIVrcm specific antibodies in people as a sign of viral infection. Such strain specific antigens can now be designed on the basis of the SIVrcm sequence(s) described herein.




If evidence is found that humans in Africa are infected with SIVrcm (regardless whether this infection is pathogenic or not), then new screening assays for the world's blood supply will have to be developed that specifically detect anti-SIVrcm antibodies or SIVrcm nucleic acids. SIVrcm sequences are necessary to design such strain-specific tests.




Additionally, the new sequences will permit the development of assays for screening of primates, such as those in the wild, in zoos, and in research facilities, for SIVrcm.




SUMMARY OF THE INVENTION




The present invention pertains to the isolation and characterization of the genomic sequence of SIVrcm, a new simian immunodeficiency virus identified from a Gabonese red-capped mangabey (RCM), and nucleic acids derived therefrom.




In particular, the present invention relates to nucleic acids comprising the complete genomic sequence of SIVrcm, as well as nucleic acids comprising the complementary (or antisense) sequence of the genomic sequence of SIVrcm, and nucleic acids derived therefrom.




The invention also relates to vectors comprising the nucleic acid genomic sequence of SIVrcm, as well as nucleic acids comprising the complementary (or antisense) sequence of the genomic sequence of SIVrcm, and nucleic acids derived therefrom.




The invention also relates to cultured host cells comprising the nucleic acid genomic sequence of SIVrcm, as well as nucleic acids comprising the complementary (or antisense) sequence of the genomic sequence of SIVrcm, and nucleic acids derived therefrom.




The invention also relates to host cells containing vectors comprising the genomic sequence of SIVrcm, as well as nucleic acids comprising the complementary (or antisense) sequence of the genomic sequence of SIVrcm, and nucleic acids derived therefrom.




The invention also relates to synthetic or recombinant polypeptides encoded by or derived from the nucleic acid sequence of the genome of SIVrcm, and fragments thereof.




The invention also relates to methods for producing the polypeptides of the invention in culture using the SIVrcm virus or nucleic acids derived therefrom, including recombinant methods for producing the polypeptides of the invention.




The invention further relates to methods of using the polypeptides of the invention as immunogens to stimulate an immune response in a mammal, such as the production of antibodies, or the generation of cytotoxic or helper T-lymphocytes.




The invention also relates to methods of using the polypeptides of the invention to detect antibodies which immunologically react with the SIVrcm virion and/or its encoded polypeptides, in a mammal or in a biological sample.




The invention also relates to kits for the detection of antibodies specific for SIVrcm in a biological sample where said kit contains at least one polypeptide encoded by or derived from the SIVrcm nucleic acid sequences of the invention.




The invention also relates to antibodies which immunologically react with the SIVrcm virion and/or its encoded polypeptides.




The invention also relates to methods of detecting SIVrcm virion and/or its encoded polypeptides, or fragments thereof, using the antibodies of the invention.




The invention also relates to kits for detecting SIVrcm virion, and/or its encoded polypeptides, wherein the kit comprises at least one antibody of the invention.




The invention also relates to a method for detecting the presence of SIVrcm virus in a mammal or a biological sample, said method comprising analyzing the DNA or RNA of a mammal or a sample for the presence of the RNAs, cDNAs or genomic DNAs which will hybridize to a nucleic acid derived from SIVrcm. Usually, when a completely complementary probe is used, high stringency conditions are desirable in order to prevent false positives. However, conditions of high stringency should only be used if the probes are complementary to target regions which lack heterogeneity. The stringency of hybridization is determined by a number of factors during hybridization and during the washing procedure, including temperature, ionic strength, length of time, and concentration of formamide, if any. The nucleic acid sequences used in probes should be unique to SIVrcm, i.e., the nucleic acid sequences should be absent from individual mammals not infected with SIVrcm.




The invention also provides diagnostic kits for the detection of SIVrcm in a mammal using the nucleic acids of the invention. In one embodiment, the kit comprises nucleic acids having sequences useful as hybridization probes in determining the presence or absence of SIVrcm RNA, cDNA or genomic DNA. In another embodiment, the kit comprises nucleic acids having sequences useful as primers for reverse-transcription polymerase chain reaction (RT-PCR) analysis of RNA for the presence of SIVrcm in a biological sample.




The invention further relates to isolated and substantially purified nucleic acids, polypeptides and/or antibodies of the invention.




The invention further relates to compositions comprising one or more of the nucleic acids, polypeptides and/or antibodies of the invention.











BRIEF DESCRIPTION OF THE FIGURES




FIG.


1


. PCR primer pairs (SEQ ID NOS: 2-9) and sequencing strategy.




FIG.


2


. Alignment of amino acid sequences of env proteins of SIVrcm and other primate lentiviruses (SEQ ID NOS: 10-21). The homologies among the sequences are indicated by dashes. Sequences of amino acids which are uniquely present in the various polypeptides (as compared to the corresponding amino acids of the SIVrcm) are indicated by letters, i.e., the sequences themselves.




FIG.


3


. Genomic organization of SIVrcm. Schematic diagram of the three possible reading frames of the SIVrcm genome. The location of stop codons are indicated by vertical lines, and the locations of the SIVrcm genes are indicated.




FIG.


4


. Duplication of the TAR stemloop structure in the SIVrcm LTR (SEQ ID NO: 58)




FIG.


5


. Phylogenetic analysis of SIVrcm (SEQ ID NOS: 22-23) (A) gag; (B) pol (5′ end); (C) env; and (D) nef genes. Phylogenies indicate discordant branching orders which strongly suggest a recombinant SIVrcm genome.




FIG.


6


. Alignment of the putative polypeptide products of the extended rev ORFs in SIVsm and SIVrcm. Asterisks denote stop codons. Conservative amino acid changes are indicated as a colon (:); a vertical line depicts the position of the splice donor.




FIG.


7


. Amino acid sequence alignment of the “extended rev ORF” in members of the HIV-2/SIVsm/SIVmac group (SEQ ID NOS: 24-44). The vertical line indicates the position of the splice donor, usually used to express the spliced versions of tat and rev, respectively. Stop codons are indicated as asterisks. All SIVsm/SIVmac strains as well as HIV-2/FO784 have an uninterrupted extended rev ORF.




FIG.


8


. Nucelotide sequence of the SIVrcm genome (SEQ ID NO:1)




FIG.


9


. Deduced amino acid sequence of the SIVrcm Gag protein (SEQ ID NO: 45).




FIG.


10


. Deduced amino acid sequence of the SIVrcm Pol protein (SEQ ID NO: 46).




FIG.


11


. Deduced amino acid sequence of the SIVrcm Vif protein (SEQ ID NO: 47).




FIG.


12


. Deduced amino acid sequence of the SIVrcm Vpx protein (SEQ ID NO: 48).




FIG.


13


. Deduced amino acid sequence of the SIVrcm Vpr protein (SEQ ID NO: 49).




FIG.


14


. Deduced amino acid sequence of the SIVrcm Tat protein (SEQ ID NO: 50).




FIG.


15


. Deduced amino acid sequence of the SIVrcm Rev protein (SEQ ID NO: 51).




FIG.


16


. Deduced amino acid sequence of the SIVrcm Env protein (SEQ ID NO: 52).




FIG.


17


. Deduced amino acid sequence of the SIVrcm Nef protein (SEQ ID NO: 53).




FIG.


18


. Partial nucleotide sequence of SIVrcm gag gene and deduced amino acid sequence (SEQ ID NOS: 54-55).




FIG.


19


. Partial nucleotide sequence of SIVrcm pol gene and deduced amino acid sequence (SEQ ID NOS: 56-57).











DETAILED DESCRIPTION OF THE INVENTION




The present invention relates to the determination of the nucleic acid sequence of the complete genome of SIVrcm, an isolate of simian immunodeficiency virus identified from a Gabonese red-capped mangabey (RCM) and nucleic acids derived therefrom. The nucleotide sequence of the SIVrcm is shown in the sequence listing as SEQ ID NO:1.




The phrase “derived from” is used throughout the specification and claims with respect to nucleic acids to describe nucleic acid sequences which correspond to a region of the designated nucleotide sequence. Preferably, the sequence of the region from which the nucleic acid is derived is, or is complementary to, a sequence which is unique to the SIVrcm genome. Whether or not a sequence is unique to the genome of SIVrcm can be determined by techniques known to those of skill in the art. For example, the sequence can be compared to sequences in databanks, e.g., GenBank, to determine whether it is present in the uninfected host or other organisms. The sequence can also be compared to the known sequences of other viral agents, including other retroviruses. The correspondence or non-correspondence of the derived sequence to other sequences can also be determined by hybridization under the appropriate stringency conditions. Hybridization techniques for determining the complementarity of nucleic acid sequences are well known in the art. In addition, mismatches of duplex polynucleotides formed by hybridization can be determined by known techniques, including for example, digestion with a nuclease such as S1 that specifically digests single-stranded areas in duplex polynucleotides.




Regions of the viral genome from which nucleic acid sequences may be derived include, but are not limited to, regions encoding specific epitopes as well as non-transcribed and non-translated sequences. Preferably, the epitope is unique to a polypeptide encoded by the SIVrcm genome. The uniqueness of the epitope may be determined by its degree of immunological cross-reactivity with other SIV viruses. Methods for determining immunological cross-reactivity are known in the art, e.g., radioimmunoassay and ELISA and other assays mentioned herein. The uniqueness of an epitope can also be determined by computer searches of known databases, e.g., for the polynucleotide sequences which encode the epitope, and by amino acid sequence comparisons with other known proteins.




The derived nucleic acid is not necessarily physically derived from the nucleotide sequence shown, but may be generated in any manner, including for example, chemical synthesis or DNA replication or reverse transcription or transcription, which are based on the information provided by the sequence of bases in the region(s) from which the nucleic acid is derived. The derived nucleic acid is comprised of at least 6-12 bases, more preferably at least 15-19 bases, more preferably at least 30 bases. The derived nucleic acid may also be larger, e.g., at least 100 bases in length, depending on the desired use of the nucleic acid. In addition, regions or combinations of regions corresponding to that of the designated sequence may be modified in ways known in the art to be consistent with an intended use. The derived nucleic acid may be a polynucleotide or polynucleotide analog.




The term “recombinant nucleotide” or “recombinant nucleic acid” as used herein intends a nucleic acid of genomic, cDNA, semisynthetic, or synthetic origin which, by virtue of its origin or manipulation: (1) is not associated with all or a portion of the nucleic acid with which it is associated in nature; and/or (2) is linked to a nucleic acid other than that to which it is linked in nature.




The term “polynucleotide” as used herein refers to a polymeric form of nucleotides of any length, either ribonucleotides or deoxyribonucleotides. This term refers only to the primary structure of the molecule. Thus, this term includes double- and single-stranded DNA, as well as double- and single-stranded RNA. It also includes modified, for example, by methylation and/or by capping, and unmodified forms of the polynucleotide.




The present invention relates to nucleic acids having the entire genomic sequence of the SIVrcm isolate as shown in SEQ ID NO:1, as well as fragments (or partial sequences) thereof The invention also relates to nucleic acids having complementary (or antisense) sequences of the sequence shown in SEQ ID NO:1, as well as fragments (or partial sequences) thereof Partial sequences may be obtained by various methods, including restriction digestion of the complete sequence of SIVrcm, PCR amplification, and direct synthesis. Partial sequences may be all or part of the LTR and/or other untranslated regions of the SIVrcm genome, and/or all or part of the genes encoding the Gag, Pol, Vif, Vpr, Env, Tat, Rev, Nef and Vpx proteins and/or complementary (or antisense) sequences thereof Nucleic acids of the invention also include cDNA, mRNA, and other nucleic acids derived from the SIVrcm genomic sequence. Sequences of the LTRs and of the genes encoding Gag, Pol, Vif, Vpr, Env, Tat, Rev, Nef and Vpx are identified in

FIGS. 9

to


17


. Partial sequences of SIVrcm gag and pol genes and encoded amino acid sequence are shown in

FIGS. 18 and 19

. These latter sequences are available in GenBank, having Accession Numbers AF028608 and AF028607, respectively. Minor sequence variations between SEQ ID NO:1 and the pol gene of

FIG. 19

are due to the fact that this partial pol gene sequence (in addition to the partial gag gene sequence) was obtained from a different clone of SIVrcm than that represented by SEQ ID NO:1.




The nucleic acids of the invention may be present in vectors or host cells in tissue culture or other media. The nucleic acids of the invention may also be isolated and substantially purified, by methods known in the art.




Nucleic acids of about 17 bases to about 35 bases in length are particularly preferred for use as primers in PCR amplification (see, e.g., the primers gag A and gag B (25 mer and 32 mer respectively)). Nucleic acids of about 14 to about 25 bases in length are particularly preferred for use in nucleotide arrays. (See, e.g., ref 80, which uses 20 to 25 mers).




The present invention also relates to vectors and host cells comprising the nucleic acids of the invention.




The present invention also relates to compositions comprising one or more of the nucleic acids, vectors, and/or host cells of the invention.




The present invention further relates to methods of using the nucleic acids, vectors, and/or host cells of the invention, and/or compositions thereof For example, the invention relates to the use of nucleic acids of the invention as diagnostic agents to detect the presence or absence of SIVrcm in a sample.




The present invention also relates to a method for detecting the presence of SIVrcm in a mammal using the nucleic acids of this invention.




In one embodiment, the detection method involves analyzing DNA of a mammal suspected of harboring SIVrcm. DNA can be isolated by methods well known in the art.




The methods for analyzing the DNA for the presence of SIVrcm include Southern blotting (63), dot and slot hybridization (60), and nucleotide arrays (see, e.g., U.S. Pat. Nos. 5,445,934 and 5,733,729).




The nucleic acid probes used in the detection methods set forth above are derived from the nucleic acid sequence shown in SEQ ID NO:1. The size of such probes is at least 10-12 bases long, more usually at least about 19 bases long, more usually from about 200 to about 500 bases, and often exceeding about 1000 bases.




The nucleic acid probes of this invention may be DNA or RNA. Nucleic acids can be synthesized using any of the known methods of nucleotide synthesis (see, e.g., refs. 54, 55, 58), or they can be isolated fragments of naturally occurring or cloned DNA. In addition, those skilled in the art would be aware that nucleotides can be synthesized by automated instruments sold by a variety of manufacturers or can be commercially custom ordered and prepared. The probes of this invention may also be nucleotide analogs, such as nucleotides linked by phosphodiester, phosphorothiodiester, methylphosphonodiester, or methylphosphonothiodiester moieties (67) and peptide nucleic acids (PNAs), in which the sugar-phosphate backbone of the polynucleotide is replaced with a polyamide or “pseudopeptide” backbone (68).




The nucleic acid probes can be labeled using methods known to one skilled in the art. Such labeling techniques can include radioactive labels, biotin, avidin, enzymes and fluorescent molecules (62).




The nucleic acid probes used in the detection methods set forth above are derived from sequences substantially homologous to the sequence shown in SEQ ID NO:1, or its complementary sequence. By “substantially homologous”, as used throughout the specification and claims to describe the nucleic acid sequences of the present invention, is meant a high level of homology between the nucleic acid sequence and the sequence of SEQ ID NO:1, or its complementary sequence. Preferably, the level of homology is in excess of 80%, more preferably in excess of 90%, with a preferred nucleic acid sequence being in excess of 95% homologous with a portion of SEQ ID NO:1, or its complement. The size of such probes is usually at least 20 nucleotides, more usually from about 200 to 500 nucleotides, and often exceeding 1000 nucleotides.




Although complete complementarity is not necessary, it is preferred that the probes are made completely complementary to the corresponding portion of the SIVrcm genome, mRNA or cDNA target.




The probes can be packaged into diagnostic kits. Diagnostic kits may include ingredients for labelling and other reagents and materials needed for the particular hybridization protocol in addition to the probes.




In another embodiment of the invention, the detection method comprises analyzing the RNA of a mammal for the presence of SIVrcm. RNA can be isolated by methods well known in the art.




The methods for analyzing the RNA for the presence of SIVrcm include Northern blotting (66), dot and slot hybridization, filter hybridization (57), RNase protection (62), and reverse-transcription polymerase chain reaction (RT-PCR) (65). A preferred method is RT-PCR. In this method, the RNA can be reverse transcribed to first strand cDNA using a nucleic acid primer or primers derived from the nucleotide sequence shown in SEQ ID NO:1. Once the cDNAs are synthesized, PCR amplification is carried out using pairs of primers designed to hybridize with sequences in the genome of SIVrcm which are an appropriate distance apart (at least about 50 bases) to permit amplification of the cDNA and subsequent detection of the amplification product. Each primer of a pair is a single-stranded nucleic acid of about 20 to about 60 bases in length where one primer (the “upstream” primer) is complementary to the original RNA and the second primer (the “downstream” primer) is complementary to the first strand of cDNA generated by reverse transcriptions of the RNA. The target sequence is generally about 100 to about 300 bases in length but can be as large as 500-1500 bases or more, e.g., 9,000 bases. Optimization of the amplification reaction to obtain sufficiently specific hybridization to the SIVrcm nucleotide sequence is well within the skill in the art and is preferably achieved by adjusting the annealing temperature.




The amplification products of PCR can be detected either directly or indirectly. In one embodiment, direct detection of the amplification products is carried out via labeling of primer pairs. Labels suitable for labeling the primers of the present invention are known to one skilled in the art and include radioactive labels, biotin, avidin, enzymes and fluorescent molecules. The desired labels can be incorporated into the primers prior to performing the amplification reaction. Alternatively, the desired labels can be incorporated into the primer extension products during the amplification reaction in the form of one or more labeled dNTPs. In one embodiment of the present invention, the labeled amplified PCR products can be detected by agarose gel electrophoresis followed by ethidium bromide staining and visualization under ultraviolet light or via direct sequencing of the PCR-products. The labeled amplified PCR products can also be detected by binding to immobilized oligonucleotide arrays.




In yet another embodiment, unlabelled amplification products can be detected via hybridization with labeled nucleic acid probes in methods known to one skilled in the art, such as dot or slot blot hybridization or filter hybridization.




The invention also relates to methods of using these nucleic acids to produce polypeptides in vitro or in vivo.




In one embodiment of the invention, a recombinant method of making a polypeptide of the invention comprises:




(a) preparing of a nucleic acid capable of directing a host cell to produce a polypeptide encoded by the SIVrcm genome;




(b) cloning the nucleic acid into a vector capable of being transferred into and replicated in a host cell, such vector containing operational elements for expressing the nucleic acid, if necessary;




(c) transferring the vector containing the nucleic acid and operational elements into a host cell capable of expressing the polypeptide;




(d) growing the host under conditions appropriate for expression of the polypeptide; and




(e) harvesting the polypeptide.




The present invention also relates to non-recombinant methods of making the polypeptides and nucleic acids of the invention. In addition to synthetic methods, the non-recombinant methods involve culturing SIVrcm in cell lines, preferably in uninfected human peripheral blood mononuclear cells, under conditions appropriate for expression of the polypeptides and nucleic acids. This invention thus also relates to the polypeptides and nucleic acids produced by the virus in cell culture. The polypeptides and nucleic acids may be isolated and purified by methods known in the art.




The vectors contemplated for use in the present invention include any vectors into which a nucleic acid sequence as described above can be inserted, along with any preferred or required operational elements, and which vector can then be subsequently transferred into a host cell and, preferably, replicated in such cell. Preferred vectors are those whose restriction sites have been well documented and which contain the operational elements preferred or required for transcription of the nucleic acid sequence. Vectors may also be used to prepare large amounts of nucleic acids of the invention, which may be used, e.g., to prepare probes or other nucleic acid constructs.




When expression of a polypeptide is desired, the “operational elements” as discussed herein include at least one promoter sequence capable of initiating transcription of the nucleic acid sequence, at least one leader sequence, at least one terminator codon and/or termination signal, and any other DNA sequences necessary or preferred for appropriate transcription and subsequent translation of the vector nucleic acid. In particular, it is contemplated that such vectors will preferably contain at least one origin of replication recognized by the host cell along with at least one selectable marker.




Preferred expression vectors of this invention are those which function in bacterial and/or eukaryotic cells. Examples of vectors which function in eukaryotic cells include, but are not limited to Venezuelan equine encephalitis virus vectors, simian virus vectors, vaccinia virus vectors, adenovirus vectors, herpes virus vectors, or vectors based on retroviruses, such as murine leukemia virus, or HIV or other lentivirus (76).




The selected expression vector may be transfected into a suitable bacterial or eukaryotic cell system for purposes of expressing the recombinant polypeptide. Eukaryotic cell systems include but are not limited to cell lines such as HeLa, COS-1, 293T, MRC-5, or CV-1 cells. Primary human cells, such as lymph node cells, macrophages, etc., are also useful in practicing the invention.




The expressed polypeptides may be detected directly by methods known in the art including, but not limited to, Coomassie blue staining and Western blotting or indirectly, such as in detection of the expression product of a reporter gene, such as luciferase.




In another embodiment of the invention, the method comprises administering a composition comprising a vector comprising a nucleic acid of the invention to a mammal to produce a polypeptide in vivo.




The present invention also relates to polypeptides encoded by and/or derived from the nucleotide sequences of this invention. These polypeptides may be natural, synthetic or produced by recombinant methods. Polypeptides can be obtained as a crude lysate or can be purified by standard protein purification procedures known in the art which may include differential precipitation, molecular sieve chromatography, ion-exchange chromatography, isoelectric focusing, gel electrophoresis and affinity and immunoaffinity chromatography. The polypeptides may be purified by passage through a column containing a resin which has bound thereto antibodies specific for an open reading frame (ORF) polypeptide. The present invention also relates to compositions comprising one or more of the polypeptides of the invention.




A polypeptide or amino acid sequence derived from a designated nucleic acid sequence refers to a polypeptide having an amino acid sequence identical to that of a polypeptide encoded by the sequence, or a portion thereof wherein the portion consists of at least 6-8 amino acids, and more preferably at least 10 amino acids, and more preferably at least 11-15 amino acids, and most preferably at least 30 amino acids or which is immunologically cross-reactive with a polypeptide encoded by the sequence. The polypeptide may also be larger, e.g., at least 100 amino acids in length, depending on the desired use of the polypeptide. Polypeptides from the V3-loop region and the “crown” of gp41 of Env are particularly preferred.




A recombinant or derived polypeptide is not necessarily translated from a designated nucleic acid sequence; it may be generated in any manner, including for example, chemical synthesis, or expression of a recombinant expression system, or isolation from SIVrcm.




It should be noted that the nucleotide sequences described herein represent one embodiment of the present invention. Due to the degeneracy of the genetic code, it is to be understood that numerous choices of nucleotides may be made that will lead to a sequence capable of directing production of the polypeptides set forth above. As such, nucleic acid sequences which are functionally equivalent to the sequences described herein are intended to be encompassed within the present invention. For example, preferred codons which are appropriate to the host cell may be used (see, e.g., WO 98/34640), or the sequence may be modified to reduce the effect of any inhibitory/instability sequences and to provide for Rev-independent gene expression (77).




The polypeptides of this invention consist of at least 6-12 amino acids, more preferably at least 13-18 amino acids, even more preferably at least 19-24 amino acids and most preferably at least 25-30 amino acids encoded by, or otherwise derived from, the SIVrcm genomic sequence.




The present invention further relates to the use of polypeptides of the invention as diagnostic agents.




In one embodiment, the polypeptides of the invention can be used in immunoassays for detecting the presence of antibodies against SIVrcm in a mammal and for diagnosing the presence of SIVrcm infection in a mammal.




For the purposes of the present invention, “mammal” as used throughout the specification and claims, includes, but is not limited to humans, chimpanzees, mangabeys, other primates and the like.




In a preferred embodiment, test serum is reacted with a solid phase reagent having a surface-bound polypeptide of this invention as an antigen. The solid surface reagent can be prepared by known techniques for attaching polypeptides to solid support material. These attachment methods include non-specific adsorption of the polypeptide to the support or covalent attachment of the polypeptide to a reactive group on the support. After reaction of the antigen with an antibody against any one of the viruses of this invention in the serum, unbound serum components are removed by washing and the antigen-antibody complex is reacted with a secondary antibody such as labeled anti-human antibody. The label may be an enzyme which is detected by incubating the solid support in the presence of a suitable fluorimetric or colorimetric reagent. Other detectable labels may also be used, such as radiolabels or colloidal gold, and the like.




Immunoassays of the present invention may be a radioimmunoassay, Western blot assay, immunofluorescent assay, enzyme immunoassay, chemiluminescent assay, immunohistochemical assay and the like. Standard techniques for ELISA are well known in the art. Such assays may be a direct, indirect, competitive, or noncompetitive immunoassay as described in the art (see, e.g., ref. 61). Biological samples appropriate for such detection assays include, but are not limited to serum, liver, saliva, lymphocytes or other mononuclear cells.




Polypeptides of the invention may be prepared in the form of a kit, alone, or in combinations with other reagents such as secondary antibodies, for use in immunoassays.




In yet another embodiment, the polypeptides of the invention can be used as immunogens to raise antibodies and/or stimulate cellular immunity in a mammal.




The immunogen may be a partially or substantially purified peptide. Alternatively, the immunogen may be a cell, cell lysate from cells transfected with a recombinant expression vector, or a culture supernatant containing the expressed polypeptide. The immunogen may comprise one or more structural proteins, and/or one or more non-structural proteins of SIVrcm, or a mixture thereof




The effective amount of polypeptide per unit dose sufficient to induce an immune response depends, among other things, on the species of mammal inoculated, the body weight of the mammal and the chosen inoculation regimen, as well as the presence or absence of an adjuvant, as is well known in the art. Inocula typically contain polypeptide concentrations of about 1 microgram to about 50 milligrams per inoculation (dose), preferably about 10 micrograms to about 10 milligrams per dose, most preferably about 100 micrograms to about 5 milligrams per dose.




The term “unit dose” as it pertains to the inocula refers to physically discrete units suitable as unitary dosages for mammals, each unit containing a predetermined quantity of active material (polypeptide) calculated to produce the desired immunogenic effect in association with the required diluent.




Inocula are typically prepared as a solution in a physiologically acceptable carrier such as saline, phosphate-buffered saline and the like to form an aqueous pharmaceutical composition.




The route of inoculation of the polypeptides of the invention is typically parenteral and is preferably intramuscular, sub-cutaneous and the like. The dose is administered at least once. In order to increase the antibody level, at least one booster dose may be administered after the initial injection, preferably at about 4 to 6 weeks after the first dose. Subsequent doses may be administered as indicated.




To monitor the antibody response of individuals administered the compositions of the invention, antibody titers may be determined. In most instances it will be sufficient to assess the antibody titer in serum or plasma obtained from such an individual. Decisions as to whether to administer booster inoculations or to change the amount of the composition administered to the individual may be at least partially based on the titer.




The titer may be based on an immunobinding assay which measures the concentration of antibodies in the serum which bind to a specific antigen. The ability to neutralize in vitro and in vivo biological effects of SIVrcm may also be assessed to determine the effectiveness of the immunization.




For all therapeutic, prophylactic and diagnostic uses, the polypeptide of the invention, alone or linked to a carrier, as well as antibodies and other necessary reagents and appropriate devices and accessories may be provided in kit form so as to be readily available and easily used.




Where immunoassays are involved, such kits may contain a solid support, such as a membrane (e.g., nitrocellulose), a bead, sphere, test tube, microtiter well, rod, and so forth, to which a receptor such as an antibody specific for the target molecule will bind. Such kits can also include a second receptor, such as a labelled antibody. Such kits can be used for sandwich assays. Kits for competitive assays are also envisioned.




The immunogens of this invention can also be generated by the direct administration of nucleic acids of this invention to a subject. DNA-based vaccination has been shown to stimulate humoral and cellular responses to HIV-1 antigens in mice (69-72) and macaques (72, 73). More recent studies in infected chimpanzees have shown a possible application of this strategy in HIV-1-infected humans: DNA vaccination of HIV-1-infected chimpanzees with a construct that drives expression of HIV-1 env and rev appeared well-tolerated, and immunized animals demonstrated a boost in antibody response followed by a >1 log decrease in their virus loads (74). A DNA-based vaccine containing HIV-1 env and rev genes was injected into HIV-infected human patients in three doses (30, 100 or 300 micrograms) at 10-week intervals. Increased antibodies against gp120 were observed in the 100 and 300 μg groups. Increases were also noted in cytotoxic T lymphocyte (CTL) activity against gp160-bearing targets and in lymphocyte proliferative activity (78, 79). DNA-based vaccines containing HIV gag genes, with modification of the viral nucleotide sequence to incorporate host-preferred codons (see, e.g., WO 98/34640), and/or to reduce the effect of inhibitory/instability sequences (see, e.g., ref. 77), have likewise been described.




