GIBCOBRL, 1993-1994 Catalogue and Reference Guide, pp. R-114.* |
Robert D. Fleischmann et al., Science, vol. 269 Jul 28, 1995, pp. 496-520.* |
Akio Adachi et al., Journal of Virology, Aug. 1986, pp. 284-291.* |
Almond et al., “Complementation of a thr-1 mutation of Escherichia coli by DNA from the extremely thermophilic archaebacteruim Methanococcus jannaschii,” Appl. Microbiol. Biotechnol. 30:148-152 (1989). |
Belay et al. “Dinitrogen fixation by a thermophilic methanogenic bacterium,” Nature 312:286-288 (1984). |
Bernad et al., “Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases,” EMBO J. 6(13):4219-4225 (1987). |
Blaut et a., “Metaboism of methanogens,” Antonie van Leeuwenhoek 66:187-208 (1994). |
Brown et al., “Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications,” Proc. Natl. Acad. Sci. USA 92:2441-2445 (1995). |
Bult et al.., Science 273:1043-1045 and 1067-1072 (1996). |
Cooper et al., “Protein splicing of the yeast TFP1 intervening protein sequence: a model for self-excision,” EMBO J. 12(6):2575-2583 (1993). |
Cooper et al., “Protein splicing: Self-Splicing of Genetically Mobile Elements at the Protein Level,” TIBS 20:351-356 (1995). |
Cullman et al., “Characterization of the five replication factor C genes of Saccharomyces cerevisiae,” Mol. Cell. Biol. 15(9):4661-4671 (1995). |
Delaure et al., “An attempt to unify the structure of polymerases,” Protein Engineering 3(6):461-467 (1990). |
De Pouplana et al., “Evidence that two present-day components needed for the genetic code appeared after nucleated cells separated from eubacteria,” Proc. Natl. Acad. Sci. USA 93:166-170 (1996). |
Dimarco et al., “Unusual coenzymes of methanogenesis,” Annu. Rev. Biochem. 569:355-394 (1990). |
Eberhart et al., “The pelota locus encodes a protein required for meiotic cell division: an analysis of G2/M arrest in Drosophila spermatogeneiss,” Development 121:3477-3486 (1995). |
Faguy et al., “Molecular analysis of aarchaeal flagellins: similarity to the type IV pilin—transport superfamily widwspread in bacteria,” Can. J. Microbiol. 40:67-71 (1994). |
Flieschmann et al., “Whole-genome random sequencing and assembly of Haemophilus influenzae Rd,” Science 269:496-512 (1995). |
Gavin et al., “Conserved initiator proteins in eukaryotes,” Science 270:1667-1671 (1995). |
GenBank report, “B. thuringiensis insertion element IS240-B protein gene, complete cds,” Locus BACIS2402, Accession No. M23741 J03315 (1989), with associatd report for Locus Bank BACIS2401, Accession No. M23740 J03315 (1989). |
GenBank report, “Insertion sequence IS982 (From Lactococcus lactis) transposase gene, c9mplete cds,” Locus INSTRANB, Accession No. L34754 (1996). |
Gogarten et al., “Evolution of the vacuolar H+-ATPase: Implications for the origin of eukaryotes,” Proc. Natl. Acad. Sci. USA 86:6661-6665 (1989). |
Hall et al., “Molecular cloning and primary structure of squid (loligo forbesi) rhodopsin, a phospholipase C-directed G-protein linked receptor,” Biochem. J. 274 (Pt. 1):35-40; GenBank Accession No. X56788,. Dec. 21, 1994. |
Hamilton et al., “Structure of genes and an insertion element in the methane producing archaebacterium Methanobrevibacter smithii, ” Mol. Gen. Genet. 200:47-59 (1985). |
Hartman et al., “Uridine and dolichyl diphosphate activated oligosaccharides are intermediates in the biosynthesis of the S-layer glycoprotein of Methanonthermus fervidus,” Arch. Microbiol. 151:274-281 (1989). |
Hillier et al., “The WashU-Merck EST Project,” GenBank Accession No. H46528, Jul. 31, 1995, Washington University School of Medicine, USA. |
Hillier et al., “The WashU-Merck EST Project,” GenBank Accession No. R07848, Apr. 5, 1995, Washington University School of Medicine, USA. |
Hillier et al., “Washington University Caenorhabditis briggsae EST Project,” GenBank Accession No. R04180, Mar. 31, 1995, Washington University School of Medicine, USA. |
Hillier et al., “The WashU-Merck EST Project,” GenBank Accession No. R08145, Apr. 5, 1995, Washington University School of Medicine, USA. |
Hillier et al., “The WashU-Merck EST Project,” GenBank Accession No. R15715, Apr. 13, 1995, Washington University School of Medicine, USA. |
Hillier et al., “The WashU-Merck EST Project,” GenBank Accession No. N21111, Dec. 19, 1995, Washington University School of Medicine, USA. |
Hillier et al., “The WashU-Merck EST Project,” GenBank Accession No. R96366, Sep. 11, 1995, Washington University School of Medicine, USA. |
Hirata et al., “Molecular structure of a gene, VMA1, encoding the catalytic subunit of H+-Translocating adenosine triphosphatase from vacuolar membranes of Saccharomyces cerevisiae,” J. Biol. Chem. 265(12):6726-6733 (1990). |