Therefore, it is anticipated that the direct injection of RNA or DNA vectors of this invention encoding viral antigen can be used for endogenous expression of the antigen to generate the viral antigen for presentation to the immune system without the need for self-replicating agents or adjuvants, resulting in the generation of antigen-specific CTLs and protection from a subsequent challenge with a homologous or heterologous strain of virus.




CTLs in both mice and humans are capable of recognizing epitopes derived from conserved internal viral proteins and are thought to be important in the immune response against viruses. By recognition of epitopes from conserved viral proteins, CTLs may provide cross-strain protection. CTLs specific for conserved viral antigens can respond to different strains of virus, in contrast to antibodies, which are generally strain-specific.




Thus, direct injection of RNA or DNA encoding the viral antigen has the advantage of being without some of the limitations of direct peptide delivery or viral vectors (see, e.g., ref. 81 and the discussions and references therein). Furthermore, the generation of high-titer antibodies to expressed proteins after injection of DNA indicates that this may be a facile and effective means of making antibody-based vaccines targeted towards conserved or non-conserved antigens, either separately or in combination with CTL vaccines targeted towards conserved antigens. These may also be used with traditional peptide vaccines, for the generation of combination vaccines. Furthermore, because protein expression is maintained after DNA injection, the persistence of B and T cell memory may be enhanced, thereby engendering long-lived humoral and cell-mediated immunity.




Nucleic acids encoding a SIVrcm polypeptide of this invention can be introduced into animals or humans in a physiologically or pharmaceutically acceptable carrier using one of several techniques such as injection of DNA directly into human tissues; electroporation or transfection of the DNA into primary human cells in culture (ex vivo), selection of cells for desired properties and reintroduction of such cells into the body, (said selection can be for the successful homologous recombination of the incoming DNA to an appropriate preselected genomic region); generation of infectious particles containing the SIVrcm gag and/or other SIVrcm genes, infection of cells ex vivo and reintroduction of such cells into the body; or direct infection by said particles in vivo. Substantial levels of polypeptide will be produced leading to an efficient stimulation of the immune system.




Also envisioned are therapies based upon vectors, such as viral vectors containing nucleic acid sequences coding for the polypeptides described herein. These molecules, developed so that they do not provoke a pathological effect, will stimulate the immune system to respond to the polypeptides.




The effective amount of nucleic acid immunogen per unit dose to induce an immune response depends, among other things, on the species of mammal inoculated, the body weight of the mammal and the chosen inoculation regimen, as is well known in the art. Inocula typically contain nucleic acid concentrations of about 1 microgram to about 50 milligrams per inoculation (dose), preferably about 10 micrograms to about 10 milligrams per dose, most preferably about 100 micrograms to about 5 milligrams per dose.




Immunization can be conducted by conventional methods. For example, the immunogen can be used in a suitable diluent such as saline or water, or complete or incomplete adjuvants. Further, the immunogen may or may not be bound to a carrier. While it is possible for the immunogen to be administered in a pure or substantially pure form, it is preferable to present it as a pharmaceutical composition, formulation or preparation.




The formulations of the present invention, both for veterinary and for human use, comprise an immunogen as described above, together with one or more physiologically or pharmaceutically acceptable carriers and optionally other therapeutic ingredients. The carrier(s) must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not deleterious to the recipient thereof. The formulations may conveniently be presented in unit dosage form and may be prepared by any method well-known in the pharmaceutical art. The immunogen can be administered by any route appropriate for antibody production such as intravenous, intraperitoneal, intramuscular, subcutaneous, and the like. The immunogen may be administered once or at periodic intervals until a significant titer of anti-SIVrcm antibody is produced. The antibody may be detected in the serum using an immunoassay. The host serum or plasma may be collected following an appropriate time interval to prove a composition comprising antibodies reactive with the SIVrcm virus particle or encoded polypeptide. The gamma globulin fraction or the IgG antibodies can be obtained, for example, by use of saturated ammonium sulfate or DEAE Sephadex, or other techniques known to those skilled in the art.




In addition to its use to raise antibodies, the administration of the immunogens of the present invention may be for use as a vaccine for either a prophylactic or therapeutic purpose. When provided prophylactically, a vaccine(s) of the invention is provided in advance of any exposure to SIVrcm or in advance of any symptoms due to SIVrcm infection. The prophylactic administration of a vaccine(s) of the invention serves to prevent or attenuate any subsequent infection of SIVrcm in a mammal. When provided therapeutically, a vaccine(s) of the invention is provided at (or shortly after) the onset of infection or at the onset of any symptom of infection or any disease or deleterious effects caused by SIVrcm. The therapeutic administration of the vaccine(s) serves to attenuate the infection or disease. The vaccine(s) of the present invention may, thus, be provided either prior to the anticipated exposure to SIVrcm or after the initiation of infection.




In another embodiment, the polypeptides of the invention can be used to prepare antibodies against SIVrcm epitopes that are useful in diagnosis.




The term “antibodies” is used herein to refer to immunoglobulin molecules and immunologically active portions of immunoglobulin molecules. Exemplary antibody molecules are intact immunoglobulin molecules, substantially intact immunoglobulin molecules and portions of an immunoglobulin molecule, including those portions known in the art as Fab, Fab′, F(ab′)


2


and F(v) as well as chimeric antibody molecules.




An antibody of the present invention is typically produced by immunizing a mammal with an immunogen or vaccine of the invention. In one embodiment, the immunogen or vaccine contains one or more polypeptides of the invention, or a structurally and/or antigenically related molecule, to induce, in the mammal, antibody molecules having immunospecificity for the immunizing peptide or peptides. The peptide(s) or related molecule(s) may be monomeric, polymeric, conjugated to a carrier, and/or administered in the presence of an adjuvant. In another embodiment, the immunogen or vaccine contains one or more nucleic acids encoding one or more polypeptides of the invention, or one or more nucleic acids encoding structurally and/or antigenically related molecules, to induce, in the mammal, the production of the immunizing peptide or peptides. The antibody molecules may then be collected from the mammal if they are to be used in immunoassays or for providing passive immunity.




The antibody molecules of the present invention may be polyclonal or monoclonal. Monoclonal antibodies may be produced by methods known in the art. Portions of immunoglobulin molecules may also be produced by methods known in the art.




The antibody of the present invention may be contained in various carriers or media, including blood, plasma, serum (e.g., fractionated or unfractionated serum), hybridoma supernatants and the like. Alternatively, the antibody of the present invention is isolated to the extent desired by well known techniques such as, for example, by using DEAE SEPHADEX, or affinity chromatography. The antibodies may be purified so as to obtain specific classes or subclasses of antibody such as IgM, IgG, IgA, IgG


1


, IgG


2,


IgG


3


, IgG


4


and the like. Antibody of the IgG class are preferred for purposes of passive protection.




The presence of the antibodies of the present invention, either polyclonal or monoclonal, can be determined by, but are not limited to, the various immunoassays described above.




The antibodies of the present invention have a number of diagnostic and therapeutic uses. The antibodies can be used as an in vitro diagnostic agent to test for the presence of SIVrcm in biological samples in standard immunoassay protocols. Preferably, the assays which use the antibodies to detect the presence of SIVrcm in a sample involve contacting the sample with at least one of the antibodies under conditions which will allow the formation of an immunological complex between the antibody and the SIVrcm antigen that may be present in the sample. The formation of an immunological complex if any, indicating the presence of SIVrcm in the sample, is then detected and measured by suitable means. Such assays include, but are not limited to, radioimmunoassays (RIA), ELISA, indirect immunofluorescence assay, Western blot and the like. The antibodies may be labeled or unlabeled depending on the type of assay used. Labels which may be coupled to the antibodies include those known in the art and include, but are not limited to, enzymes, radionucleotides, fluorogenic and chromogenic substrates, cofactors, biotin/avidin, colloidal gold and magnetic particles. Modification of the antibodies allows for coupling by any known means to carrier proteins or peptides or to known supports, for example, polystyrene or polyvinyl microtiter plates, glass tubes or glass beads and chromatographic supports, such as paper, cellulose and cellulose derivatives, and silica.




Such assays may be, for example, of direct format (where the labelled first antibody reacts with the antigen), an indirect format (where a labelled second antibody reacts with the first antibody), a competitive format (such as the addition of a labelled antigen), or a sandwich format (where both labelled and unlabelled antibody are utilized), as well as other formats described in the art. In one such assay, the biological sample is contacted with antibodies of the present invention and a labeled second antibody is used to detect the presence of SIVrcm, to which the antibodies are bound.




The antibodies of the present invention are also useful as a means of enhancing the immune response.




The antibodies may be administered with a physiologically or pharmaceutically acceptable carrier or vehicle therefor. A physiologically acceptable carrier is one that does not cause an adverse physical reaction upon administration and one in which the antibodies are sufficiently soluble and retain their activity to deliver a therapeutically effective amount of the compound. The therapeutically effective amount and method of administration of the antibodies may vary based on the individual patient, the indication being treated and other criteria evident to one of ordinary skill in the art. A therapeutically effective amount of the antibodies is one sufficient to reduce the level of infection by one or more of the viruses of this invention or attenuate any dysfunction caused by viral infection without causing significant side effects such as non-specific T cell lysis or organ damage.




The route(s) of administration useful in a particular application are apparent to one or ordinary skill in the art. Routes of administration of the antibodies include, but are not limited to, parenteral, and direct injection into an affected site. Parenteral routes of administration include but are not limited to intravenous, intramuscular, intraperitoneal and subcutaneous.




The present invention includes compositions of the antibodies described above, suitable for parenteral administration including, but not limited to, pharmaceutically acceptable sterile isotonic solutions. Such solutions include, but are not limited to, saline and phosphate buffered saline for intravenous, intramuscular, intraperitoneal, or subcutaneous injection, or direct injection into a joint or other area.




Antibodies for use to elicit passive immunity in humans are preferably obtained from other humans previously inoculated with pharmaceutical compositions comprising one or more of the polypeptides of the invention. Alternatively, antibodies derived from other species may also be used. Such antibodies used in therapeutics suffer from several drawbacks such as a limited half-life and propensity to elicit an immune response. Several methods are available to overcome these drawbacks. Antibodies made by these methods are encompassed by the present invention and are included herein. One such method is the “humanizing” of non-human antibodies by cloning the gene segment encoding the antigen binding region of the antibody to the human gene segments encoding the remainder of the antibody. Only the binding region of the antibody is thus recognized as foreign and is much less likely to cause an immune response.




In providing the antibodies of the present invention to a recipient mammal, preferably a human, the dosage of administered antibodies will vary depending upon such factors as the mammal's age, weight, height, sex, general medical condition, previous medical history and the like.




In general, it is desirable to provide the recipient with a dosage of antibodies which is in the range of from about 5 mg/kg to about 20 mg/kg body weight of the mammal, although a lower or higher dose may be administered. In general, the antibodies will be administered intravenously (IV) or intramuscularly (IM).




The invention also relates to the use of antisense nucleic acids to inhibit translation of peptides encoded by SIVrcm. The antisense nucleic acids are complementary to SIVrcm mRNAs encoding peptides of this invention. The antisense nucleic acids may be in the form of synthetic nucleic acids or they may be encoded by a nucleotide construct, or they may be semi-synthetic. The antisense nucleic acids may be delivered to the cells using methods known to those skilled in the art.




Kits designed for diagnosis of SIVrcm in a biological sample can be constructed by packaging the appropriate materials, including the nucleic acids and/or polypeptides of this invention and/or antibodies which specifically react with SIVrcm antigens, along with other reagents and materials required for the particular assay.




The following examples illustrate certain embodiments of the present invention, but should not be construed as limiting its scope in any way. Certain modifications and variations will be apparent to those skilled in the art from the teachings of the forgoing disclosure and the following examples, and these are intended to be encompassed by the spirit and scope of the invention.




EXAMPLE 1




PCR Amplification, Molecular Cloning, and Sequence Analysis of the SIVrcm Genome




We have PCR amplified, cloned, and sequenced a complete SIVrcm proviral genome from a short-term PBMC culture originally established from the blood of a Gabonese red capped mangabey (82). Because of the extensive genetic diversity of this new SIV strain, we had to devise a novel PCR strategy to derive its genome. First, we amplified two small fragments in gag and pol using primers corresponding to sequences highly conserved among all known primate lentiviral lineages. This allowed us to subsequently design strain-specific primers to amplify the region between gag and pol (gag/pol) as well as the regions outside (flanking) gag and pol by placing the primers in reverse and amplifying the rest of the genome from unintegrated circular DNA molecules. Strategy and primer pairs are shown in FIG.


1


. Overlapping PCR fragments were sequenced in their entirety.




Sequence analysis of the entire provirus revealed a genomic organization previously found only in members of the HIV-2/SIVsm/SIVmac group of viruses. That is, in addition to gag, pol, vif, vpr, env, tat, rev and nef genes, SIVrcm also encoded a vpx homologue thus far only been found in members of the HIV-2/SIVsm/SIVmac lineage (FIG.


3


). Moreover, secondary structure analysis of its LTR sequences revealed a duplicated TAR stemloop structure, again a signature of SIVsm/SIVmac/HIV-2 viruses (FIG.


4


). Based on these findings, we expected SIVrcm to fall within a greater mangabey lineage, forming a distinct subcluster similar to what has been observed for the four species-specific subclusters of SIVagm.




However, phylogenetic analyses failed to identify such a relationship of SIVrcm with the HIV-2/SIVsm/SIVmac group (FIG.


5


). Instead of grouping closely with other mangabey viruses, SIVrcm clustered independently in most regions of its genome, forming a sixth lineage roughly equidistant from the other viruses (FIG.


5


). In env and nef SIVsm, SIVrcm and SIVagm viruses appeared to be relatively more closely related to each other than they were to SIVcpz, SIVsyk and SIVmnd; however, even in these regions there was no particularly close relationship between the two mangabey lineages (FIGS.


5


C and


5


D). Also, in trees derived from the 3′ and 5′ pol regions, SIVrcm clustered with HIV-1 and SIVcpz viruses, with significant bootstrap values (FIG.


5


B). Finally, there was also a close relationship between SIVrcm and SIVagmSAB, a virus we have previously reported to be mosaic with a divergent mangabey lineage in the 5′ half of its genome (21). In the 5′ half of gag, these two viruses clustered with significant bootstrap values (FIG.


5


A), indicating that SIVrcm likely represents this previously hypothesized divergent mangabey lineage. These results were confirmed by the use of maximum likelihood approaches to determine tree topologies.




The results suggest that SIVrcm represents a highly divergent mangabey virus which forms an independent lineage (for most of its genome) roughly equidistant from all other primate lentiviruses. The extent of diversity between SIVrcm and the other mangabey lineage (SIVsm) is surprising, given the known relationships of SIVagm strains from different African green monkey species. One explanation for this is that mangabeys acquired their SIV infection a very long time ago (millions of years), even before African green monkeys became infected with SIVagm. Another is that these viruses have evolved with in their respective species with vastly different rates of evolution. Also of interest are the close phylogenetic relationships of SIVrcm to SIVcpz in the 3′ and 5′ pol regions, as well as to SIVagmSAB in the gag region, which are highly significant. These finding strongly suggest recombination events in the distant past. However, based on current data it is impossible to determine which of these lineages are mosaic. For example, it is quite conceivable the SIVrcm is non-recombinant and that both SIVcpz and SIVagmSAB viruses acquired SIVrcm sequences independently through cross-species transmission events in the past. This would also mean that HIV-1 is mosaic with SIVrcm related sequences. These findings are important because they indicate that primate lentiviral evolution is far more complex than previously appreciated, and that sequences from additional primate lentiviruses (in particular SIVcpz, SIVrcm, and SIVagm strains from Gabon and Cameroon) are critically needed to resolve the unexpected phylogenetic relationships of SIVrcm.




EXAMPLE 2




Identification of a New Reading Frame in SIVrcm and SIVsm Viruses




Analysis of the SIVrcm sequence revealed that there were about 100 bp of “non-coding sequences” between the splice donor site of the first tat and rev exons, and the initiation codon of the env open reading frame (ORF). Upon closer analysis, it was realized that the first exon of rev, instead of being terminated by a stop codon immediately downstream of the splice site, continued uninterrupted for about 100 more base pairs. Comparison of the genomic organization of members of all other major primate lentiviral lineages indicated that there was only one other group, i.e., the SIVsm/SIVmac group, that had a similarly “extended first rev exon”. All other viruses had stop codons shortly after the splice site (except for members of the HIV-1/SIVcpz group, which encode the vpu gene in this region).





FIG. 6

shows an alignment of the deduced amino acid sequence of the SIVsmPBj1.9 and SIVrcmGB1 extended rev ORFs. The putative PBj protein is 71 amino acids in length, while the putative SIVrcm protein is shorter, i.e., only 54 amino acids. However, this shorter length could be the result of inactivating mutations (frameshift and in frame stop codons). Assuming a “corrected” sequence, the SIVrcm extended rev ORF would encode a 105 amino acid protein (

FIG. 6

) with considerable sequence homology to the corresponding SIVsm product throughout its entire length. Correction of inactivating mutations would restore the predicted coding capacity of the SIVrcm rev ORF to a protein of 105 amino acids, and nucleic acids containing repaired coding sequences, as well as the polypeptides encoded by the repaired coding sequences, are also considered to be a part of the invention.




The conservation of the extended rev ORFs among different members of the HIV-2/SIVsm/SIVmac group of virus was also examined.

FIG. 7

shows an amino acid sequence alignment, including all sequences from the Los Alamos HIV sequence database. The results were surprising: all SIVsm/SIVmac strains encoded a highly conserved and uninterrupted open reading frame; however, all HIV-2 strains, except one (FO784) which we was considered to represent an ill-adapted sooty managbey virus in humans, contained inactivating mutations (stop codons) in this “extended rev ORF”.




The finding of an “extended rev first exon ORF” in both SIVrcm and SIVsm lineages is significant for several reasons: (i) it suggests the existence of a “mangabey virus specific” protein, which likely plays an important role in mangabey virus replication (as do all other accessory proteins); (ii) it suggests the existence of a “mangabey virus specific” protein whose expression may be abrogated as a consequence of SIVsm adaptation to the human host; (iii) it suggests the existence of a “managbey virus specific” protein, which could serve as a functional vpu equivalent (the position of this new ORF in the SIVrcm/SIVsm genome, as well as its overall length, are reminiscent of the vpu gene in HIV-1/SIVcpz, although amino acid sequence homologies between the putative SIVsm/SIVrcm extended first rev exon product and the HIV-1/SIVcpz Vpu protein were not found; however, this is not necessarily surprising since the Vpu proteins among different members of the HIV-1/SIVcpz lineage are so divergent that they cannot be aligned (52). These findings are important for the current application because they highlight another potential structural similarity between SIVrcm and SIVsm lineages. However, additional SIVrcm isolates need to be characterized to confirm the existence of this reading frame (and its putative protein product) among other viruses.




REFERENCES




1. Allan, J. S., M. Short, M. E. Taylor, S. Su, V. M. Hirsch, P. R. Johnson, G. M. Shaw, and B. H. Hahn. 1991. Species-specific diversity among simian immunodeficiency viruses from African green monkeys.


J. Virol.


65:2816-2828.




2. Barre-Sinoussi, F., J. C. Chermann, F. Rey, M. T. Nugeyre, S. Chamaret, J. Gruest, C. Dauguet, C. Axier-Blin, F. Vezinet-Brun, C. Rouzioux, W. Rozenbaum and L. Montagnier. 1983. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS).


Science


220:868-871.




3. Chen, Z., A. Luckay, D. L. Sodora, P. Telfer, P. Reed, A. Gettie, J. M. Kanu, J. A. Yee, D. D. Ho, L. Zhang and P. A. Marx. 1997. HIV-2 Seroprevalence and Characterization of a New HIV-2 Genetic Subtype (F) within the Natural Range of SIV Infected Sooty Mangabeys.


J. Virol.


71:3953-3960.




4. Chen, Z., P. Telfer, P. Reed, A. Gettie, L. Zhang, D. D. Ho and P. A. Marx. 1996. Genetic characterization of new West African Simian Immunodeficiency Virus SIVsm: Geographic clustering of household-derived SIV strains with HIV-2 subtypes and genetically diverse viruses from a single feral sooty mangabey troop.


J. Virol.


70:3617-3627.




5. Chen, Z., P. Telfer, P. Reed, L. Zhang, A. Gettie, D. D. Ho, and P. A. Marx. 1995. Isolation and characterization of the first simian immunodeficiency virus from a feral sooty mangabey (


Cercocbus atys


) in West Africa


J. Med. Primatol.


24:108-115.




6. Chen, Z., P. Zhou, D. D. Ho, N. R. Landau and P. A. Marx. 1997. Genetically divergent strains of simian immunodeficiency virus use CCR5 as a corecptor for entry.


J. Virol.


71:2705-2714.




7. Clavel, F., D. Guetard, F. Brun-Vezinet, S. Chamaret, M. A. Rey, M. O. Santos-Ferreira, A. G. Laurent, C. Dauguet, C. Katlama, C. Rouzioux, D. Klatzmann, J. L. Champalimaud, and L. Montagnier. 1986. Isolation of a new human retrovirus from West African patients with AIDS.


Science


233:343-346.




8. Daniel, M. D. , N. L. Letvin, N. W. King, M. Kannagi, P. K. Sehgal, R. D. Hunt, P. J. Kanki, M. Essex and R. C. Desrosiers. 1985. Isolation of T-cell tropic HTLV-III-like retrovirus from macaques.


Science,


228:1201-1204.




9. Emau, P., H. M. McClure, M. Isahakia, J. G. Else, and P. N. Fultz. 1991. Isolation from African Sykes' monkeys (


Cercopithecus mitis


) of a lentivirus related to human and simian immuno-deficiency viruses.


J. Virol.


65:2135-2140.




10. Faulkner, D. M. and J. Jurka. 1988. Multiple aligned sequence editor (MASE). Trends Biochem.


Science.


13:321-322.




11. Felsenstein, J. 1988. Phylogenies from molecular sequences: inference and reliability.


Annu. Rev. Genet.


22:521-565.




12. Felsenstein, J. 1989. PHYLIP—Phylogeny Inference Package (Version 3.2).


Cladistics


5:164-166.




13. Fultz, P. N., H. M. McClure, D. C. Anderson, R. B. Swenson, R. Anand, and A. Srinivasan. 1986. Isolation of a T-lymphotropic retrovirus from naturally infected sooty mangabey monkeys (


Cercocebus atys


).


Proc. Natl. Acad. Sci. USA


83:5286-5290.




14. Gao, F., L. Yue, D. L. Robertson, S. C. Hill, H. Hui, R. J. Biggar, A. E. Neequaye, T. M. Whelan, D. D. Ho, G. M. Shaw, P. M. Sharp, and B. H. Hahn. 1994. Genetic diversity of human immunodeficiency virus type 2: evidence for distinct sequence subtypes with differences in virus biology.


J. Virol.


68:7433-7447.




15. Gao, F., L. Yue, A. T. White, P. G. Pappas, J. Barchue, A. P. Hanson, B. M. Greene, P. M. Sharp, G. M. Shaw, and B. H. Hahn. 1992. Human infection by genetically diverse SIVsm-related HIV-2 in West Africa.


Nature


(London) 358:495-499.




16. Garnett, G. P., and R. Antia. 1994. Population Biology of Virus—Host Interactions. In The Evolutionary Biology of Viruses, Raven Press, New York, N.Y.




17. Grubb, L. 1982. Refuges and dispersal in the speciation of African forest mamamals. In Biological Diversification in the Tropics, G. T. Prance (ed.) Columbia University Press, New York pp 537-553.




18. Hirsch, V. M., R. A. Olmsted, M. Murphey-Corb, R. H. Purcell, and P. R. Johnson. 1989. An African primate lentiviruses (SIVsm) closely related to HIV-2.


Nature


(London) 339:389-392.




19. Huet, T., R. Cheynier, A. Meyerhans, G. Roelants, and S. Wain-Hobson. 1990. Genetic organization of a chimpanzee lentivirus related to HIV-1.


Nature


(London) 345:356-359.




20. Janssens, W., K. Fransen, M. Peeters, L. Heyndrickx, J. Motte, L. Bedjabaga, E. Delaporte, P. Piot and G. Van Der Groen. 1994. Phylogenetic analysis of a new chimpanzee lentivirus SIVcpz-gab2 from a wild-captured chimpanzee from Gabon.


AIDS Res. Human Retro.


10:1191-1192.




21. Jin, M. J., H. Hui, D. L. Robertson, M. C. Muller, F. Barre-Sinoussi, V. M. Hirsch, J. S. Allan, G. M. Shaw, P. M. Sharp and B. H. Hahn. 1994. Mosaic genome structure of simian immunodeficiency virus from West African green monkeys.


EMBO J.


13:2935-2947.




22. Johnson, P. R., A. Fomsgaard, J. Allan, M. Gravell, W. T. London, R. A. Olmsted, and V. M. Hirsch. 1990. Simian immunodeficiency viruses from African green monkeys display unusual genetic diversity.


J. Virol.


64:1086-1092.




23. Kestler, H. W., Y. Li, Y. M. Naidu, C. V. Butler, M. F. Ochs, G. Jaenel, N. W. King, M. D. Daniel, and R. C. Desrosiers. 1988. Comparison of simian immunodeficiency virus isolates.


Nature


(London) 331:619-622.




24. Kimura, M. 1983. The neutral theory of molecular evolution. Cambridge University Press, Cambridge, United Kingdom.




25. Kraus, G., A. Werner, M. Baier, D. Binniger, F. J. Ferdinand, S. Norley, and R. Kurth. 1989. Isolation of human immunodeficiency virus-related simian immunodeficiency viruses from African green monkeys.


Proc. Natl. Acad. Sci. USA


86:2892-2896.




26. Kusumi, K., B. Conway, S. Cunningham, A. Berson, C. Evans, A. K. N. Iversen, D. Colvin, M. V. Gallo, S. Coutre, E. G. Shpaer, D. V. Faulkner, A>deRonde, S. Volkman, C. Williams, M. S. Hirsch and J. I. Mullins. 1992. Human immunodeficiency virus type 1 envelope gene structure and diversity in vivo and after cocultivation in vitro.


J. Virol.


66:875-885.




27. Kwon, D., et al., Unpublished data.




28. Letvin, N. L., M. D. Daniel, P. K. Sehgal, R. C. Desrosiers, R. D. Hunt, L. M. Waldron, J. J. MacKey, D. K. Schmidt, L. V. Chalifoux, and N. W. King. 1985. Induction of AIDS-like disease in macaque monkeys with T-cell tropic retrovirus STLV-III.


Science


230:71-73.




29. Lowenstine, L. J., N. C. Pedersen, J. Higgins, K. C. Pallis, A. Uyeda, P. A. Marx, N. W. Lerche, R. J. Munn, and M. B. Gardner. 1986. Seroepidemiologic survey of captive Old World primates for antibodies to human and simian retroviruses and isolation of a lentivirus from sooty mangabeys (


Cercocebus atys


).


Int. J. Cancer


38:563-574.




30. Marx, P. A., R. W. Compans, A. Gettie, J. K. Staas, R. M. Gilley, M. J. Mulligan, C. Dexiang, and J. H. Eldridge. 1993. Protection against vaginal SIV transmission with microencapsulated vaccine.


Science


260:1323-1327.




31. Marx, P. A., Y. Li, N. W. Lerche, S. Sutjipto, A. Gettie, J. A. Yee, B. Brotman, A. M. Prince, A. Hanson, R. G. Webster, and R. C. Desrosiers. 1991. Isolation of Simian immunodeficiency virus related to human immunodeficiency virus type 2 from a west African pet sooty mangabey.


J. Virol.


65(8):4480-4485.




32. Marx, P. A., A. I. Spira, A. Gettie, P. J. Dailey, R. S. Veazey, A. A. Lackner, C. J. Mahoney, C. J. Miller, L. E. Claypool, D. D. Ho and N. J. Alexander. 1996. Progesterone Implants Enhance SIV Vaginal Transmission and Early Virus Load. Nature Medicine.


Nature Medicine


2:1084-1089.




33. Miura, T., J. Sakuragi, M. Kawamura, M. Fukasawa, E. N. Moriyama, T. Gojobori, K. Ishikawa, J. A. A. Mingle, V. B. A. Nettey, H. Akari, M. Enami, H. Tujimoto, M. Hayami. 1990. Establishment of a phylogenetic survey system for AIDS-related lentiviruses and demonstration of a new HIV-2 subgroup.


AIDS


4:1257-1261.




34. Mojun J J, H Huxiong, D L Robertson, M C Muller, F. Barre-Sinoussi, V M Hirsch, J S Allan, G M Shaw, P M Sharp and B H Hahn. 1994. Mosaic genome structure of simian immunodeficiency virus from West African Green monkeys.


EMBO J.


13:2935-2947.




35. Muller, M. C., N. K. Saksena, E. Nerrienet, C. Chappey, V. M. Herve, J. P. Durand, P. Legal, M. C. Lang-Campodonico, J. P. Digoutte, A. J. Georges, M. Georges, P. Sonigo, and F. Barre-Sinoussi. 1993. Simian immunodeficiency viruses from central and western Africa: evidence for a new species-specific lentivirus in tantalus monkeys.


J. Virol.


67:1227-1235.




36. Murphey-Corb, M., L. N. Martin, S. R. Rangan, G. B. Baskin, B. J. Gormus, R. H. Wolf, W. A. Andes, M. West and R. C. Montelaro. 1986. Isolation of an HTLV-III related retrovirus from macaques with simian AIDS and its possible origin in asymptomatic mangabeys.


Nature


(London) 321:435-437.




37. Myers, G., B. H. Hahn, J. W. Mellors, L. E. Henderson, B. Korber, K-T Jeang, F. E. McCutchan and G. N. Pavlakis. 1995. Human retorviruses and AIDS. A compilation and analysis of nucleaic acid and amino acid sequences. Los Alamos National Laboratory, Los Alamos, N. Mex.




38. Myers, G., K. MacInnes, and B. Korber. 1992. The emergence of simian/human immunodeficiency viruses.


AIDS Res. Hum. Retroviruses


8:373-386.




39. Nerienet E, Amouretti X, Muller-Trutwin M C, et al. 1998. Phylogenetic analysis of SIV and STLV type I in mandrills (


Mandrillus sphinx


): indications that intracolony transmissions are predominantly the result of male-to-male aggressive contacts.


AIDS Res. Hum. Retroviruses,


14:785-96.




40. Ohta, Y., T. Masuda, H. Tsujimoto, K. Ishikawa, T. Kodama, S. Morikawa, M. Nakai, S. Honjo, and M. Hayami. 1988. Isolation of simian immunodeficiency virus from African green monkeys and seroepidemiologic survey of the virus in various non-human primates.


Int. J. Cancer


41:115-122.




41. Otsyula, M., J. Yee, M. Jennings, M. Suleman, A. Gettie, R. Tarara, M. Isahakia, P. Marx and N. Lerche. 1996. Prevalence of antibodies against simian immunodeficiency virus (SIV) and simian T-lymphotropic virus (STLV) in a colony of non-human primates in Kenya, East Africa.


Annals Trop. Med. Parisitol.


90:65-70.




42. Peeters, M., K. Fransen, E. Delaporte, M. Van den Haesevelde, G.-M. Gershy-Damet, L. Kestens, G. Van der Groen and P. Piot. 1992. Isolation and characterization of a new chimpanzee lentivirus (simian immunodeficiency virus isolate cpz-ant) from a wild-captured chimpanzee.


AIDS


6:447-451.




43. Peeters, M., C. Honore, T. Huet, L. Bedjabaga, S. Ossari, P. Bussi, R. W. Cooper, and E. Delaporte. 1989. Isolation and partial characterization of an HIV-related virus occurring naturally in chimpanzees in Gabon.


AIDS


3:625-630.




44. Peeters, M., W. Janssens, K. Fransen, J. Brandful, L. Hendrickx, K. Koffi, E. Delaporte, P. Piot, G. M. Gershy-Damet, and G. van der Groen. 1994. Isolation of simian immunodeficiency viruses from two sooty mangabeys in Cote d'Ivoire: virological and genetic characterization and relationship to other HIV type 2 and SIVsm/mac strains.


AIDS Res. Hum. Retroviruses.


10:1289-1294.




45. Reimann, K. A., K. Tenner-Racz, P. Racz, D. C. Montefiori, Y. Yasutomi, W. Lin, B. J. Ransil and N. L. Letvin. 1994. Immunopathogenic events in acute infection of rhesus monkeys with simian immunodeficiency virus of macaques.


J. Virol.


68:2362-2370.




46. Robbins C B. 1978. The Dahomey Gap—A reevaluation of its significance as a faunal barrier to West African high forest mammals.


Bull. Carnegie Mus. Nat Hist.


6: 168-174.




47. Sharp, P. M., D. L. Robertson, F. Gao, and B. H. Hahn. 1994. Origins and diversity of human immunodeficiency viruses.


AIDS


8 (Suppl.):S27-S42.




48. Stivahtis, G. L., M. A. Soares, M. A. Vodicka, B. H. Hahn, and M. Emerman. 1997. Conservation and host specificity of Vpr-mediated cell cycle arrest suggest a fundamental role in primate lentivirus evoluation and biology.


J. Virol.


71:4331-4338.




49. Stivahtis, G. L., M. A. Soares, M. A. Vodicka, B. H. Hahn and M. Emerman. 1997. Conservation and host specificity of Vpr-Mediated cell cycle arrest suggest a fundamental role in primate lentivirus evoluation and biology.


J. Virol.


71:4331-4338.




50. Tomonaga K, J Katahira, M Fukasawa, M A Hassan, M Kawamura, H Akari, T Miura, T Goto, M Nakai, M Suleman, M Isahakia and M Hayami. 1993. Isolation and characterization of simian immunodeficiency virus from African white-crowned mangabey monkeys (


Cercocebus torquatus lunulatus


).


Arch. Virol.


129:77-92.




51. Tsujimoto, H., R. W. Cooper, T. Kodama, M. Fukasawa, T. Miura, Y. Ohta, K. I. Ishikawa, M. Nakai, E. Frost, G. E. Roelants, J. Roffi, and M. Hayami. 1988. Isolation and characterization of simian immunodeficiency virus from mandrills in Africa and its relationship to other human and simian immunodeficiency viruses.


J. Virol.


62:4044-4050.




52. Vanden Haesevelde, M. M., M. Peeters, G. Jannes, W. Janssens, G. Van Der Groen, P. M. Sharp and E. Saman. 1996. Sequence analysis of a highly divergent HIV-1-related lentivirus isolated from a wild captured chimpanzee.


Virology


221:346-350.




53. Wolfheim, J. H. 1983. Primates of the world. Univ. of Washington, Seattle.




54. Agarwal et al. 1972,


Angew. Chem. Int. Ed. Engl.


11:451. The phosphotriester method of Hsiung et al. 1979,


Nucleic Acids Res.


6:1371.




55. Baeucage et al. 1981,


Tetrahedron Letters


22:1859-1862. Automated diethylphosphoramidite method.




56. Biedleret et al. 1988.


J. Immunol.


141:4053




57. Hollander, M. C. et al. 1990.


Biotechniques;


9:174-179, RNase protection (Sambrook, J. et al. 1989. In “Molecular Cloning, a Laboratory Manual”, Cold Spring Harbor Press, Plainview, N.Y.).




58. Hsiung et al. 1979.


Nucleic Acids Res


6:1371




59. Jones et al., 1986.


Nature


321:552




60. Kafatos, F. C. et al. 1979.


Nucleic Acids Res.,


7:1541-1522




61. Oellerich, M. 1984.


J. Clin. Chem. Clin. BioChem


22:895-904




62. Sambrook, J. et al. 1989. In “Molecular Cloning, A Laboratory Manual”, Cold Spring Harbor Press, Plainview, N.Y.




63. Southern, E. M. 1975. J. Mol. Biol., 98:503-517.




64. Verhoeyan, et al. 1988.


Science


239:1534.




65. Watson, J. D., et al. 1992. In “Recombinant DNA” Second Edition, W. H. Freeman and Company, New York.




66. Alwine, J. C., et al. 1977.


Proc. Natl. Acad. Sci.,


74:5350-5354.




67. See, e.g., Anderson, et al. 1996.


Antimicrob. Agents Chemother.,


40:2004-2011; Azad, et al. 1995.


Antiviral Res.,


28:101-111; Azad, et al. 1993.


Antimicrob. Agents Chemother.,


37:1945-1954; Leeds, et al. 1997.


Drug. Metab. Dispos.,


25:921-926; and references therein. See also, Cook, P. D., 1993. Monomers for preparation of oligonucleotides having chiral phosphorus linkages. U.S. Pat. No. 5,212,295 (general method of making DNA analogs, including phosphorothioates, thioesters, etc.); and Iyer et al. 1990


J. Org. Chem.


55:4693-4699 (synthetic method for making phosphorothioate oligos).




68. See, e.g., Nielsen, et al., WO 98/03542, Hyrup and Nielsen 1996.


Bioorg. Med. Chem.


4:5-23; and Nielsen, et al. 1991.


Science


254:1497-1500; and references therein.




69. Lu S, Arthos J. Montefiori D C, et al. Simian immunodeficiency virus DNA vaccine trial in macaques.


J. Virol


1996;70:3978-91.




70. Haynes J R, Fuller D H, Eisenbraun M D, Ford M J, Pertmer T M. Accell particle-mediated DNA immunization elicits humoral, cytotoxic and protective responses.


AIDS Res Human Retroviruses


1994; 10 (suppl 2): S43-5.




71. Okuda, K, Bukawa H, Hamajima K, et al. Induction of potent humoral and cell-mediated immune responses following direct injection of DNA encoding the HIV type 1 Env and Rev gene products.


AIDS Res Hum Retroviruses


1995;11:933-43.




72. Wang B, Boyer J D, Srikantan V, et al. Induction of humoral and cellular immune responses to the human immunodeficiency type 1 virus in non-human primates by in vivo DNA inoculation.


J. Virol


1995; 21:102-12.




73. Boyer J D, Wang B, Ugen K, et al. In vivo protective anti-HIV immune responses in non-human primates through DNA immunization.


J. Med. Primatol.


1996; 25-242-50.




74. Boyer J D, Ugen K E, Chattergoon M, et al. DNA vaccination as anti-HIV immunotherapy in infected chimpanzees.


J. Infect. Dis.


1997;176:1501-9.




75. Simon F; Mauclere P; Roques P; Loussert-Ajaka I; Muller-Trutwin M C; Saragosti S; Georges-Courbot M C; Barre-Sinoussi F; Brun-Vezinet F. Identification of a new human immunodeficiency virus type 1 distinct from group M and group O.


Nature Medicine,


4:1032-1037.




76. See, e.g., Naldini, N., Blömer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., Verma, I. M. and Trono, D., “In Vivo Gene Delivery and Stable Transduction of Nondividing Cells by a Lentiviral Vector”,


Science,


272:263-267 (1996); Srinivasakumar, N., Chazal, N., Helga-Maria, C., Prasad, S., Hammarskjöld, M.-L., and Rekosh, D., “The Effect of Viral Regulatory Protein Expression on Gene Delivery by Human Immunodeficiency Virus Type 1 Vectors Produced in Stable Packaging Cell Lines”,


J. Virol.,


71:5841-5848 (August 1997); Zufferey, R., Nagy, D., Mandel, R. J., Naldini, L. and Trono, D., “Multiply Attenuated Lentiviral Vector Achieves Efficient Gene-Delivery In Vivo”,


Nature Biotechnology,


15:871-875 (September 1997); and Kim, V. N., Mitrophanous, K., Kingsman, S. M., and Kingsman, A. J., “Minimal Requirement for a Lentivirus Vector Based on Human Immunodeficiency Virus Type 1


”, J. Virol.,


72:811-816 (January 1998); concerning lentiviral vectors.




77. See, e.g., Schwartz et al.,


J. Virol.,


66:7176-7182(1992); International Publication No. WO 93/20212 (1993); Schneider, R., Campbell, M., Nasioulas, G., Felber, B. K., and Pavlakis, G. N., “Inactivation of the human immunodeficiency virus type 1 inhibitory elements allows Rev-independent expression of Gag and Gag/protease and particle formation,”


J. Virol ,


71:4892-4903 (1997) concerning the identification and mutation of inhibitory and instability regions using multiple point mutations within HIV-1 gag, protease and pol coding regions to reduce the effects of these regions and increase expression of the encoded polypeptide.




78. MacGregor et al.,


J. Infect Dis







178:92-100 (1998).




79. Donnelly et al.,


Annu. Rev. Immunol.


15:617-648 (1997).




80. Winzeler et al.,


Science


281:1194-1197 (1998)




81. Ulmer et al.,


Science,


259:1745-1749 (1993)




82. Georges-Courbot et al.,


J. Virol.,


72:600-608 (1998)




Modification of the above described invention that are obvious to those of skill in the fields of genetic engineering, immunology, protein chemistry, medicine, and related fields are intended to be within the scope of the following claims.




All of the references cited herein above are hereby incorporated by reference.







58




1


9465


DNA


Simian immunodeficiency virus




Nucleotide sequence of the SIVrcm genome





1
tggcgcccga acagggactt gagagtggct gagagacctc cgaggctaag gttcggcgcg 60
gcaggtcacc gcgggagtgg aaccttgacc aggtaagagc tgcctggtgg cttcaaagtg 120
ctagagaaag tgagctagcg aaggaagcag ggcaacccgg tccggtactg ggcctctagg 180
gaaggagcga agtcctagag aagggaggaa aatgggtgcg agagcctcat tgttgtcagg 240
gaagaagcta gacgcatggg aatcagttag gttacggccc ggcgggaaaa agaaatacat 300
gctgaagcat ttggtatggg catgcaaaaa actaaataaa tttggcttga gtgatcattt 360
gttagaaaca gcaacaggat gtgaaaaaat attaggagtc ctgctgcctc tagttccgac 420
agggtcagag gggctaaaaa gcctctttaa tttgtgctgc gtactctggt gcgtacacaa 480
ggaagtgaaa gtgaaagaca cagaggaagc tgtagcaaaa gtgaaagaat gctgccatct 540
agtggaaaaa gcagaaaata caacagaaaa agaaaaggga gcaacagcgc cacctagtgg 600
acaaagagga aattatccta taattactat aaatcagcag cctgagcata atcctatatc 660
accaaggact ctaaatgcct gggtcaaggt ggtagaggag aaaaaattct cagcagaagt 720
agcgcccatg ttctcggcac tatcagaagg ctgcataccc tatgatataa atcaaatgct 780
aaatgccata ggggaacacc agggtgcgct gcagatagta aaggaagtga tcaatgagga 840
agcagcagac tgggatgcta gacatccagt accaggcccg ataccagcag ggcaacttag 900
agaaccaaca ggaagtgaca tagcagggac aactagctca atagcagaac agatagcttg 960
gaccaccaga gcaaacaacc ccattaatgt gggcaatctg tacagaaatt ggataatagt 1020
agggttacaa aaatgggtaa aaatgtacaa tccagtgaac atcctagata taaagcaagg 1080
accaaaagag tcattcaagg attatgtgga tagattttat aaagccttga gagcagaaca 1140
ggcagacccg gcagtaaaaa attggatgac acaatcactg ctgatacaaa atgctaaccc 1200
agactgtaaa atggtactca agggtctggg aatgaaccct tctttagaag aaatgctaac 1260
agcctgtcag ggggtaggag gaccccagca taaagctcgg gtactagcag aggccatgca 1320
aatgatgcaa agtaatatca tggctcagca atcagcaaac agggggcctc caagaagatc 1380
aggaggaaat ccaaatttaa gatgttacaa ttgtggtaag ccaggacaca tttctagata 1440
ttgtaaagcc cctagaagga agggatgctg gaaatgtgga tccccagacc atctcttgaa 1500
agactgcaca aagcaaataa attttttagg gagactcccc tggggtcagg ggaagccgag 1560
gaactttcct ttgacttcct tgactccctc tgctccaggg atggagagca attacgaccc 1620
tgcagaagag atgctaaaga attatctgag gagggcaggg gaacaaaaga gacaacagag 1680
gcaggaagag agcaagaaga gagagggagc atatcaggaa gccttaacct ccctcaattc 1740
gctctttgga agcgaccaac tacaatagct caaatagaag ggcagaaagt ggaggtccta 1800
ttagacacag gagcagatga cacagtaatt gaaggaatag aattaggaaa tgattggacc 1860
ccaaaaataa taggaggaat agggggatat attaatgtaa aacaatataa aaactgtgaa 1920
attgaaatag ctggaaaaag gactcatgct catgtgctag tgggaccaac accagtgaat 1980
attataggga gaaatgtttt aaagaaatta ggagccacac taaattttcc aataagccaa 2040
atagaaacta taaaggtaga attaaagtct ggacaagatg gaccacgagt aaaacaatgg 2100
ccattgtcaa aagaaaaaat agaagcttta acagaaattt gcaatgcaat ggagaaggaa 2160
ggaaaaattt caaaaatagg gccagaaaac ccctacaaca caccaatatt ctgtattaaa 2220
aagaaagact ccacaaaatg gagaaaattg gtagatttta gagaactaaa taagagaaca 2280
caggactttt ttgaggtgca gctgggaata ccacatccag gaggattaaa gcaatgtgag 2340
agaataacgg tattagacat cggggatgca tatttttcat gtcttctgta tgagcctttt 2400
aggaaatata ctgcatttac aataccagca gtaaataatc aaggaccagg agtgaggtat 2460
caatataatg tgctgcctca gggatggaag ggatctcccg ccatctttca ggcatcagcc 2520
aataagatct tacagccatt tagggaagag aatccagatg tcatcattta ccagtacatg 2580
gatgatctct ttgtaggctc agatagaaca aagttggaac atgacaaaat gatcaaacaa 2640
ttaagagatc atctactgtt ctggggcttt gagaccccag acaaaaaatt tcaggataaa 2700
cctccatatt tgtggatggg gtatgagctg cacccaaaaa gttggacagt acaggagatc 2760
aagttaccag agaaagaaga atggacagtt aacgatattc agaaattagt aggaaagtta 2820
aactgggcaa gtcaaattta cagtgggcta aggactaagg aattgtgcaa gttgataagg 2880
ggagcaaaag cattagatga aaaagtagaa atgacaaaag aagcagaaat agaatatgaa 2940
gaaaacaaga tgattctaaa agaaaagttg catggggtgt attatgatga aaagaaaccc 3000
ttagtggcaa acattcagaa gttagaaggt ggacagtggt cctatcaaat agaacaggag 3060
tcaggaaaac cactgaaaac aggcaaatat gctaagcaga aaacagcaca caccaatgaa 3120
attagaatgc tggcagggtt agtacaaaaa attgcaaaag aagccatagt tatttgggga 3180
aggctgccaa cattcagact gccaatagag agagaggtat gggactaatg gcggtcccaa 3240
tactggcagg ttacctggat accagattgg gaatttgtta gcacaccacc tcttattaga 3300
ctcgggtaca acctagttaa ggatcccata ccaggagagg aagtctacta tgtggatggg 3360
gcagctaaca gaaatagtaa aataggaaag gcgggatatg ttacaaatag aggaaaagaa 3420
aaggtaaaag aattagaaga aactactaat caaaaagcag aattagaagc agtattactg 3480
gcattaaaag attcagggcc taaagtaaac atagtcacag attcacagta tgtttatgga 3540
attctagaag cacaaccaga tactagtgac tcagggttag tgacagaaat tataaatcag 3600
atgataggga aagaagcagt gtacctttcc tgggtgcccg cacataaggg catcggagga 3660
aatgaggaag tagataaatt agttagtaaa ggaatcagac aggtactgtt cctagatggg 3720
atagaaaaag cacaagaaga acatgaaaag tatcataata attggagagc attggcagaa 3780
gattttcaaa ttccacaaat agtggcaaaa gaaatagtag cacagtgtcc aaaatgtcaa 3840
gtaaaagggg aagcaatcca tgggcaagtg gatgcaagtc cagggacttg gcaaatggac 3900
tgcacacatt tggaaggaaa aataatcata gtagcagtcc atgtggcaag tggatatata 3960
gaggcagaag taataccagc agaaacagga aaagagacag cacatttcct gttgaaacta 4020
gcagcaagat ggccagtaag gaagctacac acagataatg gagcaaattt cacaagtgca 4080
gcagtacagg cggtctgctg gtgggctcag atagagcacg cctttggagt accttacaat 4140
cctcaaagtc aaggagtagt ggaaagcatg aataaacaat taaaaataat catagaacaa 4200
gtaagagaac aagcagaaaa attagaaaca gcagtccaaa tggcagtttt ggttcacaat 4260
tttaaaagaa aaggggggat tggggggtac agtgcaggag aaagaataat agatataata 4320
gcaacagact tagcaaccaa taaattacaa aatcaaattt caaaaattca aaattttcgg 4380
gtttattaca gagaaggaag ggatcaactg tggagaggtc cagctaagct gatctggaaa 4440
ggagaaggag cagtagtcat ccaggaggag actggagact tgaaggtagt ccccaggaga 4500
aaagcaaaaa tcataaaaga atatggcaga aaagatgtgg atagtgaggc caatttggcg 4560
ggtagacagg aggaaaattg aacaatggca ctctttggta aaatatcatc agtacaaagg 4620
aaagaaagca gcaaaagagt gggagtatgt gcctcacttt aaagtaccat ggggatggtg 4680
gtcgcattca gaagttcaca tacctttaga ggaaggatca aagttaaaaa taaccaccta 4740
ttggaatttg acagtagaaa agggatggct agggacatat ggggtaggaa tcttatggat 4800
aaaaggagat tatgtaacag atgtatttcc ttggactgca gatagtttaa tacataaaat 4860
ttattttcca tgttttacag atagagcaat cagacaaagt ctactagggg aaaaagttct 4920
agtgtgtgcc ttccaagggg gacatagaga tcaggtaggg actctgcaat ttttggcaat 4980
acaagcgtgg gctaaaagtc agttagatag gtatggcaga aagagccccc gaggtcccca 5040
ctggggctgg agaagcagag ttccagcctt ggctacggga catgctagaa aaggtcaact 5100
tggaagccag gttacacttt catccagagt tcattttccg tctgtggcgc acttgtgtgg 5160
aacactggca tgacgtacat cagagaagtt tagaatatgc tgcttatagg tacttactgc 5220
tgatgcaaaa ggctttgttt atccactgtc agacagggtg tagtcagaga catggaccca 5280
atcctagggc agtaggagaa aggataacca tcctaccggg gatgtaatga tggccctctc 5340
tttacagaga tggagctgcc ccctgaggat gaaggtccgc aacgagaacc ttatgatgaa 5400
tggttaatgg ataccctaat agagttgcaa gaagaagcta agaaacattt tacatatgct 5460
ttgctaacgc aaataggaga ttatgtatat gagcaacatg gggatagcat agagggagtg 5520
caggcaatga ttcggctgct tcaaagagcc ttgtttcttc attttagaaa tggatgtgca 5580
gggagtagga ttggaacatc cagaggaagt aatcctctac gatccattcc gcaaacgaga 5640
aacatcatgt aacacttgtt attgtaaaaa atgttgttat cactgccaac tctgcttcct 5700
gcagaaagga ctaggcataa attatgcttc cagggcaaga cgaagaagat ctaaggaaga 5760
aaataaggct gataaatttc ctgtacctaa tcagtaagta tggagtgccc tggactagta 5820
ctgcttttag agcctcagct aaaaaggttt ttatagatct tttagttaca ataattaaag 5880
gaaaatagaa taagataaga tggataagaa attagtaata gtattaatag tagtaatagg 5940
gataatacta gtacaaggat cacaaaaacc gcaatatata acagtcttct atggtgtccc 6000
agtatggaga aacagcacag tgcctatgtt ttgtgtgact gataatactc aatcatgggg 6060
aactctaaat tgtataccag agggaggaat atctccagag gtttcaataa atgtgtcaga 6120
acgatttgat gcttggaata atagcttata tgaacaagca aaagataatg tgtggaatct 6180
ttatgattcc actctaaaac catgtgtcag attaagccca ttatgtatta ccatgaattg 6240
ttcagcaata aatggtagct gggatggaat ccctacctca gcaccaccaa caacaacaaa 6300
aacaacaaca caaagaacta taggtgtaga aaaggaatgt actgctggca acgaaacatg 6360
tgaggaagtt caggatgcag atgtgatgtc ttgtgaattt gctgtagcag gactaaagag 6420
agatgagaaa cacaagtata atgatacctg gtattctaga gacctttggt gtgaaaagga 6480
aacaaattct acaaattcta caaaaaagaa atgttttgta aggcactgca atacaacttc 6540
catacaacaa ttttgtgaac caaagtactg ggaaccattt aggttaagat attgtgctcc 6600
accagggttt gccttactgg tctgcaaaga taaaaattat acaggctttg atacctgtgt 6660
taatgttact gccacttcat gcacacatat gattaatact actgtggcct cagggtttgg 6720
attaaatgga tcaattaatg taaatgagac ttggatatat cagagaaggc aaagtaatag 6780
gacagttata ggtctcaata gtttttataa tttgtcagta acatgcagga gaccttcaaa 6840
tagaacagtg aaagggatat cgctagcaac aggagtcttt atctcactaa gagtagagaa 6900
gagaccaaaa ggagcttggt gtagatttga agggaattgg acggatgcat ggaaagaagt 6960
aaaagagaga gtgaaaacaa caaaagggta tcgaggtact agtaacacag acaaaataaa 7020
gataagaaca gtatatggtg gagatgatga ggcaagatat ttctggctaa attgtaatgg 7080
agaattttta tattgcaagt taaattggtt tttaaatttg ttaaataatg agacagtagg 7140
gacaacaaat gagaagagaa aagcaccttt tgtaccatgc atcacaaaaa tgatagtcaa 7200
tgattggtat acagtatcga ggaaggtata cacgccaccg aggccagatg cgttaaagtg 7260
cagtgcacag gtatcctatc tgttggcaga catagactat attaatgaca gtgagacaaa 7320
catcaccctc tcagcggaag tgggtgatta ttgggcagca gaattgggga gatataaggc 7380
aatagaaatc agaccaattg gctttgcacc aacagaaata aaaaggtacc agacgaaaca 7440
gaaaagggta cctttggtgc tgggttttct aggtttcctc tcagcagcag gtactgcaat 7500
gggcgcagcg gcgacagccc tgactgtcca gtcccggcat ttgcttgcag ggatattgca 7560
gcagcaaaag aacctgctgg acatagttaa gcggcagcag aatctgctaa agctcaccgt 7620
ctggggaact aaaaatctcc aggcgcgtgt cactgctatt gagaaatacc tagcagacca 7680
atctctattg aatacatttg ggtgtgcctg gagacaagtc tgccatacag tggtgccgtg 7740
gacattcaac aaaacgcctg agtggcagaa agaatcatgg ttgcagtggg aaagaaatat 7800
ctcttattta gaggctaaca ttacaatagc attacaggag gcccaggatc aacatgagaa 7860
aaatgtgcat gaattggaga aattaagtaa ttggggagat gcattcagtt ggctgaatct 7920
tgactggtgg atgcaatata taaaaatagg cttctttata gtaataggta tcataggatt 7980
aagagtagct tggctgttat ggaattgtct tagtaatctt aggcaagggt ataggcctct 8040
ctccccaccc tcttatgttc agcagatcca tatccacaac acgggggaac cgcaaactcc 8100
aggagaaaaa agagaagacg gtggagaaga aggtggcaac aagtacaaca attggctgag 8160
agaatattgc tggattcaac tgatccaccc gttgagcagg atttggacgc agctatcgca 8220
gatttgcaga agctgcagct caataatctt ccagagcctc cggtggattt tagctaagat 8280
acaatatggg tggcaagagt tcaaagaatt cagcagctgg tttgctgaga tggcgcttca 8340
aaatgcttac tacacctgga gagggttatg tgcggtggca cgagactttg ctggatggcc 8400
agccatggtg tgcagaagga tcaggcaggg cctcgagaga ctttgtaatt agaggaggca 8460
ttacagcaga aacgcaagct tcaatagatg acattgactg gtatgaagat actgatgaca 8520
ccttggtagg atttccagtg aaacctcaag taccacttag accaatgagt tacaagctag 8580
caatagacat gtctcacttt ttaaaagaaa aggggggact ggaagggatt tattggagta 8640
tcagaagaca aagaatattg gatatgtacc tggaaaatga gcatggcata atacctgatt 8700
ggcaaaacta cactccaggg ccaggaataa gatatccaac actgtttgga tggctctggc 8760
aattggtgcc agtagatgta tctgatgaag caagagaaga tgaagagcat agtttgctac 8820
atccagcaga aacaagtggg atggaagacc catgggggga ggtcttggcc tggaagttta 8880
atcctatgct ggcagtagat tacataggct atagactgca tccagagttc tttggggaaa 8940
ggaagaacaa gacccagtaa ccacatcctc tggggttgcc ttggtaacca ggcagaagaa 9000
tctgctgatg caaaagggac tttccactgg tgcatgcgca ctggggaagg gactttccgg 9060
gatgacgtgg gagggggagt ggtcagccct ctcctgctgc atataagcag ctgctctgcg 9120
cttgtaaaac gggtctctcc ctgggaggct accggattga gcctgggtgt tctctggtaa 9180
gtctctagga actccagctt gagcctgggt gttcgctggt gtctctgaac aggcttgctg 9240
gggtgcctct cgctcttcgg gtagaccgcc agttgaggct cggccggcct caacgggaga 9300
gatcaccgct tgcttatagc cttgaagctc aataaagcat gccagttagt ttactgtaag 9360
caagtgtgtg cctgttttac ctctcagcag ttaacgactc tggggtaggg atccctcaga 9420
ttcttgtggc agaagagcct tgggctaaga aaattcccta ccagt 9465