Iwabe et al. “Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes,” Proc. Natl. Acad. Sci. USA 86:9355-9359 (1989). |
Jiang et al., “Structure and sequence of the rfb (0 antigen) gene cluster of Salmonella serovar typhimurium (strain LT2),” Molec. Microbiol. 5(3):697-713 (1991). |
Jones et al., “Methanococcus jannaschii sp. nov., an extremely thermophilic methanogen from a submarine hydrothermal vent,” Arch. Microbiol. 136:254-261 (1983). |
Kaine et al., “Isolation and characterization of the 7S RNA gene from Methanococcus voltae,” J. Bacteriol. 171(8):4261-4266 (1989). |
Kalmokoff et al., “Relatedness of the flagellins from methanogens,” Arch. Microbiol. 157:481-487 (1992). |
Kane et al., “Protein splicing converts the yeast TFP1 gene product to the 69-kD subunit of the vacuolar H+-adenosine triphosphatase,” Science 250:651-657 (1990). |
Klenk et al., “Archaea and eukaryotes versus bacteria?,” Current Biology 4(10):920-922 (1994). |
Köpke et al., “Comparative studies of ribosomal proteins and their genes from Methanococcus vannielii and other organisms,” Can J. Microbiol. 35:11-20 (1989). |
Langer et al., “Transcription in archaea: Similarity to that in eucarya,” Proc. Natl. Acad. Sci. USA 92:5768-5772 (1995). |
Lanzendorfer et al., “Structure and function of the DNA-dependent RNA polymerase of Sulfolobus,” System. Appl. Microbiol. 16:656-664 (1994). |
Lechner et al., “Organization and nucleotide sequence of a transcriptional unit of Methanococcus vannielii comprising genes for protein synthesis elongation factors and ribosomal proteins,” J. Mol. Evol. 29:20-27 (1989). |
Logan et al., “Crystal structure of glycyl-tRNA synthetase from Thermus thermophilus,” EMBO J. 14(17):4156-4167 (1995). |
Lutkenhaus, J. “Escherichia coli cell division,” Curr. Opin. Genet. Devel. 3:783-788 (1993). |
McCombie et al., “Caenorhabditis elegans expressed sequence tags identify gene families and potential disease gene homologoues”, Nature Genet. 1:124-131; GenBank Accession No. M79739, (1992). |
McCombie et al., “Caenorhabditis briggsae cDNAs,” GenBank Accession No. T01773, Nov. 10, 1992, The Institute for Genomic Research, Rockville, MD, USA. |
Michel et al., “Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure,” Biochimie 64:867-881 (1982). |
Mojica et al., “Long stretches of short tandem repeats are present in the largest replicons of the Archaea Haloferax mediterranei and Haloferax volcanii and could be involved in replicon partitioning,”: Molec. Microbiol. 17(1):85-93 (1995). |
Perler et al., “Intervening sequences in an Archaea DNA polymerase gene,” Proc. Natl. Acad. Sci. USA 89:5577-5581 (1992). |
Pietrokovski et al., “Conserved sequence features of inteins (protein introns) and their use in identifying new inteins and related proteins,” Protein Science 3:2340-2350 (1994). |
Poritz et al., “Human SRP RNA and E. coli 4.5wS RNA contain a highly homologous structural Domain,” Cell 55:4-6 (1988). |
Riley et al., “Functions of the gene products of Escherichia coli,” Microbiol. Rev. 57(4):862-952. |
Rothfield et al., “How do bacterial decide where to divide?,” Cell 84:183-186 (1996). |
Sandman et al., “HMf, a DNA-binding protein isolated from the hyperthermophilic archaeon Methanothermus fervidus, is most closely related to histones,” Proc. Natl. Acad. Sci. USA 87:5788-5791 (1990). |
Schön et al., “Misaminoacylation and transamidation are required for protein biosynthesis in Lactobacillus bulgaricus,” Biochimi 70:391-394 (1988). |
Sevier et al., “Monoclonal antibodies in clinical immunology,” Clin. Chem. 27(11):1979-1806 (1981). |
Uemori et al., “The hyperthermophilic Archaeon Pyrodictium occultum has two α-like DNA polymerase,” J. Bacteriol. 177(8):2164-2177 (1995). |
Wagar et al., “The glycyl-tRNA synthetase of the Chlamydia trachomatis,” J. Bacteriol. 177(17):5179-5185 (1994). |
Whitbread et al., “Cdc54 belongs to the Cdc45/Mcm3 family of proteins which are esential for initiation of eukaryotic DNA replication,” Gene 155:113-117 (1995). |
Woese et al. “Towards a natural system of organisms: Proposal for the domains archaea, bacteria, and eucarya,” Proc. Natl. Acad. Sci. USQ 87:4576-4579 (1990). |
Wood et al., “The acetyl-CoA pathway: a newly discovered pathway of autotriphic growth,” TIBS 11:14-18 (1986). |
Xu et al., “In vitro protein splicing of purified precursor and the identification of a branched intermediate,” Cell 75:1371-1377 (1993). |
Zhao et al., “An extremely thermophilic Methanococcus from a deep see hydrothermal vent and its plasmid,” Arch. Microbiol. 150:178-183 (1988). |
International Search Report for International Application No. PCT/US97/14900. |