2


25


DNA


Simian immunodeficiency virus




Gag A primer





2
aggttacggc ccggcggaaa gaaaa 25




3


32


DNA


Simian immunodeficiency virus




Gag B primer





3
cctactccct gacaggccgt cagcatttct tc 32




4


28


DNA


Simian immunodeficiency virus




Gag 1 primer





4
ttagagaacc aacaggaagt cacatagc 28




5


25


DNA


Simian immunodeficiency virus




Gag 2 primer





5
tccacagttg atcccttcct tctct 25




6


23


DNA


Simian immunodeficiency virus




Gag r1 primer





6
tcggaactag aggcagcagg act 23




7


25


DNA


Simian immunodeficiency virus




Gag r2 primer





7
ctagcagcaa gatggccagt aagga 25




8


23


DNA


Simian immunodeficiency virus




UNIPOL1 primer





8
agtggattca tagaagcaga agt 23




9


19


DNA


Simian immunodeficiency virus




SS2 primer





9
tactgcccct tcacctttc 19




10


850


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region of
SIVrcm lentiviral env protein






10
Met Asp Lys Lys Leu Val Ile Val Leu Ile Val Val Ile Gly Ile Ile
1 5 10 15
Leu Val Gln Gly Ser Gln Lys Pro Gln Tyr Ile Thr Val Phe Tyr Gly
20 25 30
Val Pro Val Trp Arg Asn Ser Thr Val Pro Met Phe Cys Val Thr Asp
35 40 45
Asn Thr Gln Ser Trp Gly Thr Leu Asn Cys Ile Pro Glu Gly Gly Ile
50 55 60
Ser Pro Glu Val Ser Ile Asn Val Ser Glu Arg Phe Asp Ala Trp Asn
65 70 75 80
Asn Ser Leu Tyr Glu Gln Ala Lys Asp Asn Val Trp Asn Leu Tyr Asp
85 90 95
Ser Thr Leu Lys Pro Cys Val Arg Leu Ser Pro Leu Cys Ile Thr Met
100 105 110
Asn Cys Ser Ala Ile Asn Gly Ser Trp Asp Gly Ile Pro Thr Ser Ala
115 120 125
Pro Pro Thr Thr Thr Lys Thr Thr Thr Gln Arg Thr Ile Gly Val Glu
130 135 140
Lys Glu Cys Thr Ala Gly Asn Glu Thr Cys Glu Glu Val Gln Asp Ala
145 150 155 160
Asp Val Met Ser Cys Glu Phe Ala Val Ala Gly Leu Lys Arg Asp Glu
165 170 175
Lys His Lys Tyr Asn Asp Thr Trp Tyr Ser Arg Asp Leu Trp Cys Glu
180 185 190
Lys Glu Thr Asn Ser Thr Asn Ser Thr Lys Lys Lys Cys Phe Val Arg
195 200 205
His Cys Asn Thr Thr Ser Ile Gln Gln Phe Cys Glu Pro Lys Tyr Trp
210 215 220
Glu Pro Phe Arg Leu Arg Tyr Cys Ala Pro Pro Gly Phe Ala Leu Leu
225 230 235 240
Val Cys Lys Asp Lys Asn Tyr Thr Gly Phe Asp Thr Cys Val Asn Val
245 250 255
Thr Ala Thr Ser Cys Thr His Met Ile Asn Thr Thr Val Ala Ser Gly
260 265 270
Phe Gly Leu Asn Gly Ser Ile Asn Val Asn Glu Thr Trp Ile Tyr Gln
275 280 285
Arg Arg Gln Ser Asn Arg Thr Val Ile Gly Leu Asn Ser Phe Tyr Asn
290 295 300
Leu Ser Val Thr Cys Arg Arg Pro Ser Asn Arg Thr Val Lys Gly Ile
305 310 315 320
Ser Leu Ala Thr Gly Val Phe Ile Ser Leu Arg Val Glu Lys Arg Pro
325 330 335
Lys Gly Ala Trp Cys Arg Phe Glu Gly Asn Trp Thr Asp Ala Trp Lys
340 345 350
Glu Val Lys Glu Arg Val Lys Thr Thr Lys Gly Tyr Arg Gly Thr Ser
355 360 365
Asn Thr Asp Lys Ile Lys Ile Arg Thr Val Tyr Gly Gly Asp Asp Glu
370 375 380
Ala Arg Tyr Phe Trp Leu Asn Cys Asn Gly Glu Phe Leu Tyr Cys Lys
385 390 395 400
Leu Asn Trp Phe Leu Asn Leu Leu Asn Asn Glu Thr Val Gly Thr Thr
405 410 415
Asn Glu Lys Arg Lys Ala Pro Phe Val Pro Cys Ile Thr Lys Met Ile
420 425 430
Val Asn Asp Trp Tyr Thr Val Ser Arg Lys Val Tyr Thr Pro Pro Arg
435 440 445
Pro Asp Ala Leu Lys Cys Ser Ala Gln Val Ser Tyr Leu Leu Ala Asp
450 455 460
Ile Asp Tyr Ile Asn Asp Ser Glu Thr Asn Ile Thr Leu Ser Ala Glu
465 470 475 480
Val Gly Asp Tyr Trp Ala Ala Glu Leu Gly Arg Tyr Lys Ala Ile Glu
485 490 495
Ile Arg Pro Ile Gly Phe Ala Pro Thr Glu Ile Lys Arg Tyr Gln Thr
500 505 510
Lys Gln Lys Arg Val Pro Leu Val Leu Gly Phe Leu Gly Phe Leu Ser
515 520 525
Ala Ala Gly Thr Ala Met Gly Ala Ala Ala Thr Ala Leu Thr Val Gln
530 535 540
Ser Arg His Leu Leu Ala Gly Ile Leu Gln Gln Gln Lys Asn Leu Leu
545 550 555 560
Asp Ile Val Lys Arg Gln Gln Asn Leu Leu Lys Leu Thr Val Trp Gly
565 570 575
Thr Lys Asn Leu Gln Ala Arg Val Thr Ala Ile Glu Lys Tyr Leu Ala
580 585 590
Asp Gln Ser Leu Leu Asn Thr Phe Gly Cys Ala Trp Arg Gln Val Cys
595 600 605
His Thr Val Val Pro Trp Thr Phe Asn Lys Thr Pro Glu Trp Gln Lys
610 615 620
Glu Ser Trp Leu Gln Trp Glu Arg Asn Ile Ser Tyr Leu Glu Ala Asn
625 630 635 640
Ile Thr Ile Ala Leu Gln Glu Ala Gln Asp Gln His Glu Lys Asn Val
645 650 655
His Glu Leu Glu Lys Leu Ser Asn Trp Gly Asp Ala Phe Ser Trp Leu
660 665 670
Asn Leu Asp Trp Trp Met Gln Tyr Ile Lys Ile Gly Phe Phe Ile Val
675 680 685
Ile Gly Ile Ile Gly Leu Arg Val Ala Trp Leu Leu Trp Asn Cys Leu
690 695 700
Ser Asn Leu Arg Gln Gly Tyr Arg Pro Leu Ser Pro Pro Ser Tyr Val
705 710 715 720
Gln Gln Ile His Ile His Asn Thr Gly Glu Pro Gln Thr Pro Gly Glu
725 730 735
Lys Arg Glu Asp Gly Gly Glu Glu Gly Gly Asn Lys Tyr Asn Asn Trp
740 745 750
Leu Arg Glu Tyr Cys Trp Ile Gln Leu Ile His Pro Leu Ser Arg Ile
755 760 765
Trp Thr Gln Leu Ser Gln Ile Cys Arg Ser Cys Ser Ser Ile Ile Phe
770 775 780
Gln Ser Leu Arg Trp Ile Leu Ala Lys Ile Gln Tyr Gly Trp Gln Glu
785 790 795 800
Phe Lys Glu Phe Ser Ser Trp Phe Ala Glu Met Ala Leu Gln Asn Ala
805 810 815
Tyr Tyr Thr Trp Arg Gly Leu Cys Ala Val Ala Arg Asp Phe Ala Gly
820 825 830
Trp Pro Ala Met Val Cys Arg Arg Ile Arg Gln Gly Leu Glu Arg Leu
835 840 845
Cys Asn
850




11


855


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region of
A_U455 lentiviral env protein






11
Met Arg Val Met Gly Ile Gln Arg Asn Tyr Pro Cys Leu Trp Arg Trp
1 5 10 15
Gly Thr Met Ile Leu Gly Leu Ile Ile Ile Cys Asn Ala Gln Gln Leu
20 25 30
Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Lys Asp Ala Val Thr
35 40 45
Thr Leu Phe Cys Ala Ser Asp Ala Lys Ala Tyr Asp Ala Glu Val His
50 55 60
Asn Val Trp Ala Thr His Ala Cys Val Pro Thr Asp Pro Asn Pro Gln
65 70 75 80
Glu Ile Asp Leu Val Asn Val Thr Glu Glu Phe Asn Met Trp Lys Asn
85 90 95
Asn Met Val Asp Gln Met His Glu Asp Ile Ile Ser Leu Trp Asp Gln
100 105 110
Ser Leu Lys Pro Cys Val Lys Leu Thr Pro Leu Cys Val Thr Leu Asp
115 120 125
Cys His Asn Ile Thr Ile Asn Asn Thr Asn Asn Asn Thr Asn Ile Thr
130 135 140
Asp Gly Val Arg Glu Glu Met Lys Asn Cys Ser Phe Asn Met Thr Thr
145 150 155 160
Glu Leu Arg Asp Lys Lys Gln Lys Val Tyr Ser Leu Phe Tyr Arg Leu
165 170 175
Asp Ile Val Gln Ile Asn Lys Thr Asp Asn Asn Ser Tyr Arg Leu Ile
180 185 190
Asn Cys Asn Thr Ser Thr Ile Thr Gln Ala Cys Pro Lys Val Ser Phe
195 200 205
Glu Pro Ile Pro Ile His Tyr Cys Ala Pro Ala Gly Phe Ala Ile Leu
210 215 220
Lys Cys Lys Asp Pro Glu Phe Asn Gly Lys Gly Pro Cys Arg Asn Val
225 230 235 240
Ser Thr Val Gln Cys Thr His Gly Ile Lys Pro Val Val Ser Thr Gln
245 250 255
Leu Leu Leu Asn Gly Ser Leu Ala Glu Arg Glu Ile Arg Ile Arg Ser
260 265 270
Glu Asn Phe Thr Asn Asn Ala Lys Thr Ile Ile Val Gln Leu Val Asn
275 280 285
Pro Val Lys Ile Asn Cys Ser Arg Pro Tyr Asn Thr Arg Lys Asn Ile
290 295 300
Arg Arg Tyr Ser Ile Gly Ser Gly Gln Ala Phe Tyr Val Thr Gly Lys
305 310 315 320
Ile Ile Gly Asp Ile Arg Gln Ala His Cys Asn Val Ser Arg Arg Asp
325 330 335
Trp Asn Arg Thr Ile Gln Gln Val Ala Glu Gln Leu Lys Lys Lys Phe
340 345 350
Asn Asn Lys Thr Ile Ile Phe Ala Ser Ser Ser Gly Gly Asp Ile Glu
355 360 365
Ile Thr Thr His Ser Phe Asn Cys Gly Gly Glu Phe Phe Tyr Cys Asn
370 375 380
Thr Ser Gly Leu Phe Asn Ser Ile Trp Asn Gly Ser Met Ser Asn Asp
385 390 395 400
Met Gly Pro Asn Gly Thr Ile Thr Leu Gln Cys Arg Ile Lys Gln Ile
405 410 415
Ile Asn Met Trp Gln Arg Val Gly Gln Ala Met Tyr Ala Pro Pro Ile
420 425 430
Gln Gly Val Ile Arg Cys Glu Ser Asn Ile Thr Gly Leu Leu Leu Thr
435 440 445
Arg Asp Gly Gly Thr Asn Asn Thr Lys Asn Glu Thr Phe Arg Pro Gly
450 455 460
Gly Gly Asp Met Arg Asp Asn Trp Lys Ser Glu Leu Tyr Lys Tyr Lys
465 470 475 480
Val Val Lys Ile Glu Pro Leu Gly Val Ala Pro Thr Arg Ala Lys Arg
485 490 495
Arg Val Val Glu Arg Glu Lys Arg Ala Val Gly Leu Gly Ala Ile Phe
500 505 510
Leu Gly Phe Leu Gly Ala Ala Gly Ser Thr Met Gly Ala Ala Ser Ile
515 520 525
Thr Leu Thr Val Gln Ala Arg Gln Leu Leu Ser Gly Ile Val Gln Gln
530 535 540
Gln Ser Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu Leu Lys
545 550 555 560
Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Val Leu Ala Val
565 570 575
Glu Arg Tyr Leu Gln Asp Gln Gln Leu Leu Gly Ile Trp Gly Cys Ser
580 585 590
Gly Lys Leu Ile Cys Thr Thr Thr Val Pro Trp Asn Ser Ser Trp Ser
595 600 605
Asn Lys Ser Gln Glu Asp Ile Trp Asn Asn Met Thr Trp Leu Gln Trp
610 615 620
Glu Lys Glu Ile Ser Ser Tyr Thr Gly Ile Ile Tyr Gln Leu Ile Glu
625 630 635 640
Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Leu Asp Leu Leu Ala Leu
645 650 655
Asp Lys Trp Ala Asn Leu Asn Trp Phe Asn Ile Ser Asn Trp Leu Trp
660 665 670
Tyr Ile Arg Leu Phe Val Ile Ile Val Gly Gly Leu Ile Gly Leu Arg
675 680 685
Ile Val Phe Thr Val Leu Ser Ile Ile Asn Arg Val Arg Gln Gly Tyr
690 695 700
Ser Pro Leu Ser Phe Gln Thr Leu Ala Pro Ile Pro Glu Gly Leu Gly
705 710 715 720
Arg Pro Gly Arg Ile Glu Glu Glu Gly Gly Glu Gln Gly Lys Asp Arg
725 730 735
Ser Ile Arg Leu Val Ser Gly Phe Leu Ala Ile Ala Trp Asp Asp Leu
740 745 750
Arg Asn Leu Cys Leu Phe Ser Tyr His Arg Leu Arg Asp Phe Ala Leu
755 760 765
Ile Val Ala Arg Ala Val Glu Leu Leu Gly Arg Ser Ser Leu Lys Gly
770 775 780
Leu Arg Leu Gly Trp Glu Gly Leu Lys Tyr Leu Trp Asn Leu Leu Leu
785 790 795 800
Tyr Trp Gly Arg Glu Leu Lys Ile Ser Ala Ile Thr Leu Leu Asp Ala
805 810 815
Val Ala Val Ala Val Ala Gly Trp Ile Asp Arg Val Ile Glu Ile Gly
820 825 830
Gln Thr Ile Gly Arg Ala Ile Leu Asn Ile Pro Arg Arg Ile Arg Gln
835 840 845
Gly Leu Glu Arg Ala Leu Leu
850 855




12


855


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region of
B_HXB2R lentiviral env protein






12
Met Arg Val Met Gly Ile Gln Arg Asn Tyr Pro Cys Leu Trp Arg Trp
1 5 10 15
Gly Thr Met Ile Leu Gly Leu Ile Ile Ile Cys Asn Ala Gln Gln Leu
20 25 30
Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Lys Asp Ala Val Thr
35 40 45
Thr Leu Phe Cys Ala Ser Asp Ala Lys Ala Tyr Asp Ala Glu Val His
50 55 60
Asn Val Trp Ala Thr His Ala Cys Val Pro Thr Asp Pro Asn Pro Gln
65 70 75 80
Glu Ile Asp Leu Val Asn Val Thr Glu Glu Phe Asn Met Trp Lys Asn
85 90 95
Asn Met Val Asp Gln Met His Glu Asp Ile Ile Ser Leu Trp Asp Gln
100 105 110
Ser Leu Lys Pro Cys Val Lys Leu Thr Pro Leu Cys Val Thr Leu Asp
115 120 125
Cys His Asn Ile Thr Ile Asn Asn Thr Asn Asn Asn Thr Asn Ile Thr
130 135 140
Asp Gly Val Arg Glu Glu Met Lys Asn Cys Ser Phe Asn Met Thr Thr
145 150 155 160
Glu Leu Arg Asp Lys Lys Gln Lys Val Tyr Ser Leu Phe Tyr Arg Leu
165 170 175
Asp Ile Val Gln Ile Asn Lys Thr Asp Asn Asn Ser Tyr Arg Leu Ile
180 185 190
Asn Cys Asn Thr Ser Thr Ile Thr Gln Ala Cys Pro Lys Val Ser Phe
195 200 205
Glu Pro Ile Pro Ile His Tyr Cys Ala Pro Ala Gly Phe Ala Ile Leu
210 215 220
Lys Cys Lys Asp Pro Glu Phe Asn Gly Lys Gly Pro Cys Arg Asn Val
225 230 235 240
Ser Thr Val Gln Cys Thr His Gly Ile Lys Pro Val Val Ser Thr Gln
245 250 255
Leu Leu Leu Asn Gly Ser Leu Ala Glu Arg Glu Ile Arg Ile Arg Ser
260 265 270
Glu Asn Phe Thr Asn Asn Ala Lys Thr Ile Ile Val Gln Leu Val Asn
275 280 285
Pro Val Lys Ile Asn Cys Ser Arg Pro Tyr Asn Thr Arg Lys Asn Ile
290 295 300
Arg Arg Tyr Ser Ile Gly Ser Gly Gln Ala Phe Tyr Val Thr Gly Lys
305 310 315 320
Ile Ile Gly Asp Ile Arg Gln Ala His Cys Asn Val Ser Arg Arg Asp
325 330 335
Trp Asn Arg Thr Ile Gln Gln Val Ala Glu Gln Leu Lys Lys Lys Phe
340 345 350
Asn Asn Lys Thr Ile Ile Phe Ala Ser Ser Ser Gly Gly Asp Ile Glu
355 360 365
Ile Thr Thr His Ser Phe Asn Cys Gly Gly Glu Phe Phe Tyr Cys Asn
370 375 380
Thr Ser Gly Leu Phe Asn Ser Ile Trp Asn Gly Ser Met Ser Asn Asp
385 390 395 400
Met Gly Pro Asn Gly Thr Ile Thr Leu Gln Cys Arg Ile Lys Gln Ile
405 410 415
Ile Asn Met Trp Gln Arg Val Gly Gln Ala Met Tyr Ala Pro Pro Ile
420 425 430
Gln Gly Val Ile Arg Cys Glu Ser Asn Ile Thr Gly Leu Leu Leu Thr
435 440 445
Arg Asp Gly Gly Thr Asn Asn Thr Lys Asn Glu Thr Phe Arg Pro Gly
450 455 460
Gly Gly Asp Met Arg Asp Asn Trp Lys Ser Glu Leu Tyr Lys Tyr Lys
465 470 475 480
Val Val Lys Ile Glu Pro Leu Gly Val Ala Pro Thr Arg Ala Lys Arg
485 490 495
Arg Val Val Glu Arg Glu Lys Arg Ala Val Gly Leu Gly Ala Ile Phe
500 505 510
Leu Gly Phe Leu Gly Ala Ala Gly Ser Thr Met Gly Ala Ala Ser Ile
515 520 525
Thr Leu Thr Val Gln Ala Arg Gln Leu Leu Ser Gly Ile Val Gln Gln
530 535 540
Gln Ser Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln His Leu Leu Lys
545 550 555 560
Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg Val Leu Ala Val
565 570 575
Glu Arg Tyr Leu Gln Asp Gln Gln Leu Leu Gly Ile Trp Gly Cys Ser
580 585 590
Gly Lys Leu Ile Cys Thr Thr Thr Val Pro Trp Asn Ser Ser Trp Ser
595 600 605
Asn Lys Ser Gln Glu Asp Ile Trp Asn Asn Met Thr Trp Leu Gln Trp
610 615 620
Glu Lys Glu Ile Ser Ser Tyr Thr Gly Ile Ile Tyr Gln Leu Ile Glu
625 630 635 640
Glu Ser Gln Asn Gln Gln Glu Lys Asn Glu Leu Asp Leu Leu Ala Leu
645 650 655
Asp Lys Trp Ala Asn Leu Asn Trp Phe Asn Ile Ser Asn Trp Leu Trp
660 665 670
Tyr Ile Arg Leu Phe Val Ile Ile Val Gly Gly Leu Ile Gly Leu Arg
675 680 685
Ile Val Phe Thr Val Leu Ser Ile Ile Asn Arg Val Arg Gln Gly Tyr
690 695 700
Ser Pro Leu Ser Phe Gln Thr Leu Ala Pro Ile Pro Glu Gly Leu Gly
705 710 715 720
Arg Pro Gly Arg Ile Glu Glu Glu Gly Gly Glu Gln Gly Lys Asp Arg
725 730 735
Ser Ile Arg Leu Val Ser Gly Phe Leu Ala Ile Ala Trp Asp Asp Leu
740 745 750
Arg Asn Leu Cys Leu Phe Ser Tyr His Arg Leu Arg Asp Phe Ala Leu
755 760 765
Ile Val Ala Arg Ala Val Glu Leu Leu Gly Arg Ser Ser Leu Lys Gly
770 775 780
Leu Arg Leu Gly Trp Glu Gly Leu Lys Tyr Leu Trp Asn Leu Leu Leu
785 790 795 800
Tyr Trp Gly Arg Glu Leu Lys Ile Ser Ala Ile Thr Leu Leu Asp Ala
805 810 815
Val Ala Val Ala Val Ala Gly Trp Ile Asp Arg Val Ile Glu Ile Gly
820 825 830
Gln Thr Ile Gly Arg Ala Ile Leu Asn Ile Pro Arg Arg Ile Arg Gln
835 840 845
Gly Leu Glu Arg Ala Leu Leu
850 855




13


853


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region of
D_ELI lentiviral env protein






13
Met Arg Ala Arg Gly Ile Glu Arg Asn Cys Gln Asn Trp Trp Lys Trp
1 5 10 15
Gly Ile Met Leu Leu Gly Ile Leu Met Thr Cys Ser Ala Ala Asp Asn
20 25 30
Leu Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp Lys Glu Ala Thr
35 40 45
Thr Thr Leu Phe Cys Ala Ser Asp Ala Lys Ser Tyr Glu Thr Glu Ala
50 55 60
His Asn Ile Trp Ala Thr His Ala Cys Val Pro Thr Asp Pro Asn Pro
65 70 75 80
Gln Glu Ile Ala Leu Glu Asn Val Thr Glu Asn Phe Asn Met Trp Lys
85 90 95
Asn Asn Met Val Glu Gln Met His Glu Asp Ile Ile Ser Leu Trp Asp
100 105 110
Gln Ser Leu Lys Pro Cys Val Lys Leu Thr Pro Leu Cys Val Thr Leu
115 120 125
Asn Cys Ser Asp Glu Leu Arg Asn Asn Gly Thr Met Gly Asn Asn Val
130 135 140
Thr Thr Glu Glu Lys Gly Met Lys Asn Cys Ser Phe Asn Val Thr Thr
145 150 155 160
Val Leu Lys Asp Lys Lys Gln Gln Val Tyr Ala Leu Phe Tyr Arg Leu
165 170 175
Asp Ile Val Pro Ile Asp Asn Asp Ser Ser Thr Asn Ser Thr Asn Tyr
180 185 190
Arg Leu Ile Asn Cys Asn Thr Ser Ala Ile Thr Gln Ala Cys Pro Lys
195 200 205
Val Ser Phe Glu Pro Ile Pro Ile His Tyr Cys Ala Pro Ala Gly Phe
210 215 220
Ala Ile Leu Lys Cys Arg Asp Lys Lys Phe Asn Gly Thr Gly Pro Cys
225 230 235 240
Thr Asn Val Ser Thr Val Gln Cys Thr His Gly Ile Arg Pro Val Val
245 250 255
Ser Thr Gln Leu Leu Leu Asn Gly Ser Leu Ala Glu Glu Glu Val Ile
260 265 270
Ile Arg Ser Glu Asn Leu Thr Asn Asn Ala Lys Asn Ile Ile Ala His
275 280 285
Leu Asn Glu Ser Val Lys Ile Thr Cys Ala Arg Pro Tyr Gln Asn Thr
290 295 300
Arg Gln Arg Thr Pro Ile Gly Leu Gly Gln Ser Leu Tyr Thr Thr Arg
305 310 315 320
Ser Arg Ser Ile Ile Gly Gln Ala His Cys Asn Ile Ser Arg Ala Gln
325 330 335
Trp Ser Lys Thr Leu Gln Gln Val Ala Arg Lys Leu Gly Thr Leu Leu
340 345 350
Asn Lys Thr Ile Ile Lys Phe Lys Pro Ser Ser Gly Gly Asp Pro Glu
355 360 365
Ile Thr Thr His Ser Phe Asn Cys Gly Gly Glu Phe Phe Tyr Cys Asn
370 375 380
Thr Ser Gly Leu Phe Asn Ser Thr Trp Asn Ile Ser Ala Trp Asn Asn
385 390 395 400
Ile Thr Glu Ser Asn Asn Ser Thr Asn Thr Asn Ile Thr Leu Gln Cys
405 410 415
Arg Ile Lys Gln Ile Ile Lys Met Val Ala Gly Arg Lys Ala Ile Tyr
420 425 430
Ala Pro Pro Ile Glu Arg Asn Ile Leu Cys Ser Ser Asn Ile Thr Gly
435 440 445
Leu Leu Leu Thr Arg Asp Gly Gly Ile Asn Asn Ser Thr Asn Glu Thr
450 455 460
Phe Arg Pro Gly Gly Gly Asp Met Arg Asp Asn Trp Arg Ser Glu Leu
465 470 475 480
Tyr Lys Tyr Lys Val Val Gln Ile Glu Pro Leu Gly Val Ala Pro Thr
485 490 495
Arg Ala Lys Arg Arg Val Val Glu Arg Glu Lys Arg Ala Ile Gly Leu
500 505 510
Gly Ala Met Phe Leu Gly Phe Leu Gly Ala Ala Gly Ser Thr Met Gly
515 520 525
Ala Arg Ser Val Thr Leu Thr Val Gln Ala Arg Gln Leu Met Ser Gly
530 535 540
Ile Val Gln Gln Gln Asn Asn Leu Leu Arg Ala Ile Glu Ala Gln Gln
545 550 555 560
His Leu Leu Gln Leu Thr Val Trp Gly Ile Lys Gln Leu Gln Ala Arg
565 570 575
Ile Leu Ala Val Glu Arg Tyr Leu Lys Asp Gln Gln Leu Leu Gly Ile
580 585 590
Trp Gly Cys Ser Gly Lys His Ile Cys Thr Thr Asn Val Pro Trp Asn
595 600 605
Ser Ser Trp Ser Asn Arg Ser Leu Asn Glu Ile Trp Gln Asn Met Thr
610 615 620
Trp Met Glu Trp Glu Arg Glu Ile Asp Asn Tyr Thr Gly Leu Ile Tyr
625 630 635 640
Ser Leu Ile Glu Glu Ser Gln Thr Gln Gln Glu Lys Asn Glu Lys Glu
645 650 655
Leu Leu Glu Leu Asp Lys Trp Ala Ser Leu Trp Asn Trp Phe Ser Ile
660 665 670
Thr Gln Trp Leu Trp Tyr Ile Lys Ile Phe Ile Met Ile Ile Gly Gly
675 680 685
Leu Ile Gly Leu Arg Ile Val Phe Ala Val Leu Ser Leu Val Asn Arg
690 695 700
Val Arg Gln Gly Tyr Ser Pro Leu Ser Phe Gln Thr Leu Leu Pro Ala
705 710 715 720
Pro Arg Gly Pro Asp Arg Pro Glu Gly Thr Glu Glu Glu Gly Gly Glu
725 730 735
Arg Gly Arg Asp Arg Ser Val Arg Leu Leu Asn Gly Phe Ser Ala Leu
740 745 750
Ile Trp Asp Asp Leu Arg Ser Leu Cys Leu Phe Ser Tyr His Arg Leu
755 760 765
Arg Asp Leu Ile Leu Ile Ala Val Arg Ile Val Glu Leu Leu Gly Arg
770 775 780
Arg Gly Trp Asp Ile Leu Lys Tyr Leu Trp Asn Leu Leu Gln Tyr Trp
785 790 795 800
Ser Gln Glu Leu Arg Asn Ser Ala Ser Ser Leu Phe Asp Ala Ile Ala
805 810 815
Ile Ala Val Ala Glu Gly Thr Asp Arg Val Ile Glu Ile Ile Gln Arg
820 825 830
Ala Cys Arg Ala Val Leu Asn Ile Pro Arg Arg Ile Arg Gln Gly Leu
835 840 845
Glu Arg Ser Leu Leu
850




14


875


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region of
C-MVP5180 lentiviral env protein






14
Met Thr Val Thr Met Lys Val Met Lys Lys Asn Asn Arg Lys Ser Trp
1 5 10 15
Ser Leu Tyr Ile Ala Met Ala Leu Leu Ile Pro Cys Leu Ser Tyr Ser
20 25 30
Lys Gln Leu Tyr Ala Thr Val Tyr Ser Gly Val Pro Val Trp Glu Glu
35 40 45
Ala Ala Pro Val Leu Phe Cys Ala Ser Asp Ala Asn Leu Thr Ser Thr
50 55 60
Glu Gln His Asn Ile Trp Ala Ser Gln Ala Cys Val Pro Thr Asp Pro
65 70 75 80
Asn Pro His Glu Phe Pro Leu Gly Asn Val Thr Asp Asn Phe Asp Ile
85 90 95
Trp Lys Asn Tyr Met Val Asp Gln Met His Glu Asp Ile Ile Ser Leu
100 105 110
Trp Glu Gln Ser Leu Lys Pro Cys Glu Lys Met Thr Phe Leu Cys Val
115 120 125
Gln Met Asn Cys Val Asp Leu Gln Thr Asn Lys Thr Gly Leu Leu Asn
130 135 140
Glu Thr Ile Asn Glu Met Arg Asn Cys Ser Phe Asn Val Thr Thr Val
145 150 155 160
Leu Thr Asp Lys Lys Glu Gln Lys Gln Ala Leu Phe Tyr Val Ser Asp
165 170 175
Leu Ser Lys Val Asn Asp Ser Asn Ala Val Asn Gly Thr Thr Tyr Met
180 185 190
Leu Thr Asn Cys Asn Ser Thr Ile Ile Lys Gln Ala Cys Pro Lys Val
195 200 205
Ser Phe Glu Pro Ile Pro Ile His Tyr Cys Ala Pro Thr Gly Tyr Ala
210 215 220
Ile Phe Lys Cys Asn Asp Thr Asp Phe Asn Gly Thr Gly Leu Cys His
225 230 235 240
Asn Ile Ser Val Val Thr Cys Thr His Gly Ile Lys Pro Thr Val Ser
245 250 255
Thr Gln Leu Ile Leu Asn Gly Thr Leu Ser Arg Glu Lys Ile Arg Ile
260 265 270
Met Gly Lys Asn Ile Thr Glu Ser Ala Lys Asn Ile Ile Val Thr Leu
275 280 285
Asn Thr Pro Ile Asn Met Thr Cys Ile Arg Glu Gly Ile Ala Glu Val
290 295 300
Gln Asp Ile Tyr Thr Gly Pro Met Arg Trp Arg Ser Met Thr Leu Lys
305 310 315 320
Arg Ser Asn Asn Thr Ser Pro Arg Ser Arg Val Ala Tyr Cys Thr Tyr
325 330 335
Asn Lys Thr Val Trp Glu Asn Ala Leu Gln Gln Thr Ala Ile Arg Tyr
340 345 350
Leu Asn Leu Val Asn Gln Thr Glu Asn Val Thr Ile Ile Phe Ser Arg
355 360 365
Thr Ser Gly Gly Asp Ala Glu Val Ser His Leu His Phe Asn Cys His
370 375 380
Gly Glu Phe Phe Tyr Cys Asn Thr Ser Gly Met Phe Asn Tyr Thr Phe
385 390 395 400
Ile Asn Cys Thr Lys Ser Gly Cys Gln Glu Ile Lys Gly Ser Asn Glu
405 410 415
Thr Asn Lys Asn Gly Thr Ile Pro Cys Lys Leu Arg Gln Leu Val Arg
420 425 430
Ser Trp Met Lys Gly Glu Ser Arg Ile Tyr Ala Pro Pro Ile Pro Gly
435 440 445
Asn Leu Thr Cys His Ser Asn Ile Thr Gly Met Ile Leu Gln Leu Asp
450 455 460
Gln Pro Trp Asn Ser Thr Gly Glu Asn Thr Leu Arg Pro Val Gly Gly
465 470 475 480
Asp Met Lys Asp Ile Trp Arg Thr Lys Leu Tyr Asn Tyr Lys Val Val
485 490 495
Gln Ile Lys Pro Phe Ser Val Ala Pro Thr Lys Met Ser Arg Pro Ile
500 505 510
Ile Asn Ile His Thr Pro His Arg Glu Lys Arg Ala Val Gly Leu Gly
515 520 525
Met Leu Phe Leu Gly Val Leu Ser Ala Ala Gly Ser Thr Met Gly Ala
530 535 540
Ala Ala Thr Ala Leu Thr Val Arg Thr His Ser Val Leu Lys Gly Ile
545 550 555 560
Val Gln Gln Gln Asp Asn Leu Leu Arg Ala Ile Gln Ala Gln Gln His
565 570 575
Leu Leu Arg Leu Ser Val Trp Gly Ile Arg Gln Leu Arg Ala Arg Leu
580 585 590
Gln Ala Leu Glu Thr Leu Ile Asn Gln Gln Arg Leu Asn Leu Trp Gly
595 600 605
Cys Lys Gly Lys Leu Ile Cys Tyr Thr Ser Val Lys Trp Asn Thr Ser
610 615 620
Trp Ser Gly Arg Tyr Asn Asp Asp Ser Ile Trp Asp Asn Leu Thr Trp
625 630 635 640
Gln Gln Trp Asp Gln His Ile Asn Asn Val Ser Ser Ile Ile Tyr Asp
645 650 655
Glu Ile Gln Ala Ala Gln Asp Gln Gln Glu Lys Asn Val Lys Ala Leu
660 665 670
Leu Glu Leu Asp Glu Trp Ala Ser Leu Trp Asn Trp Phe Asp Ile Thr
675 680 685
Lys Trp Leu Trp Tyr Ile Lys Ile Ala Ile Ile Ile Val Gly Ala Leu
690 695 700
Ile Gly Ile Arg Val Ile Met Ile Ile Leu Asn Leu Val Lys Asn Ile
705 710 715 720
Arg Gln Gly Tyr Gln Pro Leu Ser Leu Gln Ile Pro Val Pro His Arg
725 730 735
Gln Glu Ala Glu Thr Pro Gly Arg Thr Gly Glu Glu Gly Gly Glu Gly
740 745 750
Asp Arg Pro Lys Trp Thr Ala Leu Pro Pro Gly Phe Leu Gln Gln Leu
755 760 765
Tyr Thr Asp Leu Arg Thr Ile Ile Leu Trp Thr Tyr His Leu Leu Ser
770 775 780
Asn Leu Ile Ser Gly Ile Arg Arg Leu Ile Asp Tyr Leu Gly Leu Gly
785 790 795 800
Leu Trp Ile Leu Gly Gln Lys Thr Ile Glu Ala Cys Arg Leu Cys Gly
805 810 815
Ala Val Met Gln Tyr Trp Leu Gln Glu Leu Lys Asn Ser Ala Thr Asn
820 825 830
Leu Leu Asp Thr Ile Ala Val Ser Val Ala Asn Trp Thr Asp Gly Ile
835 840 845
Ile Leu Gly Leu Gln Arg Ile Gly Gln Gly Phe Leu His Ile Pro Arg
850 855 860
Arg Ile Arg Gln Gly Ala Glu Arg Ile Leu Val
865 870 875




15


862


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region of
O_ANT70 lentiviral env protein






15
Met Ile Val Thr Met Lys Ala Met Glu Lys Arg Asn Lys Lys Leu Trp
1 5 10 15
Thr Leu Tyr Leu Ala Met Ala Leu Ile Thr Pro Cys Leu Ser Leu Arg
20 25 30
Gln Leu Tyr Ala Thr Val Tyr Ala Gly Val Pro Val Trp Glu Asp Ala
35 40 45
Thr Pro Val Leu Phe Cys Ala Ser Asp Ala Asn Leu Thr Ser Thr Glu
50 55 60
Lys His Asn Ile Trp Ala Ser Gln Ala Cys Val Pro Thr Asp Pro Thr
65 70 75 80
Pro Tyr Glu Tyr Pro Leu His Asn Val Thr Asp Asp Phe Asn Ile Trp
85 90 95
Lys Asn Tyr Met Val Glu Gln Met Gln Glu Asp Ile Ile Ser Leu Trp
100 105 110
Asp Gln Ser Leu Lys Pro Cys Val Gln Met Thr Phe Leu Cys Val Gln
115 120 125
Met Glu Cys Thr Asn Ile Ala Gly Thr Thr Asn Glu Asn Leu Met Lys
130 135 140
Lys Cys Glu Phe Asn Val Thr Thr Val Ile Lys Asp Lys Lys Glu Lys
145 150 155 160
Lys Gln Ala Leu Phe Tyr Val Ser Asp Leu Met Glu Leu Asn Glu Thr
165 170 175
Ser Ser Thr Asn Lys Thr Asn Ser Lys Met Tyr Thr Leu Thr Asn Cys
180 185 190
Asn Ser Thr Thr Ile Thr Gln Ala Cys Pro Lys Val Ser Phe Glu Pro
195 200 205
Ile Pro Ile His Tyr Cys Ala Pro Ala Gly Tyr Ala Ile Phe Lys Cys
210 215 220
Asn Ser Thr Glu Phe Asn Gly Thr Gly Thr Cys Arg Asn Ile Thr Val
225 230 235 240
Val Thr Cys Thr His Gly Ile Arg Pro Thr Val Ser Thr Gln Leu Ile
245 250 255
Leu Asn Gly Thr Leu Ser Lys Gly Lys Ile Arg Met Met Ala Lys Asp
260 265 270
Ile Leu Glu Gly Gly Lys Asn Ile Ile Val Thr Leu Asn Ser Thr Leu
275 280 285
Asn Met Thr Cys Glu Arg Pro Gln Ile Asp Ile Gln Glu Met Arg Ile
290 295 300
Gly Pro Met Ala Trp Tyr Ser Met Gly Ile Gly Gly Thr Ala Gly Asn
305 310 315 320
Ser Ser Arg Ala Ala Tyr Cys Lys Tyr Asn Ala Thr Asp Trp Gly Lys
325 330 335
Ile Leu Lys Gln Thr Ala Glu Arg Tyr Leu Glu Leu Val Asn Asn Thr
340 345 350
Gly Ser Ile Asn Met Thr Phe Asn His Ser Ser Gly Gly Asp Leu Glu
355 360 365
Val Thr His Leu His Phe Asn Cys His Gly Glu Phe Phe Tyr Cys Asn
370 375 380
Thr Ala Lys Met Phe Asn Tyr Thr Phe Ser Cys Asn Gly Thr Thr Cys
385 390 395 400
Ser Val Ser Asn Val Ser Gln Gly Asn Asn Gly Thr Leu Pro Cys Lys
405 410 415
Leu Arg Gln Val Val Arg Ser Trp Ile Arg Gly Gln Ser Gly Leu Tyr
420 425 430
Ala Pro Pro Ile Lys Gly Asn Leu Thr Cys Met Ser Asn Ile Thr Gly
435 440 445
Met Ile Leu Gln Met Asp Asn Thr Trp Asn Ser Ser Asn Asn Asn Val
450 455 460
Thr Phe Arg Pro Ile Gly Gly Asp Met Lys Asp Ile Trp Arg Thr Glu
465 470 475 480
Leu Phe Asn Tyr Lys Val Val Arg Val Lys Pro Phe Ser Val Ala Pro
485 490 495
Thr Arg Ile Ala Arg Pro Val Ile Ser Thr Arg Thr His Arg Glu Lys
500 505 510
Arg Ala Val Gly Leu Gly Met Leu Phe Leu Gly Val Leu Ser Ala Ala
515 520 525
Gly Ser Thr Met Gly Ala Ala Ala Thr Thr Leu Ala Val Gln Thr His
530 535 540
Thr Leu Leu Lys Gly Ile Val Gln Gln Gln Asp Asn Leu Leu Arg Ala
545 550 555 560
Ile Gln Ala Gln Gln Gln Leu Leu Arg Leu Ser Trp Gly Ile Arg Gln
565 570 575
Leu Arg Ala Arg Leu Leu Ala Leu Glu Thr Leu Leu Gln Asn Gln Gln
580 585 590
Leu Leu Ser Leu Trp Gly Cys Lys Gly Lys Leu Val Cys Tyr Thr Ser
595 600 605
Val Lys Trp Asn Arg Thr Trp Ile Gly Asn Glu Ser Ile Trp Asp Thr
610 615 620
Leu Thr Trp Gln Glu Trp Asp Arg Gln Ile Ser Asn Ile Ser Ser Thr
625 630 635 640
Ile Tyr Glu Glu Ile Gln Lys Ala Gln Val Gln Gln Glu Gln Asn Glu
645 650 655
Lys Lys Leu Leu Glu Leu Asp Glu Trp Ala Ser Ile Trp Asn Trp Leu
660 665 670
Asp Ile Thr Lys Trp Leu Trp Tyr Ile Lys Ile Ala Ile Ile Ile Val
675 680 685
Gly Ala Leu Val Gly Val Arg Val Ile Met Ile Val Leu Asn Ile Val
690 695 700
Lys Asn Ile Arg Gln Gly Tyr Gln Pro Leu Ser Leu Gln Ile Pro Asn
705 710 715 720
His His Gln Glu Glu Ala Gly Thr Pro Gly Arg Thr Gly Gly Gly Gly
725 730 735
Gly Glu Glu Gly Arg Pro Arg Trp Ile Pro Ser Pro Gln Gly Phe Leu
740 745 750
Pro Leu Leu Tyr Thr Asp Leu Arg Thr Ile Ile Leu Trp Thr Tyr His
755 760 765
Leu Leu Ser Asn Leu Ala Ser Gly Ile Gln Lys Val Ile Ser Tyr Leu
770 775 780
Arg Leu Gly Leu Trp Ile Leu Gly Gln Lys Ile Ile Asn Val Cys Arg
785 790 795 800
Ile Cys Ala Ala Val Thr Gln Tyr Trp Leu Gln Glu Leu Gln Asn Ser
805 810 815
Ala Thr Ser Leu Leu Asp Thr Leu Ala Val Ala Val Ala Asn Trp Thr
820 825 830
Asp Gly Ile Ile Ala Gly Ile Gln Arg Ile Gly Thr Gly Ile Arg Asn
835 840 845
Ile Pro Arg Arg Ile Arg Gln Gly Leu Glu Arg Ser Leu Leu
850 855 860




16


854


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region of
SIVcpzGAB1 lentiviral env protein






16
Met Lys Val Met Glu Lys Lys Lys Arg Asp Trp Asn Ser Leu Ser Ile
1 5 10 15
Ile Thr Ile Ile Thr Ile Ile Leu Leu Thr Pro Cys Leu Thr Ser Glu
20 25 30
Leu Trp Val Thr Val Tyr Tyr Gly Val Pro Val Trp His Asp Ala Asp
35 40 45
Pro Val Leu Phe Cys Ala Ser Asp Ala Lys Ala His Ser Thr Glu Ala
50 55 60
His Asn Ile Trp Ala Thr Gln Ala Cys Val Pro Thr Asp Pro Ser Pro
65 70 75 80
Gln Glu Val Phe Leu Pro Asn Val Ile Glu Ser Phe Asn Met Trp Lys
85 90 95
Asn Asn Met Val Asp Gln Met His Glu Asp Ile Ile Ser Leu Trp Asp
100 105 110
Gln Ser Leu Lys Pro Cys Val Lys Leu Thr Pro Leu Cys Val Thr Leu
115 120 125
Gln Cys Ser Lys Ala Asn Phe Ser Gln Ala Lys Asn Leu Thr Asn Gln
130 135 140
Thr Ser Ser Pro Pro Leu Glu Met Lys Asn Cys Ser Phe Asn Val Thr
145 150 155 160
Thr Glu Leu Arg Asp Lys Lys Lys Gln Val Tyr Ser Leu Phe Tyr Val
165 170 175
Glu Asp Val Val Asn Leu Gly Asn Glu Asn Asn Thr Tyr Arg Ile Ile
180 185 190
Asn Cys Asn Thr Thr Ala Ile Thr Gln Ala Cys Pro Lys Thr Ser Phe
195 200 205
Glu Pro Ile Pro Ile His Tyr Cys Ala Pro Ala Gly Phe Ala Ile Leu
210 215 220
Lys Cys Asn Asp Lys Asp Phe Ser Gly Lys Gly Lys Cys Thr Asn Val
225 230 235 240
Ser Thr Val His Cys Thr His Gly Ile Lys Pro Val Val Thr Thr Gln
245 250 255
Leu Leu Ile Asn Gly Ser Leu Ala Glu Gly Asn Ile Thr Val Arg Val
260 265 270
Glu Asn Lys Ser Lys Asn Thr Asp Val Trp Ile Val Gln Leu Val Glu
275 280 285
Ala Val Ser Leu Asn Cys His Arg Pro Gly Asn Asn Thr Arg Gly Glu
290 295 300
Val Gln Ile Gly Pro Gly Met Thr Phe Tyr Asn Ile Glu Asn Val Val
305 310 315 320
Gly Asp Thr Arg Ser Ala Tyr Cys Lys Ile Asn Gly Thr Thr Trp Asn
325 330 335
Arg Thr Val Glu Glu Val Lys Lys Ala Leu Ala Thr Ser Ser Asn Arg
340 345 350
Thr Ala Ala Asn Ile Thr Leu Asn Arg Ala Ser Gly Gly Asp Pro Glu
355 360 365
Val Thr His His Met Phe Asn Cys Gly Gly Glu Phe Phe Tyr Cys Asn
370 375 380
Thr Ser Gln Ile Phe Thr Asp Asn Ile Thr Asn Gly Ile Ile Ile Leu
385 390 395 400
Pro Cys Arg Ile Arg Gln Ile Val Ser Ser Trp Met Arg Val Gly Arg
405 410 415
Gly Ile Tyr Ala Pro Pro Ile Arg Gly Asn Ile Thr Cys Asn Ser Asn
420 425 430
Ile Thr Gly Leu Leu Leu Thr Ser Asp Thr Pro Val Thr Asn Asn Ser
435 440 445
Gly Asn Leu Thr Phe Arg Pro Thr Gly Gly Asn Met Lys Asp Ile Trp
450 455 460
Arg Ser Glu Leu Tyr Lys Tyr Lys Val Val Arg Ile Glu Pro Leu Ser
465 470 475 480
Val Ala Pro Thr Lys Ala Arg Arg His Thr Val Ala Arg Gln Lys Asp
485 490 495
Arg Gln Lys Arg Ala Ala Phe Gly Leu Gly Ala Leu Phe Leu Gly Phe
500 505 510
Leu Gly Ala Ala Gly Ser Thr Met Gly Ala Ala Ala Val Thr Leu Thr
515 520 525
Val Gln Ala Arg Gln Leu Leu Ser Gly Ile Val Gln Gln Gln Asn Asn
530 535 540
Leu Leu Lys Ala Ile Glu Ala Gln Gln His Leu Leu Gln Leu Ser Ile
545 550 555 560
Trp Gly Val Lys Gln Leu Gln Ala Arg Leu Leu Ala Val Glu Arg Tyr
565 570 575
Leu Gln Asp Gln Gln Ile Leu Gly Leu Trp Gly Cys Ser Gly Lys Ala
580 585 590
Val Cys Tyr Thr Thr Val Pro Trp Asn Asn Ser Trp Pro Gly Ser Asn
595 600 605
Ser Thr Asp Asp Ile Trp Gly Asn Leu Thr Trp Gln Gln Trp Asp Lys
610 615 620
Leu Val Ser Asn Tyr Thr Gly Lys Ile Phe Gly Leu Leu Glu Glu Ala
625 630 635 640
Gln Ser Gln Gln Glu Lys Asn Glu Arg Asp Leu Leu Glu Leu Asp Gln
645 650 655
Trp Ala Ser Leu Trp Asn Trp Phe Asp Ile Thr Lys Trp Leu Trp Tyr
660 665 670
Ile Lys Ile Phe Leu Met Ala Val Gly Gly Ile Ile Gly Leu Arg Ile
675 680 685
Ile Met Thr Val Phe Ser Val Val Arg Arg Val Arg Gln Gly Tyr Ser
690 695 700
Pro Leu Ser Leu Gln Thr Leu Ile Pro Val Gln Arg Glu Gln Gly Arg
705 710 715 720
Leu Gly Glu Ile Asp Glu Gly Gly Gly Glu Gln Asp Arg Ser Arg Ser
725 730 735
Val Arg Leu Val Glu Gly Cys Leu Pro Leu Ile Trp Asp Asp Leu Arg
740 745 750
Asn Leu Gly Ile Trp Ser Tyr Gln Ser Leu Thr Ser Leu Ala Cys Asn
755 760 765
Val Trp Arg Gln Leu Lys Thr Leu Gly His Leu Ile Leu His Ser Leu
770 775 780
Arg Leu Leu Arg Glu Arg Leu Cys Leu Leu Gly Gly Ile Ile Gln Tyr
785 790 795 800
Trp Gly Lys Glu Leu Lys Ile Ser Ala Ile Ser Leu Leu Asp Ala Thr
805 810 815
Ala Ile Ala Val Ala Glu Gly Thr Asp Arg Ile Ile Glu Ala Phe Gln
820 825 830
Val Thr Leu Arg Ile Ile Arg Asn Ile Pro Arg Arg Ile Arg Gln Gly
835 840 845
Leu Glu Arg Ala Leu Leu
850




17


854


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region of
SIVcpzANT lentiviral env protein






17
Met Arg Lys Pro Ile His Ile Ile Trp Gly Leu Ala Leu Leu Ile Gln
1 5 10 15
Phe Ile Glu Lys Gly Thr Asn Glu Asp Tyr Val Thr Val Phe Tyr Gly
20 25 30
Val Pro Val Trp Arg Asn Ala Thr Pro Thr Leu Phe Cys Ala Thr Asn
35 40 45
Ala Ser Met Thr Ser Thr Glu Val His Asn Val Trp Ala Thr Thr Ser
50 55 60
Cys Val Pro Ile Asp Pro Asp Pro Ile Val Val Arg Leu Asn Thr Ser
65 70 75 80
Val Trp Phe Asn Ala Tyr Lys Asn Tyr Met Val Glu Ser Met Thr Glu
85 90 95
Asp Met Gln Leu Phe Gln Gln Ser His Lys Pro Cys Val Lys Leu Thr
100 105 110
Pro Met Cys Ile Lys Met Asn Cys Thr Gly Tyr Asn Gly Thr Pro Thr
115 120 125
Thr Pro Ser Thr Thr Thr Ser Thr Val Thr Pro Lys Thr Thr Thr Pro
130 135 140
Ile Val Asp Gly Met Lys Leu Gln Glu Cys Asn Phe Asn Gln Ser Thr
145 150 155 160
Gly Phe Lys Asp Lys Lys Gln Lys Met Lys Ala Ile Phe Tyr Lys Gly
165 170 175
Asp Leu Met Lys Cys Gln Asp Asn Asn Glu Thr Asn Cys Tyr Tyr Leu
180 185 190
Trp His Cys Asn Thr Thr Thr Ile Thr Gln Ser Cys Glu Lys Ser Thr
195 200 205
Phe Glu Pro Ile Pro Ile His Tyr Cys Ala Pro Ala Gly Tyr Ala Ile
210 215 220
Leu Arg Cys Glu Asp Glu Asp Phe Thr Gly Val Gly Met Cys Lys Asn
225 230 235 240
Val Ser Val Val His Cys Thr His Gly Ile Ser Pro Met Val Ala Thr
245 250 255
Trp Leu Leu Leu Asn Gly Thr Tyr Gln Thr Asn Thr Ser Val Val Met
260 265 270
Asn Gly Arg Lys Asn Glu Ser Val Leu Val Arg Phe Gly Lys Glu Phe
275 280 285
Glu Asn Leu Thr Ile Thr Cys Ile Arg Pro Gly Asn Arg Thr Val Arg
290 295 300
Asn Leu Gln Ile Gly Pro Gly Met Thr Phe Tyr Asn Val Glu Ile Ala
305 310 315 320
Thr Gly Asp Thr Arg Lys Ala Phe Cys Thr Val Asn Lys Thr Leu Trp
325 330 335
Glu Gln Ala Arg Asn Lys Thr Glu His Val Leu Ala Glu His Trp Lys
340 345 350
Lys Val Asp Asn Lys Thr Asn Ala Lys Thr Ile Trp Thr Phe Gln Asp
355 360 365
Gly Asp Pro Glu Val Lys Val His Trp Phe Asn Cys Gln Gly Glu Phe
370 375 380
Phe Tyr Cys Asp Ile Thr Pro Trp Phe Asn Ala Thr Tyr Thr Gly Asn
385 390 395 400
Leu Ile Thr Asn Gly Ala Leu Ile Ala His Cys Arg Ile Lys Gln Ile
405 410 415
Val Asn His Trp Gly Ile Val Ser Lys Gly Ile Tyr Leu Ala Pro Arg
420 425 430
Arg Gly Asn Val Ser Cys Thr Ser Ser Ile Thr Gly Ile Met Leu Glu
435 440 445
Gly Gln Ile Tyr Asn Glu Thr Val Lys Val Ser Pro Ala Ala Arg Val
450 455 460
Ala Asp Gln Trp Arg Ala Glu Leu Ser Arg Tyr Gln Val Val Glu Ile
465 470 475 480
Pro Leu Ser Val Ala Pro Thr Thr Lys Arg Pro Glu Ile Lys Gln His
485 490 495
Ser Arg Gln Lys Arg Gly Ile Gly Ile Gly Leu Phe Phe Leu Gly Leu
500 505 510
Leu Ser Ala Ala Gly Ser Thr Met Gly Ala Ala Ser Ile Ala Leu Thr
515 520 525
Ala Gln Thr Arg Asn Leu His Gly Ile Val Gln Gln Gln Ala Asn Leu
530 535 540
Leu Gln Ala Ile Glu Thr Gln Gln His Leu Leu Gln Leu Ser Val Trp
545 550 555 560
Gly Val Lys Gln Leu Gln Ala Arg Met Leu Ala Val Glu Lys Tyr Leu
565 570 575
Arg Asp Gln Gln Leu Leu Ser Leu Trp Gly Cys Ala Asp Lys Val Thr
580 585 590
Cys His Thr Thr Val Pro Trp Asn Asn Ser Trp Val Asn Phe Thr Gln
595 600 605
Thr Cys Ala Lys Asn Ser Ser Asp Ile Gln Cys Ile Trp Glu Asn Met
610 615 620
Thr Trp Gln Glu Trp Asp Arg Leu Val Gln Asn Ser Thr Gly Gln Ile
625 630 635 640
Tyr Asn Ile Leu Gln Ile Ala His Glu Gln Gln Glu Arg Asn Lys Lys
645 650 655
Glu Leu Tyr Glu Leu Asp Lys Trp Ser Ser Leu Trp Asn Trp Phe Asp
660 665 670
Ile Thr Gln Trp Leu Trp Tyr Ile Lys Ile Phe Ile Met Ile Val Gly
675 680 685
Ala Ile Val Gly Leu Arg Ile Leu Leu Val Leu Val Ser Cys Leu Arg
690 695 700
Lys Val Arg Gln Gly Tyr His Pro Leu Ser Phe Gln Ile Pro Thr Gln
705 710 715 720
Asn Gln Gln Asp Pro Glu Gln Pro Glu Glu Ile Arg Glu Glu Gly Gly
725 730 735
Arg Lys Asp Arg Ile Arg Trp Arg Ala Leu Gln His Gly Phe Phe Ala
740 745 750
Leu Leu Trp Val Asp Leu Thr Ser Ile Ile Gln Trp Ile Tyr Gln Ile
755 760 765
Cys Arg Thr Cys Leu Leu Asn Leu Trp Ala Val Leu Gln His Leu Cys
770 775 780
Arg Ile Thr Phe Arg Leu Cys Asn His Leu Glu Asn Asn Leu Ser Thr
785 790 795 800
Leu Trp Thr Ile Ile Arg Thr Glu Ile Ile Lys Asn Ile Asp Arg Leu
805 810 815
Ala Ile Trp Val Gly Glu Lys Thr Asp Ser Ile Leu Leu Ala Leu Gln
820 825 830
Thr Ile Val Arg Ile Ile Arg Glu Val Pro Arg Arg Ile Arg Gln Gly
835 840 845
Leu Glu Ile Ala Leu Asn
850




18


858


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region of
A_ROD lentiviral env protein






18
Met Met Asn Gln Leu Leu Ile Ala Ile Leu Leu Ala Ser Ala Cys Leu
1 5 10 15
Val Tyr Cys Thr Gln Tyr Val Thr Val Phe Tyr Gly Val Pro Thr Trp
20 25 30
Lys Asn Ala Thr Ile Pro Leu Phe Cys Ala Thr Arg Asn Arg Asp Thr
35 40 45
Trp Gly Thr Ile Gln Cys Leu Pro Asp Asn Asp Asp Tyr Gln Glu Ile
50 55 60
Thr Leu Asn Val Thr Glu Ala Phe Asp Ala Trp Asn Asn Thr Val Thr
65 70 75 80
Glu Gln Ala Ile Glu Asp Val Trp His Leu Phe Glu Thr Ser Ile Lys
85 90 95
Pro Cys Val Lys Leu Thr Pro Leu Cys Val Ala Met Lys Cys Ser Ser
100 105 110
Thr Glu Ser Ser Thr Gly Asn Asn Thr Thr Ser Lys Ser Thr Ser Thr
115 120 125
Thr Thr Thr Thr Pro Thr Asp Gln Glu Gln Glu Ile Ser Glu Asp Thr
130 135 140
Pro Cys Ala Arg Ala Asp Asn Cys Ser Gly Leu Gly Glu Glu Glu Thr
145 150 155 160
Ile Asn Cys Gln Phe Asn Met Thr Gly Leu Glu Arg Asp Lys Lys Lys
165 170 175
Gln Tyr Asn Glu Thr Trp Tyr Ser Lys Asp Val Val Cys Glu Thr Asn
180 185 190
Asn Ser Thr Asn Gln Thr Gln Cys Tyr Met Asn His Cys Asn Thr Ser
195 200 205
Val Ile Thr Glu Ser Cys Asp Lys His Tyr Trp Asp Ala Ile Arg Phe
210 215 220
Arg Tyr Cys Ala Pro Pro Gly Tyr Ala Leu Leu Arg Cys Asn Asp Thr
225 230 235 240
Asn Tyr Ser Gly Phe Ala Pro Asn Cys Ser Lys Val Val Ala Ser Thr
245 250 255
Cys Thr Arg Met Met Glu Thr Gln Thr Ser Thr Trp Phe Gly Phe Asn
260 265 270
Gly Thr Arg Ala Glu Asn Arg Thr Tyr Ile Tyr Trp His Gly Arg Asp
275 280 285
Asn Arg Thr Ile Ile Ser Leu Asn Lys Tyr Tyr Asn Leu Ser Leu His
290 295 300
Cys Lys Arg Pro Gly Asn Lys Ile Val Lys Gln Ile Met Leu Met Ser
305 310 315 320
Gly His Val Phe His Ser His Tyr Gln Pro Ile Asn Lys Arg Pro Arg
325 330 335
Gln Ala Trp Cys Trp Phe Lys Gly Lys Trp Lys Asp Ala Met Gln Glu
340 345 350
Val Lys Glu Thr Leu Ala Lys His Pro Arg Tyr Arg Gly Thr Asn Asp
355 360 365
Thr Arg Asn Ile Ser Phe Ala Ala Pro Gly Lys Gly Ser Asp Pro Glu
370 375 380
Val Ala Tyr Met Trp Thr Asn Cys Arg Gly Glu Phe Leu Tyr Cys Asn
385 390 395 400
Met Thr Trp Phe Leu Asn Trp Ile Glu Asn Lys Thr His Arg Asn Tyr
405 410 415
Ala Pro Cys His Ile Lys Gln Ile Ile Asn Thr Trp His Lys Val Gly
420 425 430
Arg Asn Val Tyr Leu Pro Pro Arg Glu Gly Glu Leu Ser Cys Asn Ser
435 440 445
Thr Val Thr Ser Ile Ile Ala Asn Ile Asp Trp Gln Asn Asn Asn Gln
450 455 460
Thr Asn Ile Thr Phe Ser Ala Glu Val Ala Glu Leu Tyr Arg Leu Glu
465 470 475 480
Leu Gly Asp Tyr Lys Leu Val Glu Ile Thr Pro Ile Gly Phe Ala Pro
485 490 495
Thr Lys Glu Lys Arg Tyr Ser Ser Ala His Gly Arg His Thr Arg Gly
500 505 510
Val Phe Val Leu Gly Phe Leu Gly Phe Leu Ala Thr Ala Gly Ser Ala
515 520 525
Met Gly Ala Ala Ser Leu Thr Val Ser Ala Gln Ser Arg Thr Leu Leu
530 535 540
Ala Gly Ile Val Gln Gln Gln Gln Gln Leu Leu Asp Val Val Lys Arg
545 550 555 560
Gln Gln Glu Leu Leu Arg Leu Thr Val Trp Gly Thr Lys Asn Leu Gln
565 570 575
Ala Arg Val Thr Ala Ile Glu Lys Tyr Leu Gln Asp Gln Ala Arg Leu
580 585 590
Asn Ser Trp Gly Cys Ala Phe Arg Gln Val Cys His Thr Thr Val Pro
595 600 605
Trp Val Asn Asp Ser Leu Ala Pro Asp Trp Asp Asn Met Thr Trp Gln
610 615 620
Glu Trp Glu Lys Gln Val Arg Tyr Leu Glu Ala Asn Ile Ser Lys Ser
625 630 635 640
Leu Glu Gln Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln
645 650 655
Lys Leu Asn Ser Trp Asp Ile Phe Gly Asn Trp Phe Asp Leu Thr Ser
660 665 670
Trp Val Lys Tyr Ile Gln Tyr Gly Val Leu Ile Ile Val Ala Val Ile
675 680 685
Ala Leu Arg Ile Val Ile Tyr Val Val Gln Met Leu Ser Arg Leu Arg
690 695 700
Lys Gly Tyr Arg Pro Val Phe Ser Ser Pro Pro Gly Tyr Ile Gln Gln
705 710 715 720
Ile His Ile His Lys Asp Arg Gly Gln Pro Ala Asn Glu Glu Thr Glu
725 730 735
Glu Asp Gly Gly Ser Asn Gly Gly Asp Arg Tyr Trp Pro Trp Pro Ile
740 745 750
Ala Tyr Ile His Phe Leu Ile Arg Gln Leu Ile Arg Leu Leu Thr Arg
755 760 765
Leu Tyr Ser Ile Cys Arg Asp Leu Leu Ser Arg Ser Phe Leu Thr Leu
770 775 780
Gln Leu Ile Tyr Gln Asn Leu Arg Asp Trp Leu Arg Leu Arg Thr Ala
785 790 795 800
Phe Leu Gln Tyr Gly Cys Glu Trp Ile Gln Glu Ala Phe Gln Ala Ala
805 810 815
Ala Arg Ala Thr Arg Glu Thr Leu Ala Gly Ala Cys Arg Gly Leu Trp
820 825 830
Arg Val Leu Glu Arg Ile Gly Arg Gly Ile Leu Ala Val Pro Arg Arg
835 840 845
Ile Arg Gln Gly Ala Glu Ile Ala Leu Leu
850 855




19


852


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region of
B_EHO lentiviral env protein






19
Met Ala His Val Asn Asn Tyr Leu Leu Val Thr Leu Leu Leu Ile Ser
1 5 10 15
Ile Tyr Gly Tyr Met Gly Lys Asn Phe Val Thr Val Phe Tyr Gly Ile
20 25 30
Pro Ala Trp Lys Asn Ala Ser Ile Pro Leu Phe Cys Ala Thr Arg Asn
35 40 45
Arg Asp Thr Trp Gly Thr Val Gln Cys Leu Pro Asp Asn Asp Asp Tyr
50 55 60
Thr Glu Ile Gln Leu Asn Ile Thr Glu Ala Phe Asp Ala Trp Asp Asn
65 70 75 80
Thr Val Thr Asp Gln Ala Thr Lys Asp Val Trp Ser Leu Phe Glu Thr
85 90 95
Ser Ile Lys Pro Cys Val Lys Leu Thr Pro Leu Cys Val Thr Met Lys
100 105 110
Cys Asn Lys Thr Trp Ser Ser Ala Ser Lys Glu Thr Thr Thr Ser Ser
115 120 125
Ala Ser Leu Arg Ser Ser Thr Gln Thr Leu Leu Asn Glu Asp Ser Lys
130 135 140
Cys Ile Gln Asn Asp Ser Cys Ala Gly Ile Gly Leu Glu Glu Met Ile
145 150 155 160
Asp Cys Gln Phe Lys Met Thr Gly Leu Lys Arg Asp Glu Ser Lys Gln
165 170 175
Tyr Lys Asp Thr Trp Tyr Lys Gln Asp Leu Val Cys Glu Lys Gly Thr
180 185 190
Arg Ser Asn Glu Ser Lys Cys Tyr Ile Lys Thr Cys Asn Thr Ser Ile
195 200 205
Ile Gln Glu Ser Cys Asp Lys His Tyr Trp Asp Ser Leu Arg Phe Arg
210 215 220
Tyr Cys Ala Pro Pro Gly Phe Ala Leu Leu Arg Cys Asn Asp Thr Lys
225 230 235 240
Tyr Ser Gly Phe Met Pro Asn Cys Ser Lys Val Val Val Ser Leu Tyr
245 250 255
Arg Met Met Glu Thr Gln Thr Ser Thr Trp Phe Gly Phe Asn Gly Thr
260 265 270
Arg Ala Glu Asn Arg Thr Tyr Ile Tyr Trp His Gly Lys Asp Asn Arg
275 280 285
Thr Ile Ile Ser Leu Asn Ser Tyr Tyr Asn Leu Thr Met His Cys Lys
290 295 300
Arg Pro Gly Asn Lys Met Val Val Pro Ile Arg Thr Val Ser Gly Ile
305 310 315 320
Leu Phe His Ser Gln Pro Ile Asn Lys Arg Pro Lys Gln Ala Trp Cys
325 330 335
Trp Phe Lys Gly Asn Trp Thr Glu Ala Ile Gln Glu Val Lys Glu Thr
340 345 350
Ile Lys Asn His Pro Arg Tyr Ser Gly Thr Thr Asn Ile Ser Gln Ile
355 360 365
Arg Leu Ala Glu His Ala Arg Ser Ser Asp Pro Glu Val Arg Tyr Met
370 375 380
Trp Thr Asn Cys Arg Gly Glu Phe Leu Tyr Cys Asn Met Thr Phe Phe
385 390 395 400
Leu Asn Trp Val Glu Asn Arg Thr Gly Leu Lys Arg Asn Tyr Ala Ser
405 410 415
Cys His Ile Arg Gln Ile Val Asn Thr Trp His Lys Ile Gly Arg Asn
420 425 430
Val Tyr Leu Pro Pro Arg Glu Gly Glu Leu Ser Cys Asn Ser Thr Val
435 440 445
Thr Ser Leu Ile Ala Asn Ile Asp Trp Ile Asp Lys Asn Leu Thr Asn
450 455 460
Ile Thr Val Ser Ala Glu Val Ser Glu Leu Tyr Lys Leu Glu Leu Gly
465 470 475 480
Asp Tyr Lys Leu Val Glu Ile Thr Pro Ile Gly Phe Ala Pro Thr Ser
485 490 495
Ile Lys Arg Tyr Ser Ser Val Thr Pro Arg Asn Lys Arg Gly Val Leu
500 505 510
Val Leu Gly Phe Leu Gly Phe Leu Ala Thr Ala Gly Ser Ala Met Gly
515 520 525
Ala Ala Ser Leu Thr Leu Ser Ala Gln Ser Arg Thr Leu Leu Ala Gly
530 535 540
Ile Val Gln Gln Gln Gln Gln Leu Val Asp Val Val Lys Arg Gln Gln
545 550 555 560
Glu Leu Leu Arg Leu Thr Val Trp Gly Thr Lys Asn Leu Gln Ala Arg
565 570 575
Val Thr Ala Ile Glu Lys Tyr Leu Lys Asp Gln Ala Gln Leu Asn Ser
580 585 590
Trp Gly Cys Ala Phe Arg Gln Val Cys His Thr Thr Val Pro Trp Val
595 600 605
Asn Glu Ser Leu Lys Pro Asp Trp Asn Asn Met Thr Trp Gln Gln Trp
610 615 620
Glu Arg Gln Val Arg Phe Leu Asp Ala Asn Ile Thr Lys Leu Leu Glu
625 630 635 640
Glu Ala Gln Ile Gln Gln Glu Lys Asn Met Tyr Glu Leu Gln Lys Leu
645 650 655
Asn Gln Trp Asp Ile Phe Ser Asn Trp Phe Asp Phe Thr Ser Trp Met
660 665 670
Ala Tyr Ile Arg Leu Gly Leu Tyr Ile Val Ile Gly Ile Val Val Leu
675 680 685
Arg Ile Ala Ile Tyr Ile Ile Gln Met Leu Ala Arg Leu Arg Lys Gly
690 695 700
Tyr Arg Pro Val Phe Ser Ser Pro Pro Ser Tyr Thr Gln Gln Ile Pro
705 710 715 720
Ile Arg Lys Asp Arg Gly Gln Pro Ala Asn Glu Glu Thr Glu Glu Gly
725 730 735
Gly Gly Asn Asn Glu Gly Tyr Arg Ser Trp Pro Trp Gln Ile Glu Tyr
740 745 750
Ile His Phe Pro Ile Arg Gln Leu Arg Asp Leu Leu Ile Trp Leu Tyr
755 760 765
Ser Gly Cys Arg Thr Leu Leu Ser Lys Thr Phe Gln Thr Leu Gln Pro
770 775 780
Val Leu Gln Pro Leu Arg Leu Pro Pro Ala Tyr Leu Arg Tyr Gly Ile
785 790 795 800
Ser Trp Phe Gln Glu Ala Ile Gln Ala Ala Ala Arg Ala Ala Gly Glu
805 810 815
Thr Leu Ala Ser Ala Ala Arg Thr Ser Trp Gly Val Leu Arg Arg Ala
820 825 830
Ala Gly Glu Ile Ile Ala Ile Pro Arg Arg Ile Arg Gln Gly Ala Glu
835 840 845
Leu Ala Leu Leu
850




20


877


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region of
SIVAGMVER3 lentiviral env protein






20
Met Lys Leu Thr Leu Leu Ile Gly Ile Leu Leu Ile Gly Ile Gly Val
1 5 10 15
Val Leu Asn Thr Arg Gln Gln Trp Val Thr Val Phe Tyr Gly Val Pro
20 25 30
Val Trp Lys Asn Ser Ser Val Gln Ala Phe Cys Met Thr Pro Thr Thr
35 40 45
Arg Leu Trp Ala Thr Thr Asn Ser Ile Pro Asp Asp His Asp Tyr Thr
50 55 60
Glu Val Pro Leu Asn Ile Thr Glu Pro Phe Glu Ala Trp Ala Asp Arg
65 70 75 80
Asn Pro Leu Val Ala Gln Ala Gly Ser Asn Ile His Leu Leu Phe Glu
85 90 95
Gln Thr Leu Lys Pro Cys Val Lys Leu Ser Pro Leu Cys Ile Lys Met
100 105 110
Ser Cys Val Glu Leu Asn Ser Ser Glu Pro Thr Thr Thr Pro Lys Ser
115 120 125
Thr Thr Ala Ser Thr Thr Asn Ile Thr Ala Ser Thr Thr Thr Leu Pro
130 135 140
Cys Val Gln Asn Lys Thr Ser Thr Val Leu Glu Ser Cys Asn Glu Thr
145 150 155 160
Ile Ile Glu Lys Glu Leu Asn Glu Glu Pro Ala Ser Asn Cys Thr Phe
165 170 175
Ala Met Ala Gly Tyr Val Arg Asp Gln Lys Lys Lys Tyr Ser Val Val
180 185 190
Trp Asn Asp Ala Glu Ile Met Cys Lys Lys Gly Asn Asn Ser Asn Arg
195 200 205
Glu Cys Tyr Met Ile His Cys Asn Asp Ser Val Ile Lys Glu Ala Cys
210 215 220
Asp Lys Thr Tyr Trp Asp Glu Leu Arg Leu Arg Tyr Cys Ala Pro Ala
225 230 235 240
Gly Phe Ala Leu Leu Lys Cys Asn Asp Tyr Asp Tyr Ala Gly Phe Lys
245 250 255
Thr Asn Cys Ser Asn Val Ser Val Val His Cys Thr Asn Leu Ile Asn
260 265 270
Thr Thr Val Thr Thr Gly Leu Leu Leu Asn Gly Ser Tyr Ser Glu Asn
275 280 285
Arg Thr Gln Ile Trp Gln Lys His Arg Val Ser Asn Asp Ser Val Leu
290 295 300
Val Leu Phe Asn Lys His Tyr Asn Leu Thr Val Thr Cys Lys Arg Pro
305 310 315 320
Gly Asn Lys Thr Val Leu Pro Val Thr Ile Met Ala Gly Leu Val Phe
325 330 335
His Ser Gln Arg Tyr Asn Thr Arg Leu Arg Gln Ala Trp Cys His Phe
340 345 350
Gln Gly Asn Trp Arg Gly Ala Trp Lys Glu Val Lys Asn Glu Ile Val
355 360 365
Lys Leu Pro Lys Asp Arg Tyr Gln Gly Thr Asn Asp Thr Glu Glu Ile
370 375 380
Tyr Leu Gln Arg Leu Phe Gly Asp Pro Glu Ala Ala Asn Leu Trp Phe
385 390 395 400
Asn Cys Gln Gly Glu Phe Phe Tyr Cys Lys Met Asp Trp Phe Leu Asn
405 410 415
Tyr Leu Asn Asn Arg Thr Val Asp Pro Asp His Asn Pro Cys Asn Gly
420 425 430
Thr Lys Gly Lys Gly Lys Ala Pro Gly Pro Cys Ala Gln Arg Thr Tyr
435 440 445
Val Ala Cys His Ile Arg Ser Val Ile Asn Asp Trp Tyr Thr Leu Ser
450 455 460
Arg Lys Thr Tyr Ala Pro Pro Arg Glu Gly His Leu Gln Cys Thr Ser
465 470 475 480
Thr Val Thr Gly Met Ser Val Glu Leu Asn Tyr Asn Ser Lys Asn Arg
485 490 495
Thr Asn Val Thr Leu Ser Pro Gln Ile Glu Thr Ile Trp Ala Ala Glu
500 505 510
Leu Gly Arg Tyr Lys Leu Val Glu Ile Thr Pro Ile Gly Phe Ala Pro
515 520 525
Thr Glu Val Arg Arg Tyr Thr Gly Gly His Asp Arg Thr Lys Arg Val
530 535 540
Pro Phe Val Leu Gly Phe Leu Gly Phe Leu Gly Ala Ala Gly Thr Ala
545 550 555 560
Met Gly Ala Ala Ala Thr Ala Leu Thr Val Gln Ser Gln His Leu Leu
565 570 575
Ala Gly Ile Leu Gln Gln Gln Lys Asn Leu Leu Ala Ala Val Glu Ala
580 585 590
Gln Gln Gln Met Leu Lys Leu Thr Ile Trp Gly Val Lys Asn Leu Asn
595 600 605
Ala Arg Val Thr Ala Leu Glu Lys Tyr Leu Glu Asp Gln Ala Arg Leu
610 615 620
Asn Ala Trp Gly Cys Ala Trp Lys Gln Val Cys His Thr Thr Val Pro
625 630 635 640
Trp Gln Trp Asn Asn Arg Thr Pro Asp Trp Asn Asn Met Thr Trp Leu
645 650 655
Glu Trp Glu Arg Gln Ile Ser Tyr Leu Glu Gly Asn Ile Thr Thr Gln
660 665 670
Leu Glu Glu Ala Arg Ala Gln Glu Glu Lys Asn Leu Asp Ala Tyr Gln
675 680 685
Lys Leu Ser Ser Trp Ser Asp Phe Trp Ser Trp Phe Asp Phe Ser Lys
690 695 700
Trp Leu Asn Ile Leu Lys Ile Gly Phe Leu Asp Val Leu Gly Ile Ile
705 710 715 720
Gly Leu Arg Leu Leu Tyr Thr Val Tyr Ser Cys Ile Ala Arg Val Arg
725 730 735
Gln Gly Tyr Ser Pro Leu Ser Pro Gln Ile His Ile His Pro Trp Lys
740 745 750
Gly Gln Pro Asp Asn Ala Glu Gly Pro Gly Glu Gly Gly Asp Lys Arg
755 760 765
Lys Asn Ser Ser Glu Pro Trp Gln Lys Glu Ser Gly Thr Ala Glu Trp
770 775 780
Lys Ser Asn Trp Cys Lys Arg Leu Thr Asn Trp Cys Ser Ile Ser Ser
785 790 795 800
Ile Trp Leu Tyr Asn Ser Cys Leu Thr Leu Leu Val His Leu Arg Ser
805 810 815
Ala Phe Gln Tyr Ile Gln Tyr Gly Leu Gly Glu Leu Lys Ala Ala Ala
820 825 830
Gln Glu Ala Val Val Ala Leu Ala Arg Leu Ala Gln Asn Ala Gly Tyr
835 840 845
Gln Ile Trp Leu Ala Cys Arg Ser Ala Tyr Arg Ala Ile Ile Asn Ser
850 855 860
Pro Arg Arg Val Arg Gln Gly Leu Glu Gly Ile Leu Asn
865 870 875




21


832


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region of
SIVSYK173 lentiviral env protein






21
Met Ala Ala Phe Arg Thr Tyr Ile Val Cys Leu Phe Ser Leu Ile Ser
1 5 10 15
Leu Gly Phe Met Glu Lys Gln Gln Tyr Val Thr Val Phe Tyr Gly Ile
20 25 30
Pro His Trp Glu Asp Ala Tyr Ala Pro Leu Phe Cys Thr Thr Ser His
35 40 45
Lys Gly Gly Trp Ala Thr Lys Asn Cys Val Pro Ser Ala Asp Gln Ile
50 55 60
Glu Val Arg Val Asn Ile Thr Gly Glu Tyr Phe Pro Ala Trp Asn Ser
65 70 75 80
Ser His Met Ile Arg Gln Gln Ile Leu Glu Asp Met Ser Ala Leu Phe
85 90 95
Leu Gln Ala Asn Arg Pro Cys Val Lys Leu Ala Pro Met Cys Ile Arg
100 105 110
Met Leu Cys Thr Leu Asp Asn Ser Pro Ala Thr Ser Thr Pro Thr Thr
115 120 125
Ser Pro Pro Thr Thr Pro Pro Asn Glu Thr Trp Trp Gly Asp Asn Ser
130 135 140
Thr Glu Pro Arg Phe Asn Cys Ser Phe Asn Leu Thr Gly Gly Phe Lys
145 150 155 160
Asp Lys Lys Gln Gln Tyr Arg Ala Phe Phe Tyr Lys Asp Asp Leu Met
165 170 175
Lys Glu Glu Gly Asn Ser Ser Tyr Tyr Tyr Leu Leu His Cys Asn Thr
180 185 190
Ser Val Ile Ser Ala Ala Cys Glu Lys Gln Thr Phe Gln Pro Phe Pro
195 200 205
Ile Gln Tyr Cys Ala Pro Pro Gly Tyr Ser Leu Leu Lys Cys Asn Asp
210 215 220
Thr Asn Phe Glu Gly Asp Asp Val Cys Thr Asn Val Thr Ala Val Ser
225 230 235 240
Cys Thr Gln Glu Phe Asn Thr Leu Ala Ser Thr Trp Phe Gln Leu Asn
245 250 255
Gly Thr Tyr Lys Ala Lys Asp Lys Val Arg Phe Ile Lys Gln Lys Asp
260 265 270
Lys Asn Glu Ser Val Ile Ile Leu Val Pro Glu Ala Leu Arg Leu Gln
275 280 285
Ile Ile Cys Glu Arg Pro Gly Asn Glu Ser Ile Lys Asn Ile Gln Leu
290 295 300
Ala Ala Gly Tyr Phe Leu Pro Val Ile Gln Gly Lys Leu Lys Thr Gly
305 310 315 320
Arg Asp Ala Lys Arg Ala Phe Cys Arg Val Thr Gly Asn Trp Thr Glu
325 330 335
Phe Phe Lys Gln Val His Glu Gln Ala Thr Lys Thr Trp Lys Asn Val
340 345 350
Thr Asn Thr Thr Trp Arg Ser Gln Pro Gly Gly Asp Leu Glu Val Arg
355 360 365
Thr His Trp Phe Gln Cys Gly Gly Glu Phe Phe Tyr Cys Asn Val Ser
370 375 380
Lys Leu Phe Ala Asn Ile Thr Asn Gly Asn Ala Ser Lys Asn Asn Tyr
385 390 395 400
Ala Ser Asn Leu Arg Leu Ser Cys Ala Ile Arg Gln Ile Ile Asn Asp
405 410 415
Trp Arg Tyr Val Arg Lys Leu Ile Tyr Leu Pro Pro Thr Ala Gly His
420 425 430
Ile Lys Cys Thr Ser Asn Val Thr Ala Val Leu Thr Asp Ile Glu Tyr
435 440 445
Tyr Pro Gly Ser Thr Leu Asn Phe Thr Pro Thr Ala Asn Val Glu Asp
450 455 460
Val Trp Arg Ala Asp Leu Phe Asn Tyr Lys Leu Ile Gln Ile Lys Pro
465 470 475 480
Ile Gly Phe Ala Pro Thr Asp Gln Arg Arg Tyr Glu Leu Pro Asn Thr
485 490 495
Arg Glu Lys Arg Ala Ala Pro Leu Ala Leu Gly Phe Leu Gly Leu Leu
500 505 510
Ser Ala Ala Gly Thr Ala Met Gly Gly Ala Ala Thr Ala Leu Thr Leu
515 520 525
Gln Ser Gln Thr Leu Leu Ala Gly Ile Val Gln Gln Gln Gln Lys Leu
530 535 540
Leu Glu Ala Val Glu Ala Gln Gln His Leu Leu Gly Leu Thr Val Trp
545 550 555 560
Gly Val Lys Asn Leu Asn Ala Arg Leu Thr Ala Leu Glu Thr Tyr Leu
565 570 575
Arg Asp Gln Ala Ile Leu Ser Asn Trp Gly Cys Ala Phe Lys Gln Ile
580 585 590
Cys His Thr Ala Val Thr Trp Glu Lys Ala Cys Gly Asn Asn Ser Asn
595 600 605
Phe Cys Pro Lys Pro Gln Trp Lys Asn Met Thr Trp His Arg Trp Glu
610 615 620
Gln Glu Val Asp Asn Leu Thr Asp His Ile Asp Gly Leu Leu Arg Glu
625 630 635 640
Ala Gln Glu Gln Gln Glu Arg Asn Val His Asp Leu Thr Lys Leu Gln
645 650 655
Glu Trp Asp Ser Leu Trp Ser Trp Phe Asp Leu Ser Lys Trp Phe Phe
660 665 670
Tyr Leu Lys Ile Gly Phe Tyr Val Ile Gly Ala Leu Val Leu Leu Arg
675 680 685
Leu Val Ser Phe Ser Val Gly Ile Ile Lys Asn Leu Leu Gly Gly Tyr
690 695 700
Val Pro Ile Leu Gln Asn Pro Thr Gln Gly Arg Lys Asp Pro Gly Lys
705 710 715 720
Pro Ala Asp Glu Glu Glu Gly Ser Gly Asp Arg Glu Gly Leu Asn Val
725 730 735
Ser Thr Phe Ser Arg Glu Ser Leu Arg Gln Ser Leu Glu Ala Gly Gln
740 745 750
Gln Leu Trp Arg Thr Val Cys Ser Ser Phe Arg Ser Leu Ile Arg Gln
755 760 765
Leu Thr Ile Thr Trp Gly Phe Ile Ser Tyr Gly Phe Asn Glu Leu Lys
770 775 780
Ile Ala Ala Ala Ser Leu Gly Arg Glu Ile Arg Asp Trp Val Ala Ala
785 790 795 800
Ile Trp Gln Ala Ile Tyr Ala Ala Thr Arg Arg Val Val Glu Ala Val
805 810 815
Ala Ala Leu Pro Arg Arg Leu Arg Gln Gly Leu Glu Ile Tyr Leu Asn
820 825 830




22


71


PRT


Simian immunodeficiency virus




Putative amino acid sequence of homologous
region of extended rev ORF in SIVsmPbj1.9






22
Met Ser Ser Asn Glu Glu Glu Leu Arg Arg Arg Leu Arg Leu Ile His
1 5 10 15
Leu Leu His Gln Thr Ser Lys Tyr Gly Met Ser Trp Glu Ser Ala Ala
20 25 30
Tyr Arg Ala Leu Ala Ile Lys Cys Phe Arg Asp Leu Leu Cys Ser Ile
35 40 45
Cys Asn Ser Ile Leu Trp Tyr Thr Ser Met Glu Glu Cys Asp Ser Ser
50 55 60
Pro Leu Leu Cys Asn Gln Gly
65 70




23


75


PRT


Simian immunodeficiency virus




Putative amino acid sequence of homologous
region of extended rev ORF in SIVrcmGB-1






23
Met Leu Pro Gly Gln Asp Glu Glu Asp Leu Arg Lys Lys Ile Arg Leu
1 5 10 15
Ile Asn Phe Leu Tyr Leu Ile Ser Lys Tyr Gly Val Pro Trp Thr Ser
20 25 30
Thr Ala Phe Arg Ala Ser Ala Lys Lys Val Phe Ile Asp Leu Leu Val
35 40 45
Thr Ile Ile Lys Gly Lys Tyr Asn Ser Leu Leu Trp Cys Pro Ser Met
50 55 60
Glu Lys Gln His Ser Ala Tyr Val Leu Cys Asp
65 70 75




24


71


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region
of extended rev ORF in SIVsmPbj






24
Met Ser Ser Asn Glu Glu Glu Leu Arg Arg Arg Leu Arg Leu Ile His
1 5 10 15
Leu Leu His Gln Thr Ser Lys Tyr Gly Met Ser Trp Glu Ser Ala Ala
20 25 30
Tyr Arg Ala Leu Ala Ile Lys Cys Phe Arg Asp Leu Leu Cys Ser Ile
35 40 45
Cys Asn Ser Ile Leu Trp Tyr Thr Ser Met Glu Glu Cys Asp Ser Ser
50 55 60
Pro Leu Leu Cys Asn Gln Glu
65 70




25


71


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region
of extended rev ORF in SIVsmM9






25
Met Ser Ser Asn Glu Glu Glu Leu Arg Arg Arg Leu Arg Leu Ile His
1 5 10 15
Phe Leu His Gln Thr Ser Lys Tyr Gly Met Ser Trp Glu Ser Ala Ala
20 25 30
Tyr Arg Ala Leu Ala Ile Lys Cys Phe Arg Asp Leu Leu Cys Ser Ile
35 40 45
Cys Asn Ser Ile Leu Trp Cys Thr Ser Met Glu Glu Cys Asp Ser Ser
50 55 60
Pro Leu Leu Cys Asn Gln Lys
65 70




26


71


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region
of extended rev ORF in SIVsmH4






26
Met Ser Ser Thr Glu Glu Glu Leu Arg Arg Arg Leu Arg Leu Ile His
1 5 10 15
Phe Leu His Gln Thr Ser Lys Tyr Gly Met Ser Trp Glu Ser Ala Ala
20 25 30
Tyr Arg Ala Leu Ala Ser Lys Cys Phe Arg Asp Leu Leu Cys Ser Ile
35 40 45
Cys Asn Ser Ile Leu Trp Cys Thr Ser Met Glu Glu Cys Asp Asn Ser
50 55 60
Pro Leu Leu Cys Asn Gln Glu
65 70




27


73


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region
of extended rev ORF in SIVmac142






27
Met Arg Ser His Thr Gly Glu Glu Glu Leu Arg Arg Arg Leu Arg Leu
1 5 10 15
Ile His Leu Leu His Gln Thr Ser Lys Tyr Gly Leu Ser Trp Lys Ser
20 25 30
Ala Ala Tyr Arg His Leu Ala Ser Lys Cys Leu Trp Asp Leu Leu Tyr
35 40 45
Ser Ile Cys His Ser Leu Leu Trp Cys Thr Ser Leu Glu Glu Cys Asp
50 55 60
Asn Ser Pro Leu Leu Cys Asn Gln Glu
65 70




28


73


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region
of extended rev ORF in SIVmac251






28
Met Ser Ser His Glu Arg Glu Glu Glu Leu Arg Lys Arg Leu Arg Leu
1 5 10 15
Ile His Leu Leu His Gln Thr Ser Lys Tyr Gly Met Ser Trp Glu Ser
20 25 30
Ala Ala Tyr Arg His Leu Ala Phe Lys Cys Leu Trp Asp Leu Leu Tyr
35 40 45
Ser Ile Cys His Ser Leu Leu Trp Cys Thr Ser Leu Glu Glu Cys Asp
50 55 60
Asn Ser Pro Leu Leu Cys Asn Gln Glu
65 70




29


73


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region
of extended rev ORF in SIVmac239






29
Met Ser Asn His Glu Arg Glu Glu Glu Leu Arg Lys Arg Leu Arg Leu
1 5 10 15
Ile His Leu Leu His Gln Thr Ser Lys Tyr Gly Met Ser Trp Glu Ser
20 25 30
Ala Ala Tyr Arg His Leu Ala Phe Lys Cys Leu Trp Asp Leu Leu Tyr
35 40 45
Ser Ile Cys His Ser Leu Leu Trp Cys Thr Ser Leu Glu Glu Cys Asp
50 55 60
Asn Ser Pro Leu Leu Cys Asn Gln Glu
65 70




30


73


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region
of extended rev ORF in SIVmac1all






30
Met Ser Ser His Glu Arg Glu Glu Glu Leu Arg Lys Arg Leu Arg Leu
1 5 10 15
Ile His Leu Leu His Gln Thr Ser Lys Tyr Gly Met Ser Trp Glu Ser
20 25 30
Ala Ala Tyr Arg His Leu Ala Phe Lys Cys Leu Trp Asp Leu Leu Tyr
35 40 45
Ser Ile Cys His Ser Leu Leu Trp Cys Thr Ser Leu Glu Glu Cys Asp
50 55 60
Asp Ser Pro Leu Leu Cys Asn Gln Glu
65 70




31


73


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region
of extended rev ORF in SIVmac132zm






31
Met Ser Asn His Glu Arg Glu Glu Glu Leu Arg Lys Arg Leu Arg Leu
1 5 10 15
Ile His Leu Leu His Gln Thr Ser Lys Tyr Gly Met Ser Trp Glu Ser
20 25 30
Ala Ala Tyr Arg His Leu Ala Phe Lys Cys Leu Trp Asp Leu Leu Tyr
35 40 45
Pro Ile Cys His Ser Leu Leu Trp Cys Thr Ser Leu Glu Glu Cys Asp
50 55 60
Asn Ser Pro Leu Leu Cys Asn Gln Glu
65 70




32


71


PRT


Simian immunodeficiency virus




Amino acid sequence of homologous region
of extended rev ORF in SIVmacSTM






32
Met Ser Asp Gln Glu Glu Glu Leu Arg Lys Arg Leu Arg Leu Ile Gln
1 5 10 15
Phe Leu His Gln Thr Ser Lys Tyr Gly Leu Pro Trp Lys Ser Thr Ala
20 25 30
Tyr Arg Tyr Leu Ala Ile Lys Cys Leu Leu Asp Leu Leu His Ser Val
35 40 45
Cys His Gly Ile Leu Trp Cys Thr Ser Met Glu Glu Cys Asp Asp Ser
50 55 60
Pro Leu Leu Cys Asn Gln Glu
65 70




33


73


PRT


Human immunodeficiency virus




Amino acid sequence of homologous region
of extended rev ORF in HIV2/FO784






33
Met Ser Gln Ala Glu Lys Glu Glu Glu Leu Arg Arg Arg Leu Arg Leu
1 5 10 15
Ile Tyr Leu Leu His Gln Thr Ser Lys His Gly Val Ser Trp Glu Ser
20 25 30
Ala Thr Tyr Arg Asn Leu Ala Ile Lys Tyr Phe Phe Asp Ile Leu Cys
35 40 45
Ser Val Cys His Ser Ile Leu Trp Tyr Thr Arg Met Glu Lys Cys Asp
50 55 60
Asn Thr Pro Leu Leu Arg Asn Gln Lys
65 70




34


73


PRT


Human immunodeficiency virus




30, 47, 72




Amino acid sequence of homologous region
of extended rev ORF in HIV2/BEN; Xaa = other =
inactivating mutations






34
Met Ser Glu Arg Ala Asp Glu Glu Gly Leu Gln Gly Lys Leu Arg Leu
1 5 10 15
Leu Arg Leu Leu His Gln Thr Ser Glu Tyr Gly Ala Trp Xaa Glu Ser
20 25 30
Ala Val Cys Cys His Phe Thr Asn Lys Cys Leu Leu Ser Ile Leu Xaa
35 40 45
Pro Val Cys Asp Cys Phe Leu Trp His Thr Arg Val Glu Lys Cys Ile
50 55 60
Tyr Ser Leu Ile Leu Cys Asn Xaa Lys
65 70




35


74


PRT


Human immunodeficiency virus




41, 73




Amino acid sequence of homologous region
of extended rev ORF in HIV2/CAM2; Xaa = other =
inactivating mutations






35
Met Thr Glu Arg Ala Asp Glu Glu Gly Leu Gln Arg Lys Leu Arg Leu
1 5 10 15
Ile Arg Leu Leu His Gln Thr Ser Glu Tyr Gly Ala Trp Gln Lys Ser
20 25 30
Ala Ala Tyr Cys His Ser Thr Ser Xaa Cys Leu Leu Asn Ile Leu Gln
35 40 45
Thr Thr Ile Cys Asp Cys Phe Leu Trp Arg Thr Arg Val Glu Lys Cys
50 55 60
Ile His Ser Pro Leu Leu Cys Asn Xaa Lys
65 70




36


72


PRT


Human immunodeficiency virus




28, 29




Amino acid sequence of homologous region
of extended rev ORF in HIV2/EHO; Xaa = other =
inactivating mutations






36
Met Asn Ala Arg Glu Arg Asp Leu Gln Lys Gly Leu Arg Leu Leu His
1 5 10 15
Leu Leu His Gln Thr Ser Glu Tyr Gly Thr Cys Xaa Xaa Leu Pro Thr
20 25 30
Cys Tyr Thr Pro Ala Tyr Lys Tyr Leu Trp Val Tyr Gly Gln Glu Leu
35 40 45
Cys His Cys Leu Leu Trp Tyr Thr Arg Met Glu Lys Cys Ile Asn Ser
50 55 60
Pro Leu Leu Cys Tyr Gln Lys Gln
65 70




37


74


PRT


Human immunodeficiency virus




26, 30, 41, 72




Amino acid sequence of homologous region
of extended rev ORF in HIV2/GH1; Xaa = other =
inactivating mutations






37
Met His Glu Lys Ala Asp Gly Glu Glu Leu Gln Glu Arg Leu Arg Leu
1 5 10 15
Ile Arg Leu Leu His Gln Thr Ser Glu Xaa Asp Val Trp Xaa Glu Ser
20 25 30
Thr Met Cys Cys Gln Leu Ala Ser Xaa Cys Leu Leu Ser Ile Leu His
35 40 45
Pro Ile Cys Asp Cys Phe Leu Trp Arg Ala Arg Val Glu Lys Cys Ile
50 55 60
His Ser Pro Leu Leu Cys Asn Xaa Lys Gln
65 70




38


73


PRT


Human immunodeficiency virus




29, 30, 41




Amino acid sequence of homologous region
of extended rev ORF in HIV2/KR; Xaa = other =
inactivating mutations






38
Met Asn Gly Arg Ala Asp Glu Glu Gly Leu Gln Arg Lys Gln Arg Leu
1 5 10 15
Ile Arg Leu Leu His Gln Thr Ser Glu Tyr Asn Gly Xaa Xaa Lys Ser
20 25 30
Ala Asn Cys Cys His Phe Thr Asn Xaa Cys Leu Leu Asn Ile Leu Arg
35 40 45
Pro Ile Cys Asp Cys Phe Leu Trp His Thr Arg Val Glu Glu Cys Ile
50 55 60
His Ser Pro Leu Leu Cys Asn Gln Lys
65 70




39


75


PRT


Human immunodeficiency virus




41




Amino acid sequence of homologous region
of extended rev ORF in HIV2/MDS; Xaa = other =
inactivating mutation






39
Met Asn Glu Arg Ala Asp Glu Glu Gly Leu Gln Arg Lys Leu Arg Leu
1 5 10 15
Ile Arg Leu Leu His Gln Thr Ser Glu Tyr Asp Ala Gln Asn Ala Ser
20 25 30
Ala Ala Tyr Cys His Phe Thr Asn Xaa Cys Leu Leu Asn Ile Leu Gln
35 40 45
Thr Thr Thr Ile Cys Asn Cys Phe Leu Trp His Thr Arg Val Glu Glu
50 55 60
Cys Ile His Ser Pro Leu Leu Cys Asn Gln Lys
65 70 75




40


73


PRT


Human immunodeficiency virus




29, 30, 41




Amino acid sequence of homologous region
of extended rev ORF in HIV2/NIHZ; Xaa = other =
inactivating mutations






40
Met Thr Glu Arg Ala Asp Glu Glu Gly Leu Gln Arg Lys Leu Arg Leu
1 5 10 15
Ile Arg Leu Leu His Gln Thr Ser Glu Tyr Glu Gly Xaa Xaa Glu Ser
20 25 30
Thr Ala Asp Cys Tyr Cys Thr Ser Xaa Cys Leu Pro Asn Thr Leu Gln
35 40 45
Ala Ile Cys Asp Cys Phe Leu Arg His Thr Arg Val Glu Glu Cys Ile
50 55 60
His Ser Pro Val Leu Cys Asn Gln Lys
65 70




41


69


PRT


Human immunodeficiency virus




38




Amino acid sequence of homologous region
of extended rev ORF in HIV2/ROD; Xaa = other =
inactivating mutations






41
Met Asn Glu Arg Ala Asp Glu Glu Gly Leu Gln Arg Lys Leu Arg Leu
1 5 10 15
Ile Arg Leu Leu His Gln Thr Ser Glu Tyr Asp Glu Ser Ala Ala Tyr
20 25 30
Cys His Phe Ile Ser Xaa Cys Leu Leu Ser Ile Leu His Pro Ile Cys
35 40 45
Asn Cys Phe Leu Trp Thr His Val Glu Lys Cys Asn His Ser Pro Leu
50 55 60
Leu Cys Asn Gln Lys
65




42


73


PRT


Human immunodeficiency virus




30, 41, 72




Amino acid sequence of homologous region
of extended rev ORF in HIV2/SBLISY; Xaa = other =
inactivating mutations






42
Met Thr Glu Arg Ala Asp Glu Glu Gly Val Arg Arg Lys Leu Arg Leu
1 5 10 15
Ile Arg Leu Leu His Gln Thr Ser Glu Tyr Asn Glu Trp Xaa Asn Ser
20 25 30
Ala Ala Cys Cys Leu Ser Ala Asn Xaa Cys Leu Leu Asn Ile Leu His
35 40 45
Gln Ile Cys Asp Cys Phe Leu Trp Ser Thr Arg Val Glu Lys Cys Ile
50 55 60
His Ser Pro Leu Leu Cys Asn Xaa Lys
65 70




43


73


PRT


Human immunodeficiency virus




26, 30, 41, 72




Amino acid sequence of homologous region
of extended rev ORF in HIV2/ST; Xaa = other =
inactivating mutations






43
Met Asn Glu Arg Ala Glu Glu Glu Glu Leu Arg Arg Lys Leu Arg Leu
1 5 10 15
Ile Arg Leu Leu His Gln Thr Ser Glu Xaa Asp Val Trp Xaa Glu Ser
20 25 30
Thr Ile Cys Cys Gln Leu Ala Ser Xaa Cys Leu Leu Asn Ile Leu Arg
35 40 45
Pro Ile Cys Asp Cys Phe Leu Trp Arg Ala Arg Val Glu Lys Cys Ile
50 55 60
His Ser Pro Leu Leu Cys Asn Xaa Lys
65 70




44


74


PRT


Human immunodeficiency virus




28, 47




Amino acid sequence of homologous region
of extended rev ORF in HIV2/UC1; Xaa = other =
inactivating mutations






44
Met Thr Thr Arg Glu Lys Asp Leu Gln Lys Gly Leu Arg Leu Leu His
1 5 10 15
Leu Leu His Gln Thr Ser Glu Tyr Gly Thr His Xaa Gln Ser Pro Val
20 25 30
Tyr Phe Ala Pro Thr Tyr Lys Cys Leu Trp Val Ser Gly Ser Xaa Glu
35 40 45
Lys Leu Cys His Cys Leu Leu Trp His Thr Cys Met Glu Glu Arg Asn
50 55 60
Gly Ser Ser Leu Leu Cys Asn His Lys Gln
65 70




45


518


PRT


Simian immunodeficiency virus




Deduced amino acid sequence of SIVrcm Gag
protein






45
Met Gly Ala Arg Ala Ser Leu Leu Ser Gly Lys Lys Leu Asp Ala Trp
1 5 10 15
Glu Ser Val Arg Leu Arg Pro Gly Gly Lys Lys Lys Tyr Met Leu Lys
20 25 30
His Leu Val Trp Ala Cys Lys Lys Leu Asn Lys Phe Gly Leu Ser Asp
35 40 45
His Leu Leu Glu Thr Ala Thr Gly Cys Glu Lys Ile Leu Gly Val Leu
50 55 60
Leu Pro Leu Val Pro Thr Gly Ser Glu Gly Leu Lys Ser Leu Phe Asn
65 70 75 80
Leu Cys Cys Val Leu Trp Cys Val His Lys Glu Val Lys Val Lys Asp
85 90 95
Thr Glu Glu Ala Val Ala Lys Val Lys Glu Cys Cys His Leu Val Glu
100 105 110
Lys Ala Glu Asn Thr Thr Glu Lys Glu Lys Gly Ala Thr Ala Pro Pro
115 120 125
Ser Gly Gln Arg Gly Asn Tyr Pro Ile Ile Thr Ile Asn Gln Gln Pro
130 135 140
Glu His Asn Pro Ile Ser Pro Arg Thr Leu Asn Ala Trp Val Lys Val
145 150 155 160
Val Glu Glu Lys Lys Phe Ser Ala Glu Val Ala Pro Met Phe Ser Ala
165 170 175
Leu Ser Glu Gly Cys Ile Pro Tyr Asp Ile Asn Gln Met Leu Asn Ala
180 185 190
Ile Gly Glu His Gln Gly Ala Leu Gln Ile Val Lys Glu Val Ile Asn
195 200 205
Glu Glu Ala Ala Asp Trp Asp Ala Arg His Pro Val Pro Gly Pro Ile
210 215 220
Pro Ala Gly Gln Leu Arg Glu Pro Thr Gly Ser Asp Ile Ala Gly Thr
225 230 235 240
Thr Ser Ser Ile Ala Glu Gln Ile Ala Trp Thr Thr Arg Ala Asn Asn
245 250 255
Pro Ile Asn Val Gly Asn Leu Tyr Arg Asn Trp Ile Ile Val Gly Leu
260 265 270
Gln Lys Trp Val Lys Met Tyr Asn Pro Val Asn Ile Leu Asp Ile Lys
275 280 285
Gln Gly Pro Lys Glu Ser Phe Lys Asp Tyr Val Asp Arg Phe Tyr Lys
290 295 300
Ala Leu Arg Ala Glu Gln Ala Asp Pro Ala Val Lys Asn Trp Met Thr
305 310 315 320
Gln Ser Leu Leu Ile Gln Asn Ala Asn Pro Asp Cys Lys Met Val Leu
325 330 335
Lys Gly Leu Gly Met Asn Pro Ser Leu Glu Glu Met Leu Thr Ala Cys
340 345 350
Gln Gly Val Gly Gly Pro Gln His Lys Ala Arg Val Leu Ala Glu Ala
355 360 365
Met Gln Met Met Gln Ser Asn Ile Met Ala Gln Gln Ser Ala Asn Arg
370 375 380
Gly Pro Pro Arg Arg Ser Gly Gly Asn Pro Asn Leu Arg Cys Tyr Asn
385 390 395 400
Cys Gly Lys Pro Gly His Ile Ser Arg Tyr Cys Lys Ala Pro Arg Arg
405 410 415
Lys Gly Cys Trp Lys Cys Gly Ser Pro Asp His Leu Leu Lys Asp Cys
420 425 430
Thr Lys Gln Ile Asn Phe Leu Gly Arg Leu Pro Trp Gly Gln Gly Lys
435 440 445
Pro Arg Asn Phe Pro Leu Thr Ser Leu Thr Pro Ser Ala Pro Gly Met
450 455 460
Glu Ser Asn Tyr Asp Pro Ala Glu Glu Met Leu Lys Asn Tyr Leu Arg
465 470 475 480
Arg Ala Gly Glu Gln Lys Arg Gln Gln Arg Gln Glu Glu Ser Lys Lys
485 490 495
Arg Glu Gly Ala Tyr Gln Glu Ala Leu Thr Ser Leu Asn Ser Leu Phe
500 505 510
Gly Ser Asp Gln Leu Gln
515




46


1018


PRT


Simian immunodeficiency virus




Deduced amino acid sequence of SIVrcm Pol
protein






46
Phe Phe Arg Glu Thr Pro Leu Gly Ser Gly Glu Ala Glu Glu Leu Ser
1 5 10 15
Phe Asp Phe Leu Asp Ser Leu Cys Ser Arg Asp Gly Glu Gln Leu Arg
20 25 30
Pro Cys Arg Arg Asp Ala Lys Glu Leu Ser Glu Glu Gly Arg Gly Thr
35 40 45
Lys Glu Thr Thr Glu Ala Gly Arg Glu Gln Glu Glu Arg Gly Ser Ile
50 55 60
Ser Gly Ser Leu Asn Leu Pro Gln Phe Ala Leu Trp Lys Arg Pro Thr
65 70 75 80
Thr Ile Ala Gln Ile Glu Gly Gln Lys Val Glu Val Leu Leu Asp Thr
85 90 95
Gly Ala Asp Asp Thr Val Ile Glu Gly Ile Glu Leu Gly Asn Asp Trp
100 105 110
Thr Pro Lys Ile Ile Gly Gly Ile Gly Gly Tyr Ile Asn Val Lys Gln
115 120 125
Tyr Lys Asn Cys Glu Ile Glu Ile Ala Gly Lys Arg Thr His Ala His
130 135 140
Val Leu Val Gly Pro Thr Pro Val Asn Ile Ile Gly Arg Asn Val Leu
145 150 155 160
Lys Lys Leu Gly Ala Thr Leu Asn Phe Pro Ile Ser Gln Ile Glu Thr
165 170 175
Ile Lys Val Glu Leu Lys Ser Gly Gln Asp Gly Pro Arg Val Lys Gln
180 185 190
Trp Pro Leu Ser Lys Glu Lys Ile Glu Ala Leu Thr Glu Ile Cys Asn
195 200 205
Ala Met Glu Lys Glu Gly Lys Ile Ser Lys Ile Gly Pro Glu Asn Pro
210 215 220
Tyr Asn Thr Pro Ile Phe Cys Ile Lys Lys Lys Asp Ser Thr Lys Trp
225 230 235 240
Arg Lys Leu Val Asp Phe Arg Glu Leu Asn Lys Arg Thr Gln Asp Phe
245 250 255
Phe Glu Val Gln Leu Gly Ile Pro His Pro Gly Gly Leu Lys Gln Cys
260 265 270
Glu Arg Ile Thr Val Leu Asp Ile Gly Asp Ala Tyr Phe Ser Cys Leu
275 280 285
Leu Tyr Glu Pro Phe Arg Lys Tyr Thr Ala Phe Thr Ile Pro Ala Val
290 295 300
Asn Asn Gln Gly Pro Gly Val Arg Tyr Gln Tyr Asn Val Leu Pro Gln
305 310 315 320
Gly Trp Lys Gly Ser Pro Ala Ile Phe Gln Ala Ser Ala Asn Lys Ile
325 330 335
Leu Gln Pro Phe Arg Glu Glu Asn Pro Asp Val Ile Ile Tyr Gln Tyr
340 345 350
Met Asp Asp Leu Phe Val Gly Ser Asp Arg Thr Lys Leu Glu His Asp
355 360 365
Lys Met Ile Lys Gln Leu Arg Asp His Leu Leu Phe Trp Gly Phe Glu
370 375 380
Thr Pro Asp Lys Lys Phe Gln Asp Lys Pro Pro Tyr Leu Trp Met Gly
385 390 395 400
Tyr Glu Leu His Pro Lys Ser Trp Thr Val Gln Glu Ile Lys Leu Pro
405 410 415
Glu Lys Glu Glu Trp Thr Val Asn Asp Ile Gln Lys Leu Val Gly Lys
420 425 430
Leu Asn Trp Ala Ser Gln Ile Tyr Ser Gly Leu Arg Thr Lys Glu Leu
435 440 445
Cys Lys Leu Ile Arg Gly Ala Lys Ala Leu Asp Glu Lys Val Glu Met
450 455 460
Thr Lys Glu Ala Glu Ile Glu Tyr Glu Glu Asn Lys Met Ile Leu Lys
465 470 475 480
Glu Lys Leu His Gly Val Tyr Tyr Asp Glu Lys Lys Pro Leu Val Ala
485 490 495
Asn Ile Gln Lys Leu Glu Gly Gly Gln Trp Ser Tyr Gln Ile Glu Gln
500 505 510
Glu Ser Gly Lys Pro Leu Lys Thr Gly Lys Tyr Ala Lys Gln Lys Thr
515 520 525
Ala His Thr Asn Glu Ile Arg Met Leu Ala Gly Leu Val Gln Lys Ile
530 535 540
Ala Lys Glu Ala Ile Val Ile Trp Gly Arg Leu Pro Thr Phe Arg Leu
545 550 555 560
Pro Ile Glu Arg Glu Val Trp Asp Trp Arg Ser Gln Tyr Trp Gln Val
565 570 575
Thr Trp Ile Pro Asp Trp Glu Phe Val Ser Thr Pro Pro Leu Ile Arg
580 585 590
Leu Gly Tyr Asn Leu Val Lys Asp Pro Ile Pro Gly Glu Glu Val Tyr
595 600 605
Tyr Val Asp Gly Ala Ala Asn Arg Asn Ser Lys Ile Gly Lys Ala Gly
610 615 620
Tyr Val Thr Asn Arg Gly Lys Glu Lys Val Lys Glu Leu Glu Glu Thr
625 630 635 640
Thr Asn Gln Lys Ala Glu Leu Glu Ala Val Leu Leu Ala Leu Lys Asp
645 650 655
Ser Gly Pro Lys Val Asn Ile Val Thr Asp Ser Gln Tyr Val Tyr Gly
660 665 670
Ile Leu Glu Ala Gln Pro Asp Thr Ser Asp Ser Gly Leu Val Thr Glu
675 680 685
Ile Ile Asn Gln Met Ile Gly Lys Glu Ala Val Tyr Leu Ser Trp Val
690 695 700
Pro Ala His Lys Gly Ile Gly Gly Asn Glu Glu Val Asp Lys Leu Val
705 710 715 720
Ser Lys Gly Ile Arg Gln Val Leu Phe Leu Asp Gly Ile Glu Lys Ala
725 730 735
Gln Glu Glu His Glu Lys Tyr His Asn Asn Trp Arg Ala Leu Ala Glu
740 745 750
Asp Phe Gln Ile Pro Gln Ile Val Ala Lys Glu Ile Val Ala Gln Cys
755 760 765
Pro Lys Cys Gln Val Lys Gly Glu Ala Ile His Gly Gln Val Asp Ala
770 775 780
Ser Pro Gly Thr Trp Gln Met Asp Cys Thr His Leu Glu Gly Lys Ile
785 790 795 800
Ile Ile Val Ala Val His Val Ala Ser Gly Tyr Ile Glu Ala Glu Val
805 810 815
Ile Pro Ala Glu Thr Gly Lys Glu Thr Ala His Phe Leu Leu Lys Leu
820 825 830
Ala Ala Arg Trp Pro Val Arg Lys Leu His Thr Asp Asn Gly Ala Asn
835 840 845
Phe Thr Ser Ala Ala Val Gln Ala Val Cys Trp Trp Ala Gln Ile Glu
850 855 860
His Ala Phe Gly Val Pro Tyr Asn Pro Gln Ser Gln Gly Val Val Glu
865 870 875 880
Ser Met Asn Lys Gln Leu Lys Ile Ile Ile Glu Gln Val Arg Glu Gln
885 890 895
Ala Glu Lys Leu Glu Thr Ala Val Gln Met Ala Val Leu Val His Asn
900 905 910
Phe Lys Arg Lys Gly Gly Ile Gly Gly Tyr Ser Ala Gly Glu Arg Ile
915 920 925
Ile Asp Ile Ile Ala Thr Asp Leu Ala Thr Asn Lys Leu Gln Asn Gln
930 935 940
Ile Ser Lys Ile Gln Asn Phe Arg Val Tyr Tyr Arg Glu Gly Arg Asp
945 950 955 960
Gln Leu Trp Arg Gly Pro Ala Lys Leu Ile Trp Lys Gly Glu Gly Ala
965 970 975
Val Val Ile Gln Glu Glu Thr Gly Asp Leu Lys Val Val Pro Arg Arg
980 985 990
Lys Ala Lys Ile Ile Lys Glu Tyr Gly Arg Lys Asp Val Asp Ser Glu
995 1000 1005
Ala Asn Leu Ala Gly Arg Gln Glu Glu Asn
1010 1015




47


216


PRT


Simian immunodeficiency virus




Deduced amino acid sequence of SIVrcm Vif
protein






47
Met Ala Glu Lys Met Trp Ile Val Arg Pro Ile Trp Arg Val Asp Arg
1 5 10 15
Arg Lys Ile Glu Gln Trp His Ser Leu Val Lys Tyr His Gln Tyr Lys
20 25 30
Gly Lys Lys Ala Ala Lys Glu Trp Glu Tyr Val Pro His Phe Lys Val
35 40 45
Pro Trp Gly Trp Trp Ser His Ser Glu Val His Ile Pro Leu Glu Glu
50 55 60
Gly Ser Lys Leu Lys Ile Thr Thr Tyr Trp Asn Leu Thr Val Glu Lys
65 70 75 80
Gly Trp Leu Gly Thr Tyr Gly Val Gly Ile Leu Trp Ile Lys Gly Asp
85 90 95
Tyr Val Thr Asp Val Phe Pro Trp Thr Ala Asp Ser Leu Ile His Lys
100 105 110
Ile Tyr Phe Pro Cys Phe Thr Asp Arg Ala Ile Arg Gln Ser Leu Leu
115 120 125
Gly Glu Lys Val Leu Val Cys Ala Phe Gln Gly Gly His Arg Asp Gln
130 135 140
Val Gly Thr Leu Gln Phe Leu Ala Ile Gln Ala Trp Ala Lys Ser Gln
145 150 155 160
Leu Asp Arg Tyr Gly Arg Lys Ser Pro Arg Gly Pro His Trp Gly Trp
165 170 175
Arg Ser Arg Val Pro Ala Leu Ala Thr Gly His Ala Arg Lys Gly Gln
180 185 190
Leu Gly Ser Gln Val Thr Leu Ser Ser Arg Val His Phe Pro Ser Val
195 200 205
Ala His Leu Cys Gly Thr Leu Ala
210 215




48


104


PRT


Simian immunodeficiency virus




Deduced amino acid sequence of SIVrcm Vpx
protein






48
Met Ala Glu Arg Ala Pro Glu Val Pro Thr Gly Ala Gly Glu Ala Glu
1 5 10 15
Phe Gln Pro Trp Leu Arg Asp Met Leu Glu Lys Val Asn Leu Glu Ala
20 25 30
Arg Leu His Phe His Pro Glu Phe Ile Phe Arg Leu Trp Arg Thr Cys
35 40 45
Val Glu His Trp His Asp Val His Gln Arg Ser Leu Glu Tyr Ala Ala
50 55 60
Tyr Arg Tyr Leu Leu Leu Met Gln Lys Ala Leu Phe Ile His Cys Gln
65 70 75 80
Thr Gly Cys Ser Gln Arg His Gly Pro Asn Pro Arg Ala Val Gly Glu
85 90 95
Arg Ile Thr Ile Leu Pro Gly Met
100




49


100


PRT


Simian immunodeficiency virus




Deduced amino acid sequence of SIVrcm Vpr
protein






49
Met Glu Leu Pro Pro Glu Asp Glu Gly Pro Gln Arg Glu Pro Tyr Asp
1 5 10 15
Glu Trp Leu Met Asp Thr Leu Ile Glu Leu Gln Glu Glu Ala Lys Lys
20 25 30
His Phe Thr Tyr Ala Leu Leu Thr Gln Ile Gly Asp Tyr Val Tyr Glu
35 40 45
Gln His Gly Asp Ser Ile Glu Gly Val Gln Ala Met Ile Arg Leu Leu
50 55 60
Gln Arg Ala Leu Phe Leu His Phe Arg Asn Gly Cys Ala Gly Ser Arg
65 70 75 80
Ile Gly Thr Ser Arg Gly Ser Asn Pro Leu Arg Ser Ile Pro Gln Thr
85 90 95
Arg Asn Ile Met
100




50


106


PRT


Simian immunodeficiency virus




Deduced amino acid sequence of SIVrcm Tat
protein






50
Met Asp Val Gln Gly Val Gly Leu Glu His Pro Glu Glu Val Ile Leu
1 5 10 15
Tyr Asp Pro Phe Arg Lys Arg Glu Thr Ser Cys Asn Thr Cys Tyr Cys
20 25 30
Lys Lys Cys Cys Tyr His Cys Gln Leu Cys Phe Leu Gln Lys Gly Leu
35 40 45
Gly Ile Asn Tyr Ala Ser Arg Ala Arg Arg Arg Arg Ser Lys Glu Glu
50 55 60
Asn Lys Ala Asp Lys Phe Pro Val Pro Asn His Arg Ser Ile Ser Thr
65 70 75 80
Thr Arg Gly Asn Arg Lys Leu Gln Glu Lys Lys Glu Lys Thr Val Glu
85 90 95
Lys Lys Val Ala Thr Ser Thr Thr Ile Gly
100 105




51


94


PRT


Simian immunodeficiency virus




Deduced amino acid sequence of SIVrcm Rev
protein






51
Met Leu Pro Gly Gln Asp Glu Glu Asp Leu Arg Lys Lys Ile Arg Leu
1 5 10 15
Ile Asn Phe Leu Tyr Leu Ile Thr Asp Pro Tyr Pro Gln His Gly Gly
20 25 30
Thr Ala Asn Ser Arg Arg Lys Lys Arg Arg Arg Trp Arg Arg Arg Trp
35 40 45
Gln Gln Val Gln Gln Leu Ala Glu Arg Ile Leu Leu Asp Ser Thr Asp
50 55 60
Pro Pro Val Glu Gln Asp Leu Asp Ala Ala Ile Ala Asp Leu Gln Lys
65 70 75 80
Leu Gln Leu Asn Asn Leu Pro Glu Pro Pro Val Asp Phe Ser
85 90




52


850


PRT


Simian immunodeficiency virus




Deduced amino acid sequence of SIVrcm Env
protein






52
Met Asp Lys Lys Leu Val Ile Val Leu Ile Val Val Ile Gly Ile Ile
1 5 10 15
Leu Val Gln Gly Ser Gln Lys Pro Gln Tyr Ile Thr Val Phe Tyr Gly
20 25 30
Val Pro Val Trp Arg Asn Ser Thr Val Pro Met Phe Cys Val Thr Asp
35 40 45
Asn Thr Gln Ser Trp Gly Thr Leu Asn Cys Ile Pro Glu Gly Gly Ile
50 55 60
Ser Pro Glu Val Ser Ile Asn Val Ser Glu Arg Phe Asp Ala Trp Asn
65 70 75 80
Asn Ser Leu Tyr Glu Gln Ala Lys Asp Asn Val Trp Asn Leu Tyr Asp
85 90 95
Ser Thr Leu Lys Pro Cys Val Arg Leu Ser Pro Leu Cys Ile Thr Met
100 105 110
Asn Cys Ser Ala Ile Asn Gly Ser Trp Asp Gly Ile Pro Thr Ser Ala
115 120 125
Pro Pro Thr Thr Thr Lys Thr Thr Thr Gln Arg Thr Ile Gly Val Glu
130 135 140
Lys Glu Cys Thr Ala Gly Asn Glu Thr Cys Glu Glu Val Gln Asp Ala
145 150 155 160
Asp Val Met Ser Cys Glu Phe Ala Val Ala Gly Leu Lys Arg Asp Glu
165 170 175
Lys His Lys Tyr Asn Asp Thr Trp Tyr Ser Arg Asp Leu Trp Cys Glu
180 185 190
Lys Glu Thr Asn Ser Thr Asn Ser Thr Lys Lys Lys Cys Phe Val Arg
195 200 205
His Cys Asn Thr Thr Ser Ile Gln Gln Phe Cys Glu Pro Lys Tyr Trp
210 215 220
Glu Pro Phe Arg Leu Arg Tyr Cys Ala Pro Pro Gly Phe Ala Leu Leu
225 230 235 240
Val Cys Lys Asp Lys Asn Tyr Thr Gly Phe Asp Thr Cys Val Asn Val
245 250 255
Thr Ala Thr Ser Cys Thr His Met Ile Asn Thr Thr Val Ala Ser Gly
260 265 270
Phe Gly Leu Asn Gly Ser Ile Asn Val Asn Glu Thr Trp Ile Tyr Gln
275 280 285
Arg Arg Gln Ser Asn Arg Thr Val Ile Gly Leu Asn Ser Phe Tyr Asn
290 295 300
Leu Ser Val Thr Cys Arg Arg Pro Ser Asn Arg Thr Val Lys Gly Ile
305 310 315 320
Ser Leu Ala Thr Gly Val Phe Ile Ser Leu Arg Val Glu Lys Arg Pro
325 330 335
Lys Gly Ala Trp Cys Arg Phe Glu Gly Asn Trp Thr Asp Ala Trp Lys
340 345 350
Glu Val Lys Glu Arg Val Lys Thr Thr Lys Gly Tyr Arg Gly Thr Ser
355 360 365
Asn Thr Asp Lys Ile Lys Ile Arg Thr Val Tyr Gly Gly Asp Asp Glu
370 375 380
Ala Arg Tyr Phe Trp Leu Asn Cys Asn Gly Glu Phe Leu Tyr Cys Lys
385 390 395 400
Leu Asn Trp Phe Leu Asn Leu Leu Asn Asn Glu Thr Val Gly Thr Thr
405 410 415
Asn Glu Lys Arg Lys Ala Pro Phe Val Pro Cys Ile Thr Lys Met Ile
420 425 430
Val Asn Asp Trp Tyr Thr Val Ser Arg Lys Val Tyr Thr Pro Pro Arg
435 440 445
Pro Asp Ala Leu Lys Cys Ser Ala Gln Val Ser Tyr Leu Leu Ala Asp
450 455 460
Ile Asp Tyr Ile Asn Asp Ser Glu Thr Asn Ile Thr Leu Ser Ala Glu
465 470 475 480
Val Gly Asp Tyr Trp Ala Ala Glu Leu Gly Arg Tyr Lys Ala Ile Glu
485 490 495
Ile Arg Pro Ile Gly Phe Ala Pro Thr Glu Ile Lys Arg Tyr Gln Thr
500 505 510
Lys Gln Lys Arg Val Pro Leu Val Leu Gly Phe Leu Gly Phe Leu Ser
515 520 525
Ala Ala Gly Thr Ala Met Gly Ala Ala Ala Thr Ala Leu Thr Val Gln
530 535 540
Ser Arg His Leu Leu Ala Gly Ile Leu Gln Gln Gln Lys Asn Leu Leu
545 550 555 560
Asp Ile Val Lys Arg Gln Gln Asn Leu Leu Lys Leu Thr Val Trp Gly
565 570 575
Thr Lys Asn Leu Gln Ala Arg Val Thr Ala Ile Glu Lys Tyr Leu Ala
580 585 590
Asp Gln Ser Leu Leu Asn Thr Phe Gly Cys Ala Trp Arg Gln Val Cys
595 600 605
His Thr Val Val Pro Trp Thr Phe Asn Lys Thr Pro Glu Trp Gln Lys
610 615 620
Glu Ser Trp Leu Gln Trp Glu Arg Asn Ile Ser Tyr Leu Glu Ala Asn
625 630 635 640
Ile Thr Ile Ala Leu Gln Glu Ala Gln Asp Gln His Glu Lys Asn Val
645 650 655
His Glu Leu Glu Lys Leu Ser Asn Trp Gly Asp Ala Phe Ser Trp Leu
660 665 670
Asn Leu Asp Trp Trp Met Gln Tyr Ile Lys Ile Gly Phe Phe Ile Val
675 680 685
Ile Gly Ile Ile Gly Leu Arg Val Ala Trp Leu Leu Trp Asn Cys Leu
690 695 700
Ser Asn Leu Arg Gln Gly Tyr Arg Pro Leu Ser Pro Pro Ser Tyr Val
705 710 715 720
Gln Gln Ile His Ile His Asn Thr Gly Glu Pro Gln Thr Pro Gly Glu
725 730 735
Lys Arg Glu Asp Gly Gly Glu Glu Gly Gly Asn Lys Tyr Asn Asn Trp
740 745 750
Leu Arg Glu Tyr Cys Trp Ile Gln Leu Ile His Pro Leu Ser Arg Ile
755 760 765
Trp Thr Gln Leu Ser Gln Ile Cys Arg Ser Cys Ser Ser Ile Ile Phe
770 775 780
Gln Ser Leu Arg Trp Ile Leu Ala Lys Ile Gln Tyr Gly Trp Gln Glu
785 790 795 800
Phe Lys Glu Phe Ser Ser Trp Phe Ala Glu Met Ala Leu Gln Asn Ala
805 810 815
Tyr Tyr Thr Trp Arg Gly Leu Cys Ala Val Ala Arg Asp Phe Ala Gly
820 825 830
Trp Pro Ala Met Val Cys Arg Arg Ile Arg Gln Gly Leu Glu Arg Leu
835 840 845
Cys Asn
850




53


224


PRT


Simian immunodeficiency virus




Deduced amino acid sequence of SIVrcm Nef
protein






53
Met Gly Gly Lys Ser Ser Lys Asn Ser Ala Ala Gly Leu Leu Arg Trp
1 5 10 15
Arg Phe Lys Met Leu Thr Thr Pro Gly Glu Gly Tyr Val Arg Trp His
20 25 30
Glu Thr Leu Leu Asp Gly Gln Pro Trp Cys Ala Glu Gly Ser Gly Arg
35 40 45
Ala Ser Arg Asp Phe Val Ile Arg Gly Gly Ile Thr Ala Glu Thr Gln
50 55 60
Ala Ser Ile Asp Asp Ile Asp Trp Tyr Glu Asp Thr Asp Asp Thr Leu
65 70 75 80
Val Gly Phe Pro Val Lys Pro Gln Val Pro Leu Arg Pro Met Ser Tyr
85 90 95
Lys Leu Ala Ile Asp Met Ser His Phe Leu Lys Glu Lys Gly Gly Leu
100 105 110
Glu Gly Ile Tyr Trp Ser Ile Arg Arg Gln Arg Ile Leu Asp Met Tyr
115 120 125
Leu Glu Asn Glu His Gly Ile Ile Pro Asp Trp Gln Asn Tyr Thr Pro
130 135 140
Gly Pro Gly Ile Arg Tyr Pro Thr Leu Phe Gly Trp Leu Trp Gln Leu
145 150 155 160
Val Pro Val Asp Val Ser Asp Glu Ala Arg Glu Asp Glu Glu His Ser
165 170 175
Leu Leu His Pro Ala Glu Thr Ser Gly Met Glu Asp Pro Trp Gly Glu
180 185 190
Val Leu Ala Trp Lys Phe Asn Pro Met Leu Ala Val Asp Tyr Ile Gly
195 200 205
Tyr Arg Leu His Pro Glu Phe Phe Gly Glu Arg Lys Asn Lys Thr Gln
210 215 220




54


318


PRT


Simian immunodeficiency virus




Deduced amino acid sequence of SIVrcm gag
gene






54
Lys Tyr Met Leu Lys His Leu Val Trp Ala Cys Lys Lys Leu Asn Lys
1 5 10 15
Phe Gly Leu Ser Asp His Leu Leu Glu Thr Ala Thr Gly Cys Glu Lys
20 25 30
Ile Leu Gly Val Leu Leu Pro Leu Val Pro Thr Gly Ser Glu Gly Leu
35 40 45
Lys Ser Leu Phe Asn Leu Cys Cys Val Leu Trp Cys Val His Lys Glu
50 55 60
Val Lys Val Lys Asp Thr Glu Glu Ala Val Ala Lys Val Lys Glu Cys
65 70 75 80
Cys His Leu Val Glu Lys Ala Glu Asn Thr Thr Glu Lys Glu Lys Gly
85 90 95
Ala Thr Ala Pro Pro Ser Gly Gln Arg Gly Asn Tyr Pro Ile Ile Thr
100 105 110
Ile Asn Gln Gln Pro Glu His Asn Pro Ile Ser Pro Arg Thr Leu Asn
115 120 125
Ala Trp Val Lys Val Val Glu Glu Lys Lys Phe Ser Ala Glu Val Ala
130 135 140
Pro Met Phe Ser Ala Leu Ser Glu Gly Cys Ile Pro Tyr Asp Ile Asn
145 150 155 160
Gln Met Leu Asn Ala Ile Gly Glu His Gln Gly Ala Leu Gln Ile Val
165 170 175
Lys Glu Val Ile Asn Glu Glu Ala Ala Asp Trp Asp Ala Arg His Pro
180 185 190
Val Pro Gly Pro Ile Pro Ala Gly Gln Leu Arg Glu Pro Thr Gly Ser
195 200 205
Asp Ile Ala Gly Thr Thr Ser Ser Ile Ala Glu Gln Ile Ala Trp Thr
210 215 220
Thr Arg Ala Asn Asn Pro Ile Asn Val Gly Asn Leu Tyr Arg Asn Trp
225 230 235 240
Ile Ile Val Gly Leu Gln Lys Trp Val Lys Met Tyr Asn Pro Val Asn
245 250 255
Ile Leu Asp Ile Lys Gln Gly Pro Lys Glu Ser Phe Lys Asp Tyr Val
260 265 270
Asp Arg Phe Tyr Lys Ala Leu Arg Ala Glu Gln Ala Asp Pro Ala Val
275 280 285
Lys Asn Trp Met Thr Gln Ser Leu Leu Ile Gln Asn Ala Asn Pro Asp
290 295 300
Cys Lys Met Val Leu Lys Gly Leu Gly Met Asn Pro Ser Leu
305 310 315




55


954


DNA


Simian immunodeficiency virus




Partial nucleotide sequence of SIVrcm gag gene;
GenBank Accession No. AF028608






55
aaatacatgc tgaagcattt ggtatgggca tgcaaaaaac taaataaatt tggcttgagt 60
gatcatttgt tagaaacagc aacaggatgt gaaaaaatat taggagtcct gctgcctcta 120
gttccgacag ggtcagaggg gctaaaaagc ctctttaatt tgtgctgcgt actctggtgc 180
gtacacaagg aagtgaaagt gaaagacaca gaggaagctg tagcaaaagt gaaagaatgc 240
tgccatctag tggaaaaagc agaaaataca acagaaaaag aaaagggagc aacagcgcca 300
cctagtggac aaagaggaaa ttatcctata attactataa atcagcagcc tgagcataat 360
cctatatcac caaggactct aaatgcctgg gtcaaggtgg tagaggagaa aaaattctca 420
gcagaagtag cgcccatgtt ctcggcacta tcagaaggct gcatacccta tgatataaat 480
caaatgctaa atgccatagg ggaacaccag ggtgcgctgc agatagtaaa ggaagtgatc 540
aatgaggaag cagcagactg ggatgctaga catccagtac caggcccgat accagcaggg 600
caacttagag aaccaacagg aagtgacata gcagggacaa ctagctcaat agcagaacag 660
atagcttgga ccaccagagc aaacaacccc attaatgtgg gcaatctgta cagaaattgg 720
ataatagtag ggttacaaaa atgggtaaaa atgtacaatc cagtgaacat cctagatata 780
aagcaaggac caaaagagtc attcaaggat tatgtggata gattttataa agccttgaga 840
gcagaacagg cagacccggc agtaaaaaat tggatgacac aatcactgct gatacaaaat 900
gctaacccag actgtaaaat ggtactcaag ggtctgggaa tgaacccttc ttta 954




56


158


PRT


Simian immunodeficiency virus




148




Deduced amino acid sequence of SIVrcm pol gene;
Xaa = unknown






56
Ile Pro Ala Glu Thr Gly Lys Glu Thr Ala Tyr Phe Leu Leu Lys Leu
1 5 10 15
Ala Ala Arg Trp Pro Val Arg Lys Leu His Thr Asp Asn Gly Ala Asn
20 25 30
Phe Thr Ser Ala Ala Val Gln Ala Val Cys Trp Trp Ala Gln Ile Glu
35 40 45
His Thr Phe Gly Val Pro Tyr Asn Pro Gln Ser Gln Gly Val Val Glu
50 55 60
Ser Met Asn Lys Gln Leu Lys Ile Ile Ile Glu Gln Val Arg Glu Gln
65 70 75 80
Ala Glu Lys Leu Glu Thr Ala Val Gln Met Ala Val Leu Val His Asn
85 90 95
Phe Lys Arg Lys Gly Gly Ile Gly Gly Tyr Ser Ala Gly Glu Arg Ile
100 105 110
Ile Asp Ile Ile Ala Thr Asp Leu Ala Thr Asn Lys Leu Gln Asn Gln
115 120 125
Ile Ser Lys Ile Gln Asn Phe Arg Val Tyr Tyr Arg Glu Gly Arg Asp
130 135 140
Gln Leu Trp Xaa Gly Pro Ala Lys Leu Ile Trp Lys Gly Glu
145 150 155




57


475


DNA


Simian immunodeficiency virus




444




Partial nucleotide sequence of SIVrcm pol gene;
n = unknown; GenBank Accession No. AF028607






57
aataccagca gaaacaggaa aagagacagc atatttcctg ttgaaactag cagcaagatg 60
gccagtaagg aagctacaca cagataatgg agcaaatttc acaagtgcag cagtacaggc 120
ggtctgctgg tgggctcaga tagagcacac ctttggagta ccttacaatc ctcaaagtca 180
aggagtagtg gaaagcatga ataaacaatt aaaaataatc atagaacaag taagagaaca 240
agcagaaaaa ttagaaacag cagtccaaat ggcagttttg gttcacaatt ttaaaagaaa 300
aggggggatt ggggggtaca gtgcaggaga aagaataata gatataatag caacagactt 360
agcaaccaat aaattacaaa atcaaatttc aaaaattcaa aattttcggg tttattacag 420
agaaggaagg gatcaactgt gganaggtcc agctaagctg atctggaaag gtgaa 475




58


52


RNA


Simian immunodeficiency virus




stem_loop




Nucleotide sequence of SIVrcm LTR sequence
having a duplicated TAR stemloop structure






58
ccggauugag ccuggguguu cucuggccag cuugagccug gguguucgcu gg 52






Claims
  • 1. An isolated and purified polypeptide encoded by nucleic acid comprising the nucleotide sequence of the genome of the simian immunodeficiency virus isolate SIVrcm shown in SEQ ID NO: 1, wherein the amino acid sequence of said polypeptide comprises a sequence selected from the group consisting of SEQ ID NO: 10, 23, 45-53, 54 and 56.
  • 2. A composition comprising the isolated and purified polypeptide of claim 1 and a physiologically acceptable carrier.
Government Interests

This work was funded by grants AI 38573-02; AI 27698-05; RO1 AI25291; and NO1 AI35170 from the National Institutes of Health. Therefore, the government may have certain rights in the invention.

Non-Patent Literature Citations (10)
Entry
Smith, S.M., et al. Journal of Medical Primatology, vol. 27, issues 2/3, Apr./Jun. 1998, pp. 94-98.*
Georges-Courbot, M.C., et al., Journal of Virology, vol. 72, No. 1, Jan. 1998, pp. 600-608.*
Smith et al. “SIVrcm infection in macaques,” J Med Primatology, vol. 28, 1998, pp. 94-98.*
Georges-Courbot, M.C., Lu, C.Y., Makuwa, M., Telfer, P., Onanga, R., Dubreuil, G., Chen, Z., Smith, S.M., Georges, A., Gao, F., Hahn, B.H., and Marx, P.A. “Natural infection of a household pet red capped mangabey (Cercocebus torquatus torquatus) with a new simian immunodeficiency virus.” J. Virol., 72:600-608 (1998).
B. H. Hahn, Feng Gao, D. L. Robertson, P. A. Marx and P. Sharp. “HIV and Its Primate Cousins: An Evolving Story”, Absract 005, HIV Pathog. Treat. Conf., Park City, Utah (Mar. 13-19, 1998).
Feng Gao, Yingying Li, J. Decker, D. L. Robertson, S. Smith, P. A. Marx and B. H. Hahn. “Molecular Characterization of a New Primate Lentivirus (SIVrcm) Isolated from a Pet Red-Capped Mangabey in Gabon”, Abstract 4031, HIV Pathog. Treat. Conf., Park City, Utah (Mar. 13-19, 1998).
P. A. Marx, Z. Chen, D. Kwon, S. M. Smith, Feng Gao and B. H. Hahn, “Natural infection of a household pet mangabey (Cercocebus torquatus torquatus) with a new simian immunodeficiency virus related to HIV-1 and HIV-2 has implications for the ancient ancestry of HIV”, Abstract 012, HIV Pathog. Treat. Conf., Park City, Utah (Mar. 13-19, 1998).
Marx PA; Lu CY; Makuwa M; Georges-Courbot MC; Telfer P; Dubreuil G; Chen Z; Smith SM; Gao F; Hahn, “Natural infection of a household pet mangabey (Cercocebus torquatus torquatus) wth a new simian immunodeficiency virus related to HIV-1”, Abstract 557, 5th Conf. Retrovir. Oppor. Infect., Chicago, Illinois (Feb. 1-5, 1998).
Smith, S.M. Makuwa, M., Lee, F., Gettie, A., Russo, C., Marx, P.A., “SIVrcm infection of macaques” J. Med. Primatol. 27:94-98 (Apr./Jun. 1998).
Printout of GenBank accession Nos. AF028607 and AF028608 (Feb. 24, 1998).